Supporting Information

for

Pyridinium 1,4-Zwitterionic Thiolates as a Useful Class of Sulfur-containing Synthons: Application to the Synthesis of 2,5-Dihydro-1,4,5-thiadiazepines

Bin Cheng,^{*ab} Yuntong Li,^b[†] Taimin Wang,^a[†] Xinping Zhang,^{ab} Hui Li,^{ab} Yun Li,^b and Hongbin Zhai^{*abc}

Table of Contents

1. General information	••••• \$ 2
2. General experimental procedures	······S2-S4
3. References ······	<u>\$</u> 4
4. Characterization data of products	······S5-S14
5. NMR spectra ······	······S15-S52

^{a.} Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; e-mail: chengbin@szpt.edu.cn

^{b.} State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

^c State Key Laboratory of Chemical Oncogenomics, Shenzhen Engineering Laboratory of Nano Drug Slow-Release, Peking University Shenzhen Graduate School, Shenzhen 518055, China; e-mail: zhaihb@pkusz.edu.cn

⁺ These authors contributed equally to this work

1. General information

All isolated compounds were characterized on Varian 300, Bruker 400, and JEOL 400 MHz spectrometers in CDCl₃ or (CD₃)₂CO or (CD₃)₂SO. Chemical shifts were reported as δ values relative to internal chloroform (δ 7.26 for ¹H NMR and 77.00 for ¹³C NMR), acetone (δ 2.05 for ¹H NMR and 29.84 for ¹³C NMR) and dimethyl sulfoxide (δ 2.50 for ¹H NMR and 39.52 for ¹³C NMR). ¹⁹F NMR chemical shifts were determined as δ values relative to external standard PhCF₃ at -63.00. High-resolution mass spectra (HRMS) were obtained on a 4G mass spectrometer by using electrospray ionization (ESI) analyzed by quadrupole time-of-flight (QTof). All melting points were measured with the samples after column chromatography and uncorrected. Column chromatography was performed on silica gel. All other solvents and reagents were used as obtained from commercial sources without further purification.

2. General experimental procedures

2.1 General procedure for the preparation of α-halo hydrazones^[1]

To a solution of α -halo ketone (20 mmol, 1.0 equiv) in methanol (10 mL) were added acylhydrazide (30 mmol, 1.5 equiv) and HCl (conc., 0.5 mL) at 0 °C. The mixture was stirred at the same temperature for 3 h, then filtered and washed with Et₂O (15 mL). The crude product was directly used without further purification.

2.2 General procedure for the preparation of pyridinium 1,4-diionic organosulfurs^[2]

To a solution of pyridine (1 mmol) and S_8 (1/8 mmol) in DCM (5 mL) was added the electron-poor internal alkyne (1 mmol) dropwise at 0 °C. The mixture was stirred for 24 h at room temperature. Then, the mixture was filtered and the precipitate was washed with Et₂O (2 × 5 mL) to afford pure product as a yellow powder, which was pure enough to use for the next step.

2.3 General procedure for the synthesis of 2,5-dihydro-1,4,5-thiadiazepines

To a solution of α -halo hydrazone **1** (0.3 mmol, 1.0 equiv) in DCM (3 mL) were added pyridinium 1,4-diionic organosulfur **2** (0.45 mmol, 1.5 equiv) and Na₂CO₃ (0.6 mmol, 2.0 equiv) at room temperature, then the mixture was stirred at the same temperature for 12 h. The solvent was evaporated and the resulting crude product was purified by silica gel column chromatography to give the corresponding 2,5-dihydro-1,4,5-thiadiazepine derivative **3**.

Scaled-up experiment for the synthesis of 3a: To a solution of 1a (1.51 g, 1.0 equiv) in DCM (60 mL) were added 2a (2.25 g, 1.5 equiv) and Na_2CO_3 (1.25 g, 2.0 equiv) at room temperature, then the mixture was stirred at the same temperature for 24 h. The solvent was evaporated and the resulting crude product was purified by silica gel column chromatography to give 3a (1.88 g, 91%) as a yellow solid.

2.4 General procedure for the synthesis of sulfoxides

To a solution of 2,5-dihydro-1,4,5-thiadiazepine derivative **3** (0.3 mmol) in DCM (3 mL) was added *m*-CPBA (0.3 mmol, 1.0 equiv) at 0 °C, then the mixture was stirred at the room temperature. After completion as monitored by TLC, the crude reaction mixture was purified by silica gel column chromatography to get the corresponding sulfoxide.

2.5 General procedure for the synthesis of sulfones

To a solution of 2,5-dihydro-1,4,5-thiadiazepine derivative **3** (0.3 mmol) in DCM (2 mL) was added *m*-CPBA (0.9 mmol, 3.0 equiv) at 0 $^{\circ}$ C, Then the mixture was stirred at the room temperature. After

completion as monitored by TLC, the mixture was diluted with DCM and washed with saturated solution of NaHSO₃, then the aqueous layer was extracted with DCM twice. The combined organic layers were washed with saturated brine solution and dried over anhydrous Na₂SO₄. After evaporation of solvent, the residue was purified by silica gel column chromatography to get the corresponding sulfone.

