Supporting Information

Regioselective S_N Ar Reaction of the Phenoxathiin-Based Thiacalixarene as a Route to Novel Macrocyclic Skeleton

Tomáš Landovský, a Václav Eigner, ^b Martin Babor, ^b Markéta Tichotová, ^c Hana Dvořáková^c and Pavel Lhotáka

 a) Department of Organic Chemistry, University of Chemistry and Technology, Prague (UCTP), Technická 5, 166 28, Prague 6, Czech Republic
b) Department of Solid State Chemistry, UCTP, Technická 5, 166 28, Prague 6, Czech Republic
c) Laboratory of NMR Spectroscopy, UCTP, Technická 5, 166 28, Prague 6, Czech Republic

Table of Content

1.	General information	2
2.	Experimental procedures and characterization	2
3.	Spectral characterization of compounds	6
4.	Crystallographic data	48
5.	Crystal structure of compound 7a	49
6.	NMR spectrum of 7a and 7b with chiral shift agent	50
7.	NOE experiments of 8c partial cone D	51
8.	Dissolution of 8c 1,3-alternate in various solvents	52
9.	Variable temperature NMR spectra	53

1. General information

All chemicals were purchased from commercial sources and used without further purification. Acetone was dried and distilled using conventional methods, THF, CH₃CN and ethanol were dried using column solvent purification system PureSolv MD7 (Inert). All samples were dried in the desiccator over P₂O₅ under vacuum (1 Torr) for at least 8 hours. Melting points were measured on Heiztisch Mikroskop Polytherm A (Wagner & Munz) and they are not corrected. ¹H, ¹³C, COSY, HMQC, HMBC, NOE and VT spectra were measured on Bruker Avance^{III} 600 operating at 600.13 MHz for ¹H and 150.92 MHz for ¹³C, ¹H spectrum with chiral shifting agent was measured on Agilent 400-MR DDR2 operating at 400 MHz for ¹H. Chemical shifts are given in δ -units (ppm) and are referenced to TMS or solvent signal. IR spectra were measured on FTIR spectrometer Nicolet 6700 (Thermo-Nicolet) connected with diamond ATR attachment GladiATR (PIKE) and DTGS detector. The measurement parameters were: spectral range 4000 – 400 cm⁻¹, resolution 4 cm⁻¹, 64 spectral accumulations and Happ-Genzel apodization. ESI HRMS spectra were measured on Q-TOF (Micromass) spectrometer. Substance purities and courses of the reactions were monitored by thin layer chromatography (TLC) using silica gel 60 F₂₅₄ on aluminiumbacked sheets (Merck) and analysed at 254 and 365 nm. Radial chromatography was carried out on Chromatotron (Harrison Research) connected with Lab Pump RHSY2 (Fluid Metering). Self-prepared glass discs were covered by silica gel 60 PF₂₅₄ containing CaSO₄ (Merck).

2. Experimental procedures and characterization

Compound 2, compound 5 and compound 6

All the starting compounds were prepared based on the previously published procedures.^{S1, S2}

Compound 7a

Macrocycle **8a** (50 mg, 0.054 mmol) was dissolved in dry acetone (5 mL) and stirred at room temperature. Iodomethane (0.08 mL, 1.30 mmol) and Cs_2CO_3 (354 mg, 1.09 mmol) were added and the mixture was heated to reflux (56 °C). After the entire starting compound disappeared (monitored by TLC, 30 min), the solvent was removed from the reaction mixture under reduced pressure. Subsequently, 1M HCl (30 mL) was added to the residue and the mixture was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic layers were dried over MgSO₄. Then the solvent was removed under reduced pressure to yield pure compound **7a** as a white solid (52 mg, 100 %).

⁽S1) Morohashi, N.; Kojima, M.; Suzuki, A.; Ohba, Y. Heterocycl. Commun. 2005, 11, 249.