3. References

- [1] Hu, X.; Chen, J.; Gao, S.; Feng, B.; Lua, L.; Xiao, W. Chem. Commun. 2013, 49, 7905.
- [2] Moafi, L.; Ahadi, S.; Khavasi, H. R.; Bazgir, A. Synthesis 2011, 9, 1399.

4. Characterization data of products

Dimethyl 4-acetyl-6-phenyl-4,7-dihydro-1,4,5-thiadiazepine-2,3-dicarboxylate. Compound **3a** (103 mg, Yield = 98%, $R_f = 0.33$ (PE:EA = 1:1)) was isolated as a yellow solid; mp 192.8–193.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.6 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.47 (t, J = 7.2 Hz, 2H), 4.27 (s, 2H), 3.74 (s, 3H), 3.73 (s, 3H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 170.8, 163.9, 162.9, 132.6, 132.2, 129.9, 129.8, 128.9, 127.4, 53.2, 52.7, 25.5, 21.6; ESI-HRMS m/z calcd for C₁₆H₁₆N₂O₅S + H⁺ 349.0853, found 349.0855.

Dimethyl 4-acetyl-6-(4-methoxyphenyl)-4,7-dihydro-1,4,5- thiadiazepine-2,3-dicarboxylate. Compound **3b** (102 mg, Yield = 89%, R_f = 0.41 (PE:EA = 1:1)) was isolated as a yellow solid; mp 71.8–72.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 4.24 (s, 2H), 3.84 (s, 3H), 3.73 (s, 3H), 3.71 (s, 3H), 2.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 170.7, 163.9, 163.0, 162.9, 129.8, 129.7, 129.2, 124.4, 114.2, 55.4, 53.2, 52.7, 25.1, 21.5; ESI-HRMS m/z calcd for C₁₇H₁₈N₂O₆S + Na⁺ 401.0787, found 401.0784.

Dimethyl 4-acetyl-6-(*p*-tolyl)-4,7-dihydro-1,4,5-thiadiazepine-2,3-dicarboxylate. Compound **3c** (94 mg, Yield = 86%, $R_f = 0.42$ (PE:EA = 1:1)) was isolated as a yellow solid; mp 151.7–152.5°C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 7.6 Hz, 2H), 4.28 (s, 2H), 3.77 (s, 3H), 3.75 (s, 3H), 2.43 (s, 3H), 2.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 170.8, 163.9, 162.9, 143.0, 129.8, 129.7, 129.6, 129.6, 127.4, 53.2, 52.7, 25.3, 21.6, 21.4. ESI-HRMS m/z calcd for C₁₇H₁₈N₂O₅S + Na⁺ 385.0829, found 385.0831.

Dimethyl 4-acetyl-6-(4-nitrophenyl)-4,7-dihydro-1,4,5-thiadiazepine-2,3-dicarboxylate. **3d** (96 mg, Yield = 81%, $R_f = 0.36$ (PE:EA = 1:1)) was isolated as a yellow solid; mp 206.7–207.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 8.8 Hz, 2H), 8.08 (d, J = 9.2 Hz, 2H), 4.26 (s, 2H), 3.79 (s, 6H), 2.20 (s, 3H). ¹³C NMR (100 MHz, (CD₃)₂SO) δ 171.2, 170.0, 164.1, 162.6, 149.6, 138.6, 130.8, 129.2, 128.5, 124.0, 53.6, 52.8, 25.2, 21.6; ESI-HRMS m/z calcd for C₁₆H₁₅N₃O₇S + Na⁺ 416.0523, found 416.0526.

Dimethyl 4-acetyl-6-(4-(trifluoromethyl)phenyl)-4,7-dihydro-1,4,5-thiadiazepine-2,3-dicarboxylate. Compound **3e** (114 mg, Yield = 91%, $R_f = 0.49$ (PE:EA = 1:1)) was isolated as a yellow solid; mp 173.2–173.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 4.28 (s, 2H), 3.75 (s, 6H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.0, 163.9, 162.8, 136.3, 133.7 (q, J = 32.7 Hz), 130.4, 129.8, 127.8, 125.9 (q, J = 3.7 Hz), 123.5 (q, J = 271.2 Hz), 53.3, 52.8, 25.8, 21.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.10 (s, 3F); ESI-HRMS m/z calcd for C₁₇H₁₅F₃N₂O₅S + Na⁺ 439.0546, found 439.0548.

Dimethyl 4-acetyl-6-(4-fluorophenyl)-4,7-dihydro-1,4,5-thiadiazepine-2,3-dicarboxylate. Compound **3f** (101 mg, Yield = 92%, $R_f = 0.47$ (PE:EA = 1:1)) was isolated as a yellow solid; mp 151.9–152.3°C. ¹H NMR (400 MHz, CDCl₃) δ 7.96–7.90 (m, 2H), 7.15 (t, J = 8.4 Hz, 2H), 4.26 (s, 2H), 3.72 (s, 6H), 2.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 170.1, 165.2 (d, J = 252.6 Hz), 163.8 162.9, 129.8, 129.8 (d, J = 8.6 Hz), 128.6, 128.6, 116.0 (d, J = 21.8 Hz), 53.2, 52.7, 25.4, 21.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -106.28 (s, F); ESI-HRMS m/z calcd for C₁₆H₁₅FN₂O₅S + Na⁺ 389.0578, found 389.0574.

Dimethyl 4-acetyl-6-(furan-2-yl)-4,7-dihydro-1,4,5-thiadiazepine-2,3-dicarboxylate. Compound **3g** (56 mg, Yield = 55%, $R_f = 0.28$ (PE:EA = 1:1)) was isolated as a yellow solid; mp 134.6–135.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 1.2 Hz, 1H), 7.26 (d, J = 3.6 Hz, 1H), 6.63 (dd, J = 3.6, 1.6 Hz, 1H), 4.23 (s, 2H), 3.77 (s, 6H), 2.13 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.1, 164.0, 162.8, 161.8, 146.9, 146.6, 130.7, 129.8, 115.8, 112.9, 53.3, 52.8, 24.8, 21.6; ESI-HRMS m/z calcd for C₁₄H₁₄N₂O₆S + Na⁺ 361.0465, found 361.0464.

Dimethyl 4-acetyl-6-(*tert*-butyl)-4,7-dihydro-1,4,5-thiadiazepine-2,3-dicarboxylate. Compound **3h** (90 mg, Yield = 91%, $R_f = 0.38$ (PE:EA = 1:1)) was isolated as a yellow solid; mp 186.8–187.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.85 (s, 2H), 3.74 (s, 3H), 3.72 (s, 3H), 1.97 (s, 3H), 1.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 182.6, 170.3, 163.9, 162.9, 129.5, 129.1, 53.2, 52.6, 39.2, 27.6, 23.9, 21.4; ESI-HRMS m/z calcd for $C_{14}H_{20}N_2O_5S + Na^+$ 351.0985, found 351.0984.

Dimethyl (*E*)-4-acetyl-6-styryl-4,7-dihydro-1,4,5-thiadiazepine-2,3-dicarboxylate. Compound **3i** (72 mg, Yield = 64%, $R_f = 0.44$ (PE:EA = 1:1)) was isolated as a yellow solid; mp 212.3–212.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.53 (m, 2H), 7.46–7.39 (m, 3H), 7.30 (d, *J* = 16.4 Hz, 1H), 7.00 (d, *J* = 16.4 Hz, 1H), 4.13 (s, 2H), 3.77 (s, 6H), 2.11 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.0, 170.9, 164.0, 162.9, 141.1, 134.5, 130.6, 130.3, 129.8, 129.0, 127.8, 122.4, 53.3, 52.8, 23.8, 21.6; ESI-HRMS m/z calcd for C₁₈H₁₈N₂O₅S + Na⁺ 397.0829, found 397.0827.

Diethyl 4-acetyl-6-phenyl-4,7-dihydro-1,4,5-thiadiazepine-2,3-dicarboxylate. Compound **3j** (101 mg, Yield = 89%, $R_f = 0.43$ (PE:EA = 1:1)) was isolated as a yellow solid; mp 150.2–150.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.2 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 4.25 (s, 2 H), 4.23–4.14 (m, 4H), 2.11 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H), 1.24 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 170.8, 163.5, 162.3, 132.7, 132.2, 130.0, 129.9, 128.8, 127.4, 62.5, 61.9, 25.5, 21.6, 13.8, 13.7; ESI-HRMS m/z calcd for C₁₈H₂₀N₂O₅S + H⁺ 377.1166, found 377.1164.

4-(*tert*-Butyl) 2,3-dimethyl 6-phenyl-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate. Compound **3k** (114 mg, Yield = 93%, $R_f = 0.44$ (PE:EA = 1:1)) was isolated as a yellow solid; mp 135.3–136.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 2H), 7.52–7.45 (m, 1H), 7.44–7.46 (m, 2H), 3.75 (s, 3H), 3.72 (s, 3H), 1.46 (s, 9H), (2H missing); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 164.0, 163.1, 151.4, 133.0, 131.8, 128.6, 127.6, 83.0, 53.2, 52.5, 28.0, 26.1, (2C missing); ESI-HRMS m/z calcd for C₁₉H₂₂N₂O₆S + Na⁺ 429.1091, found 429.1089.

4-(*tert*-Butyl) 2,3-dimethyl 6-(4-methoxyphenyl)-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate. Compound **3l** (81 mg, Yield = 62%, $R_f = 0.35$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 57–58 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.8 Hz, 2H), 6.92 (d, *J* = 9.2 Hz, 2H), 3.83 (s, 3H), 3.77 (s, 3H), 3.73 (s, 3H), 1.47 (s, 9H), (2H missing); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 164.2, 163.2, 162.7, 129.5, 125.2, 114.1, 83.0, 55.4, 53.2, 52.5, 28.1, 26.0, (3C missing); ESI-HRMS m/z calcd for C₂₀H₂₄N₂O₇S + H⁺ 437.1377, found 437.1371.