⁽S2) Landovsky, T.; Dvorakova, H.; Eigner, V.; Babor, M.; Krupicka, M.; Kohout, M.; Lhotak, P. New J. Chem. **2018**, 42, 20074.

M.p. > 350 °C (CH₂Cl₂/methanol, decomposes).

¹H NMR (600 MHz, CDCl₃, 298 K) δ (ppm): 8.51 (d, J = 2.6 Hz, 1H, *C3*), 8.47 (d, J = 2.6 Hz, 1H, *C5*), 8.46 (d, J = 2.6 Hz, 1H, *B3*), 8.45 (d, J = 2.6 Hz, 1H, *B5*), 8.36 (d, J = 2.5 Hz, 1H, *D5*), 8.31 (d, J = 2.5 Hz, 1H, *D3*), 7.96 (s, 1H, *A3*), 3.90 (s, 3H, *D*-CH₃), 3.87 (s, 6H, *B*-CH₃), 3.78 (s, 6H, *C*-CH₃), 3.59 (s, 6H, *A*-CH₃-6), 2.43 (s, 3H, *A*-CH₃-1), 1.60 (s, 9H, *A*-tBu), 1.46 (s, 9H, *B*-tBu), 1.45 (s, 9H, *C*-tBu), 1.42 (s, 9H, *D*-tBu).

¹³C NMR (150 MHz, CDCl₃, 298 K) δ (ppm): 153.6 (Cq, *C1*), 153.3 (Cq, *B1*), 152.7 (Cq, *D1*), 152.1 (Cq, *A6*), 148.7 (Cq, *B4*), 148.6 (Cq, *A1*), 147.6 (Cq, *A4*), 147.3 (Cq, *C4*), 146.1 (Cq, *D4*), 143.0 (Cq, *A*), 138.7 (Cq, *D*), 137.2 (Cq, *C*), 137.1 (Cq, *C*), 136.9 (Cq, *B*), 136.8 (Cq, *B*), 136.4 (Cq, *D*), 136.2 (Cq, *A*), 135.5 (CH, *D5*), 133.9 (CH, *B3*), 133.8 (CH, *C5*), 132.0 (CH, *C3*), 130.2 (CH, *B5*), 129.4 (CH, *D3*), 122.8 (CH, *A3*), 66.0 (*C*-CH₃), 65.6 (*D*-CH₃), 65.5 (*B*-CH₃), 61.6 (*A*-CH₃-6), 58.6 (*A*-CH₃-1), 37.8 (Cq, *A*-tBu), 35.5, 35.2 and 35.1 (Cq, *B*-tBu, *C* and *D*), 32.4 (*A*-tBu), 31.2, 31.1 and 31.0 (*B*-tBu, *C*, *D*).

IR (ATR) v (cm⁻¹): 3071, 2960, 2870, 1549.

HRMS (ESI⁺) (C₄₅H₅₈O₁₃S₄) *m/z* calc: 957.26525 [M + Na]⁺; found: 957.26582 [M + Na]⁺.

Compound 7b

Macrocycle **8b** (50 mg, 0.054 mmol) was dissolved in dry CH_3CN (5 mL) and stirred at room temperature. Iodoethane (0.10 mL, 1.30 mmol) and Cs_2CO_3 (354 mg, 1.09 mmol) were added and the mixture was heated to reflux (82 °C). After the entire starting compound disappeared (monitored by TLC, 30 min), the solvent was removed from the reaction mixture under reduced pressure. Subsequently, 1M HCI (30 mL) was added to the residue and the mixture was extracted with CH_2CI_2 (3 x 20 mL). The combined organic layers were dried over MgSO₄. Then the solvent was removed under reduced pressure to yield pure compound **7b** as a white solid (50 mg, 97 %).

major conformer (NMR; aprox. 10:1 mixture)

M.p. > 350 °C (CH₂Cl₂/methanol, decomposes).