4-(*tert*-Butyl) 2,3-dimethyl 6-(*p*-tolyl)-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate. Compound **3m** (105 mg, Yield = 83%, $R_f = 0.46$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 62–63 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 3.76 (s, 3H), 3.72 (s, 3H), 2.37 (s, 3H), 1.46 (s, 9H), (2H missing); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 164.1, 163.1, 151.4, 142.4, 130.0, 129.3, 127.6, 82.9, 53.1, 52.4, 28.0, 26.0, 21.3, (2C missing); ESI-HRMS m/z calcd for C₂₀H₂₄N₂O₆S + H⁺ 421.1428, found 421.1427.

4-(*tert*-Butyl) 2,3-dimethyl 6-(4-nitrophenyl)-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate. Compound **3n** (131 mg, Yield = 97%, $R_f = 0.41$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 74–75 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.8 Hz, 2H), 8.06 (d, *J* = 8.8 Hz, 2H) , 3.74 (s, 3H), 3.71 (s, 3H), 1.44 (s, 9H), (2H missing); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 163.8, 162.9, 151.2, 149.5, 139.0, 130.8, 128.8, 128.6, 123.7, 83.5, 53.2, 52.6, 27.9, 26.0; ESI-HRMS m/z calcd for C₁₉H₂₁N₃O₈S + Na⁺ 474.0942, found 474.0941.

4-(*tert*-Butyl) 2,3-dimethyl 6-(4-(trifluoromethyl)phenyl)-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate. Compound **30** (135 mg, Yield = 95%, $R_f = 0.47$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 64–65 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 8.0 Hz, 2H), 3.77 (s, 3H), 3.74 (s, 3H), 1.47 (s, 9H), (2H missing); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 164.0, 163.0, 151.4, 136.6, 133.3 (q, *J* = 32.6 Hz), 131.0, 128.8, 128.0, 125.6 (q, *J* = 3.7 Hz), 123.6 (q, *J* = 270.9 Hz), 83.4, 53.3, 52.6, 28.0, 26.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.03 (s, 3F); ESI-HRMS m/z calcd for C₂₀H₂₁F₃N₂O₆S + Na⁺ 497.0965, found 497.0966.

4-(*tert*-Butyl) 2,3-dimethyl 6-(4-fluorophenyl)-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate. Compound **3p** (117 mg, Yield = 92%, $R_f = 0.51$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 74–75 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92–7.82 (m, 2H), 7.10–6.99 (m, 4H), 3.72 (s, 3H), 3.68 (s, 3H), 1.42 (s, 9H), (2H missing); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 164.8 (d, *J* = 251.6 Hz), 163.9, 163.0, 151.3, 130.9, 129.8 (d, *J* = 8.8 Hz), 129.0 (d, *J* = 2.5 Hz), 128.4, 115.7 (d, *J* = 21.8 Hz), 83.0, 53.1, 52.4, 27.8, 25.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -107.11 (s, F); ESI-HRMS m/z calcd for C₁₉H₂₁FN₂O₆S + Na⁺ 447.0997, found 447.0995.

4-(*tert*-Butyl) 2,3-dimethyl 6-(furan-2-yl)-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate. Compound **3q** (100 mg, Yield = 84%, $R_f = 0.49$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 144–145 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 1.2 Hz, 1H), 7.22 (d, J = 3.2 Hz, 1H), 6.54 (dd, J = 3.6, 1.6 Hz, 1H), 3.74 (s, 3H), 3.72 (s, 3H), 1.44 (s, 9H), (2H missing); ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 162.9, 162.0, 151.5, 147.0, 146.0, 131.9, 128.2, 115.4, 112.6, 83.0, 53.2, 52.4, 27.9, 25.0; ESI-HRMS m/z calcd for C₁₇H₂₀N₂O₇S + Na⁺ 419.0883, found 419.0885.

4-(tert-Butyl) 2,3-dimethyl 6-(tert-butyl)-1,4,5-thiadiazepine-2,3,4(7H)-tricarboxylate. Compound 3r

(59 mg, Yield = 51%, $R_f = 0.39$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 130–131 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.74 (s, 3H), 3.73 (s, 3H), 1.41 (s, 9H), 1.28 (s, 9H), (2H missing); ¹³C NMR (100 MHz, CDCl₃) δ 182.2, 164.1, 163.1, 151.0, 82.5, 53.2, 52.4, 39.0, 28.0, 27.8, 24.4, (2C missing); ESI-HRMS m/z calcd for $C_{17}H_{26}N_2O_6S + Na^+$ 409.1404, found 409.1403.

4-(*tert*-Butyl) 2,3-dimethyl (*E*)-6-styryl-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate. Compound **3s** (67 mg, Yield = 52%, $R_f = 0.41$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 88–89 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.46 (m, 2H), 7.40–7.31 (m, 3H), 7.21 (d, *J* = 16.4 Hz, 1H), 7.01 (d, *J* = 16.4 Hz, 1H), 3.75 (s, 3H), 3.72 (s, 3H), 1.45 (s, 9H), (2H missing); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 164.1, 163.0, 151.6 , 140.3, 134.7, 131.8, 129.8, 128.8, 128.6, 127.5, 122.8, 83.0, 53.2, 52.4, 27.9, 24.1; ESI-HRMS m/z calcd for C₂₁H₂₄N₂O₆S + Na⁺ 455.1247, found 455.1248.

4-(*tert*-Butyl) 2,3-diethyl 6-phenyl-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate. Compound **3t** (120 mg, Yield = 92%, $R_f = 0.57$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 56–57 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.6 Hz, 2H), 7.47 (t, J = 7.6 Hz, 1H), 7.40 (t, J = 7.6 Hz, 2H), 4.22–4.12 (m, 4H), 1.46 (s, 9H), 1.27 (t, J = 7.2 Hz, 3H), 1.22 (t, J = 7.2 Hz, 3H), (2H missing); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 163.6, 162.6, 151.3, 133.1, 131.6, 128.5, 127.5, 82.8, 62.4, 61.7, 28.0, 26.0, 13.8, 13.6, (2C missing); ESI-HRMS m/z calcd for C₂₁H₂₆N₂O₆S + Na⁺ 457.1404, found 457.1407.

4-(*tert*-Butyl) 2,3-dimethyl 6-phenyl-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate 1-oxide. Compound **4a** (91 mg, Yield = 72%, $R_f = 0.62$ (PE:EA = 1:1)) was isolated as a yellow solid; mp 72.0–73.0 °C. ¹H NMR (400 MHz, (CD₃)₂SO) δ 7.96–7.92 (m, 2H), 7.61–7.56 (m, 1H), 7.54–7.49 (m, 2H), 5.01 (d, *J* = 14.0 Hz, 1H), 4.76 (d, *J* = 14.0 Hz, 1H), 3.79 (s, 3H), 3.75 (s, 3H), 1.45 (s, 9H); ¹³C NMR (100 MHz, (CD₃)₂SO) δ 170.9, 164.1, 163.1, 149.7, 140.0, 134.8, 132.1, 128.7, 128.3, 126.0, 84.8, 53.6, 47.2, 27.5, (1C missing); ESI-HRMS m/z calcd for C₁₉H₂₂N₂O₇S + Na⁺ 445.1040, found 445.1039.

Dimethyl 4-acetyl-6-phenyl-4,7-dihydro-1,4,5-thiadiazepine-2,3-dicarboxylate 1-oxide. Compound **4b** (81 mg, Yield = 74%, $R_f = 0.22$ (PE:EA = 1:1)) was isolated as a white solid; mp 123.9–124.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.48 (t, J = 7.2 Hz, 2H), 4.49 (d, J = 13.6 Hz, 1H), 4.30 (d, J = 13.2 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 166.0, 163.0, 162.3, 140.3, 134.3, 132.5, 129.0, 127.8, 53.5, 48.0, 22.3, (2C missing); ESI-HRMS m/z calcd for C₁₆H₁₆N₂O₆S + Na⁺ 387.0621, found 387.0620.

4-(*tert*-Butyl) 2,3-dimethyl 6-(4-methoxyphenyl)-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate 1-oxide. Compound **4c** (94 mg, Yield = 69%, $R_f = 0.37$ (PE:EA = 1:1)) was isolated as a yellow solid; mp 75–76 °C. ¹H NMR (400 MHz, (CD₃)₂SO) δ 7.90 (d, *J* = 8.8 Hz, 2H), 7.05 (d, *J* = 8.8 Hz, 2H), 4.95 (d, *J* = 14.0 Hz, 1H), 4.66 (d, *J* = 13.6 Hz, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 3.74 (s, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, (CD₃)₂SO) δ 169.9, 164.1, 163.1, 162.5, 149.8, 140.5, 130.2, 127.3, 125.6, 114.1, 84.6, 55.6, 54.9, 53.5, 46.9, 27.5; ESI-HRMS m/z calcd for C₂₀H₂₄N₂O₈S + Na⁺ 475.1146, found 475.1148.

4-(*tert*-Butyl) 2,3-dimethyl 6-(*p*-tolyl)-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate 1-oxide. Compound **4d** (81 mg, Yield = 62%, $R_f = 0.13$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 69–70 °C. ¹H NMR (400 MHz, (CD₃)₂SO) δ 7.84 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 4.94 (d, *J* = 14.0 Hz, 1H), 4.68 (d, *J* = 14.0 Hz, 1H), 3.80 (s, 3H), 3.75 (s, 3H), 2.36 (s, 3H), 1.45 (s, 9H); ¹³C NMR (100 MHz, (CD₃)₂SO) δ 170.5, 164.1, 163.1, 149.7, 142.4, 140.2, 132.2, 129.2, 128.2, 125.9, 84.7, 53.5 (2C), 47.1, 27.5, 21.0; ESI-HRMS m/z calcd for C₂₀H₂₄N₂O₇S + Na⁺ 459.1196, found 459.1197.

4-(*tert*-Butyl)2,3-dimethyl6-(4-(trifluoromethyl)phenyl)-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate 1-oxide. Compound **4e** (104 mg, Yield = 71%, $R_f = 0.2$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 78–79 °C. ¹H NMR (400 MHz, (CD₃)₂SO) δ 8.13 (d, *J* = 8.4 Hz, 2H), 7.87 (d, *J* = 8.4 Hz, 2H), 5.05 (d, J = 14.0 Hz, 1H), 4.79 (d, J = 14.0 Hz, 1H), 3.80 (s, 3H), 3.75 (s, 3H), 1.45 (s, 9H); ¹³C NMR (100 MHz, (CD₃)₂SO) δ 170.1, 164.0, 163.0, 149.7, 139.8, 138.7, 131.8 (q, J = 31.9 Hz), 129.1, 126.6, 125.6 (q, J = 3.6 Hz), 123.9 (q, J = 270.8 Hz), 85.2, 53.7, 47.5, 27.5, (1C missing); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.06 (s, 3F); ESI-HRMS m/z calcd for C₂₀H₂₁F₃N₂O₇S + Na⁺ 513.0914, found 513.0915.

4-(*tert*-Butyl) 2,3-dimethyl 6-(4-fluorophenyl)-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate 1-oxide. Compound **4f** (95 mg, Yield = 72%, $R_f = 0.39$ (PE:EA = 1:1)) was isolated as a yellow solid; mp 67–68 °C. ¹H NMR (400 MHz, (CD₃)₂SO) δ 8.00 (dd, J = 8.8, 5.6 Hz, 2H), 7.34 (t, J = 8.8 Hz, 2H), 4.99 (d, J = 13.6 Hz, 1H), 4.73 (d, J = 14.0 Hz, 1H), 3.80 (s, 3H), 3.75 (s, 3H), 1.45 (s, 9H); ¹³C NMR (100 MHz, (CD₃)₂SO) δ 170.0, 164.5 (d, J = 249.6 Hz), 164.0, 163.0, 149.7, 140.1, 131.5 (d, J = 2.9 Hz), 131.0 (d, J = 9.0 Hz), 126.0, 115.8 (d, J = 21.8 Hz), 84.9, 53.6, 47.2, 27.5, (1C missing); ¹⁹F NMR (376 MHz, CDCl₃) δ -106.74 (s, F); ESI-HRMS m/z calcd for C₁₉H₂₁FN₂O₇S + Na⁺ 463.0946, found 463.0949.

4-(*tert*-Butyl) 2,3-dimethyl 6-(furan-2-yl)-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate 1-oxide. Compound **4g** (97 mg, Yield = 78%, $R_f = 0.23$ (PE:EA = 1:1)) was isolated as a yellow solid; mp 77–78 °C. ¹H NMR (400 MHz, (CD₃)₂SO) δ 7.98 (d, *J* = 0.8 Hz, 1H), 7.41 (d, *J* = 3.6 Hz, 1H), 6.72 (dd, *J* = 3.2, 1.6 Hz, 1H), 4.76 (d, *J* = 14.0 Hz, 1H), 4.69 (d, *J* = 13.6 Hz, 1H), 3.78 (s, 3H), 3.74 (s, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, (CD₃)₂SO) δ 164.1, 163.1, 160.0, 149.8, 149.2, 147.8, 140.5, 126.3, 119.8, 113.0, 84.9, 53.6, 47.0, 27.5, (1C missing); ESI-HRMS m/z calcd for C₁₇H₂₀N₂O₈S + Na⁺ 435.0833, found 435.0832.

4-(*tert*-Butyl) 2,3-dimethyl 6-(*tert*-butyl)-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate 1-oxide. Compound **4h** (94 mg, Yield = 78%, $R_f = 0.19$ (PE:EA = 2:1)) was isolated as a white solid; mp 58–59 °C. ¹H NMR (400 MHz, (CD₃)₂SO) δ 4.46 (d, *J* = 13.2 Hz, 1H), 4.37 (d, *J* = 13.6 Hz, 1H), 3.76 (s, 3H), 3.74 (s, 3H), 1.41 (s, 9H), 1.16 (s, 9H); ¹³C NMR (100 MHz, (CD₃)₂SO) δ 180.2, 164.0, 163.0, 149.5, 140.0, 124.7, 84.4, 53.4, 46.6, 38.5, 27.5, 27.1, (1C missing); ESI-HRMS m/z calcd for C₁₇H₂₆N₂O₇S + Na⁺ 425.1353, found 425.1354.

4-(*tert*-Butyl) 2,3-dimethyl (*E*)-6-styryl-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate 1-oxide. Compound **4i** (100 mg, Yield = 74%, $R_f = 0.25$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 87–88 °C. ¹H NMR (400 MHz, (CD₃)₂SO) δ 7.67 (d, *J* = 6.4 Hz, 2H), 7.56 (d, *J* = 16.4 Hz, 1H), 7.47–7.40 (m, 3H), 7.15 (d, *J* = 16.4 Hz, 1H), 4.84 (d, *J* = 13.6 Hz, 1H), 4.57 (d, *J* = 14.0 Hz, 1H), 3.78 (s, 3H), 3.74 (s, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, (CD₃)₂SO) δ 170.1, 164.1, 163.1, 149.9, 143.2, 140.2, 135.1, 130.3, 129.1, 128.1, 126.7, 125.6, 84.9, 53.6, 45.7, 27.6, (1C missing); ESI-HRMS m/z calcd for C₂₁H₂₄N₂O₇S + Na⁺ 471.1196, found 471.1196.

4-(*tert*-Butyl) 2,3-diethyl 6-phenyl-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate 1-oxide. Compound **4j** (93 mg, Yield = 69%, $R_f = 0.39$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 62–63 °C. ¹H NMR (400 MHz, (CD₃)₂SO) δ 7.94 (d, *J* = 7.2 Hz, 2H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.51 (t, *J* = 7.2 Hz, 2H), 4.96 (d, *J* = 14.0 Hz, 1H), 4.71 (d, *J* = 14.0 Hz, 1H), 4.32–4.12 (m, 4H), 1.46 (s, 9H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.20 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, (CD₃)₂SO) δ 170.9, 163.6, 162.4, 149.9, 140.0, 134.9, 132.1, 128.7, 128.3, 126.6, 84.7, 62.8, 62.6, 47.3, 27.6, 13.7, 13.6; ESI-HRMS m/z calcd for C₂₁H₂₆N₂O₇S + Na⁺ 473.1353, found 473.1353.

4-(*tert*-Butyl) 2,3-dimethyl 6-phenyl-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate 1,1-dioxide. Compound **4k** (92 mg, Yield = 70%, $R_f = 0.77$ (PE:EA = 1:1)) was isolated as a white solid; mp 80.2–80.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.2 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.47 (t, *J* = 7.2 Hz, 2H), 4.76 (s, 2H), 3.86 (s, 3H), 3.84 (s, 3H), 1.52 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 162.1, 160.4, 150.1, 142.7, 132.7, 132.1, 128.9, 128.4, 125.5, 86.5, 55.1, 53.7, 53.6, 27.7; ESI-HRMS m/z calcd for C₁₉H₂₂N₂O₈S + Na⁺ 461.0989, found 461.0985.

Dimethyl 4-acetyl-6-phenyl-4,7-dihydro-1,4,5-thiadiazepine-2,3-dicarboxylate 1,1-dioxide. Compound **41** (75 mg, Yield = 66%, $R_f = 0.48$ (PE:EA = 1:1)) was isolated as a white solid; mp 185.3–185.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.2 Hz, 2H), 7.62 (t, J = 7.2 Hz, 1H), 7.53 (t, J = 7.2 Hz, 2H), 4.74 (s, 2H), 3.86 (s, 3H), 3.84 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 163.0, 161.8, 160.4, 142.6, 133.2, 131.8, 129.2, 128.3, 54.5, 53.8, 53.7, 22.4, (1C missing); ESI-HRMS m/z calcd for C₁₆H₁₆N₂O₇S + Na⁺ 403.0570, found 403.0565.

4-(*tert*-Butyl) 2,3-dimethyl 6-(furan-2-yl)-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate 1,1-dioxide. Compound **4m** (89 mg, Yield = 69%, $R_f = 0.26$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 153–154 °C. ¹H NMR (400 MHz, (CD₃)₂CO) δ 7.95 (s, 1H), 7.59 (d, *J* = 3.6 Hz, 1H), 6.78 (dd, *J* = 3.6, 1.6 Hz, 1H), 5.16 (s, 2H), 3.86 (s, 3H), 3.79 (s, 3H), 1.48 (s, 9H); ¹³C NMR (100 MHz, (CD₃)₂CO) δ 163.3, 161.4, 155.9, 151.1, 149.1, 148.3, 142.8, 128.3, 120.1, 113.9, 86.1, 55.2, 54.1, 53.9, 28.0; ESI-HRMS m/z calcd for C₁₇H₂₀N₂O₉S + Na⁺ 451.0782, found 451.0781.

4-(*tert*-Butyl) 2,3-dimethyl 6-(*tert*-butyl)-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate 1,1-dioxide. Compound **4n** (86 mg, Yield = 68%, $R_f = 0.37$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 78–79 °C. ¹H NMR (400 MHz, CDCl₃) δ 4.34 (s, 2H), 3.85 (s, 3H), 3.84 (s, 3H), 1.47 (s, 9H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 174.7, 162.1, 160.5, 150.0, 141.8, 125.6, 85.9, 54.3, 53.7, 53.5, 39.4, 27.8, 27.7; ESI-HRMS m/z calcd for $C_{17}H_{26}N_2O_8S + Na^+$ 441.1302, found 441.1299.

4-(*tert*-Butyl) 2,3-dimethyl (*E*)-6-styryl-1,4,5-thiadiazepine-2,3,4(7*H*)-tricarboxylate 1,1-dioxide. Compound **40** (99 mg, Yield = 71%, $R_f = 0.37$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 136–137 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.53 (m, 2H), 7.45–7.38 (m, 4H), 7.11 (d, *J* = 16.4 Hz, 1H), 4.62 (s, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 1.52 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 162.1, 160.4, 150.3, 143.8, 142.9, 134.4, 130.6, 129.0, 128.2, 128.1, 126.5, 122.4, 86.6, 53.8, 53.7, 27.8; ESI-HRMS m/z calcd for C₂₁H₂₄N₂O₈S + Na⁺ 487.1146, found 487.1144.

5. NMR spectra

Fig. S2 13 C NMR of compound 3a (100 MHz, CDCl₃).

Fig. S4 ¹³C NMR of compound **3b** (100 MHz, CDCl₃).

Fig. S6¹³C NMR of compound **3c** (100 MHz, CDCl₃).

Fig. S7 ¹H NMR of compound **3d** (400 MHz, CDCl₃).

Fig. S8 13 C NMR of compound 3d (100 MHz, (CD₃)₂SO).

Fig. S9 1 H NMR of compound 3e (400 MHz, CDCl₃).

Fig. S10¹³C NMR of compound 3e (100 MHz, CDCl₃).

Fig. S11 ¹⁹F NMR of compound **3e** (376 MHz, CDCl₃).

Fig. S12 1 H NMR of compound 3f (400 MHz, CDCl₃).

Fig. S13 13 C NMR of compound 3f (100 MHz, CDCl₃).

Fig. S14 $^{19}\mathrm{F}\,\mathrm{NMR}$ of compound 3f (376 MHz, CDCl_3).

Fig. S16 ¹³C NMR of compound **3g** (75 MHz, CDCl₃).

Fig. S18¹³C NMR of compound 3h (100 MHz, CDCl₃).

Fig. S19 1 H NMR of compound 3i (400 MHz, CDCl₃).

Fig. S20¹³C NMR of compound 3i (75 MHz, CDCl₃).

Fig. S21 ¹H NMR of compound **3j** (400 MHz, CDCl₃).

Fig. S22 ¹³C NMR of compound 3j (100 MHz, CDCl₃).

Fig. S23 1 H NMR of compound 3k (400 MHz, CDCl₃).

Fig. S24 $^{\rm 13}{\rm C}$ NMR of compound 3k (100 MHz, CDCl_3).

Fig. S25 ¹H NMR of compound **3l** (400 MHz, CDCl₃).

Fig. $S26^{13}$ C NMR of compound 3l (100 MHz, CDCl₃).

Fig. S27 ¹H NMR of compound **3m** (400 MHz, CDCl₃).

Fig. S28 ¹³C NMR of compound 3m (100 MHz, CDCl₃).

Fig. S29 ¹H NMR of compound 3n (400 MHz, CDCl₃).

Fig. S30¹³C NMR of compound 3n (100 MHz, CDCl₃).

Fig. S31 1 H NMR of compound 30 (400 MHz, CDCl₃).

Fig. S32 13 C NMR of compound 30 (100 MHz, CDCl₃).

Fig. S33 ¹⁰F NMR of compound 30 (376 MHz, CDCl₃).

Fig. S34 ¹H NMR of compound 3p (400 MHz, CDCl₃).

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Fig. S35 ^{13}C NMR of compound 3p (100 MHz, CDCl₃).

Fig. S36¹⁹F NMR of compound 3p (376 MHz, CDCl₃).

Fig. S37 ¹H NMR of compound 3q (400 MHz, CDCl₃).

Fig. S38¹³C NMR of compound 3q (100 MHz, CDCl₃).

Fig. S39 1 H NMR of compound 3r (400 MHz, CDCl₃).

Fig. S40 13 C NMR of compound 3r (100 MHz, CDCl₃).

Fig. S41 1 H NMR of compound 3s (400 MHz, CDCl₃).

Fig. S42 ¹³C NMR of compound 3s (100 MHz, CDCl₃).

Fig. S43 ¹H NMR of compound **3t** (400 MHz, CDCl₃).

Fig. S44 ¹³C NMR of compound 3t (100 MHz, CDCl₃).

Fig. S46¹³C NMR of compound **4a** (100 MHz, (CD₃)₂SO).

Fig. S48 ¹³C NMR of compound 4b (100 MHz, CDCl₃).

Fig. S50 13 C NMR of compound 4c (100 MHz, (CD₃)₂SO).

Fig. S52 ¹³C NMR of compound **4d** (100 MHz, (CD₃)₂SO).

Fig. S54 ¹³C NMR of compound **4e** (100 MHz, (CD₃)₂SO).

Fig. S55 ^{19}F NMR of compound 4e (376 MHz, CDCl₃).

Fig. S56 ¹H NMR of compound 4f (400 MHz, (CD₃)₂SO).

Fig. S57 13 C NMR of compound 4f (100 MHz, (CD₃)₂SO).

Fig. S58 ¹⁹F NMR of compound 4f (376 MHz, CDCl₃).

Fig. S60¹³C NMR of compound **4g** (100 MHz, (CD₃)₂SO).

Fig. S62 ¹³C NMR of compound **4h** (100 MHz, (CD₃)₂SO).

Fig. S64 13 C NMR of compound 4i (100 MHz, (CD₃)₂SO).

Fig. S65 ^1H NMR of compound 4j (400 MHz, (CD₃)₂SO).

Fig. S66 ¹³C NMR of compound **4j** (100 MHz, (CD₃)₂SO).

Fig. S67 ¹H NMR of compound 4k (400 MHz, CDCl₃).

Fig. S68 ¹³C NMR of compound 4k (100 MHz, CDCl₃).

Fig. S70 ¹³C NMR of compound 4l (100 MHz, CDCl₃).

Fig. S71 ¹H NMR of compound **4m** (400 MHz, (CD₃)₂CO).

Fig. S72 13 C NMR of compound 4m (100 MHz, (CD₃)₂CO).

Fig. S74 ¹³C NMR of compound 4n (100 MHz, CDCl₃).

Fig. S76¹³C NMR of compound 40 (100 MHz, CDCl₃).