¹H NMR (600 MHz, CDCl₃, 298 K) δ (ppm): 8.52 (d, J = 2.6 Hz, 1H, *C5*), 8.48 – 8.45 (m, 2H, *B3* and *B5*), 8.45 (d, J = 2.6 Hz, 1H, *C3*), 8.36 (d, J = 2.5 Hz, 1H, *D5*), 8.34 (d, J = 2.5 Hz, 1H, *D3*), 7.95 (s, 1H, *A3*), 3.97 – 3.89 (m, 1H, CH₂), 3.88 (s, 3H, *B*-CH₃), 3.86 – 3.80 (m, 1H, CH₂), 3.77 (s, 6H, *C*-CH₃ and *D*-CH₃), 2.45 (s, 3H, *A*-CH₃), 1.60 (s, 9H, *A*-tBu), 1.47 (s, 9H, *B*-tBu), 1.45 (s, 9H, *C*-tBu), 1.42 (s, 9H, *D*-tBu), 1.31 (t, J = 7.1 Hz, 3H, CH₃).

¹³C NMR (150 MHz, CDCl₃, 298 K) δ (ppm): 153.6 (Cq, *C1*), 153.4 (Cq, *B1*), 152.4 (Cq, *D1*), 151.8 (Cq, *A6*), 148.8 and 148.8 (2xCq, *A1* and *B4*), 147.9 (Cq, *A4*), 147.4 (Cq, *C4*), 146.3 (Cq, *D4*), 137.9 (Cq, *A*), 139.2 (Cq, *D*), 137.2 (Cq, *C*), 137.1 and 137.1 (Cq, *D* and Cq, *B*), 136.7 (Cq, *C*), 136.4 (Cq, *B*), 136.2 (Cq, *A*), 134.4 (CH, *D5*), 133.9 (CH, *B3*), 133.6 (CH, *C3*), 132.0 (CH, *C5*), 130.3 (CH, *B5*), 129.6 (CH, *D3*), 122.6 (CH, *A3*), 72.6 (CH₂), 65.9, 65.5 and 65.3 (*D*-CH₃, *C*-CH₃ and *B*-CH₃), 58.8 (*A*-CH₃), 38.0 (Cq, *A*-tBu), 34.5, 35.2 and 35.2 (Cq, *B*-tBu, *C* and *D*), 32.4 (*A*-tBu), 31.2, 31.1 and 31.0 (*B*-tBu, *C*, *D*), 15.6 (CH₃). IR (ATR) *v* (cm⁻¹): 3075, 2958, 2870, 1547.

HRMS (ESI⁺) ($C_{46}H_{60}O_{13}S_4$) *m/z* calc: 971.28090 [M + Na]⁺; found: 971.28137 [M + Na]⁺.

Compound 7c

Macrocycle **8c** (50 mg, 0.054 mmol) was dissolved in dry acetone (5 mL) and stirred at room temperature. Iodomethane (0.08 mL, 1.28 mmol) and Cs_2CO_3 (349 mg, 1.07 mmol) were added and the mixture was heated to reflux (56 °C). After the entire starting compound disappeared (monitored by TLC, 30 min), the solvent was removed from the reaction mixture under reduced pressure. Subsequently, 1M HCl (30 mL) was added to the residue and the mixture was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic layers were dried over MgSO₄. Then the solvent was removed under reduced pressure to yield pure compound **7c** as a white solid (51 mg, 100 %).

M.p. > 350 °C (CH₂Cl₂/methanol, decomposes).

The assignment of ¹H NMR and ¹³C NMR spectra was not possible due to broad resonances caused by chemical exchange between several conformers (see VT NMR spectra in the range of 213 K – 403 K). IR (ATR) v (cm⁻¹): 3075, 2957, 2870, 1704, 1549.

HRMS (ESI⁺) ($C_{46}H_{60}O_{13}S_4$) *m/z* calc: 971.28090 [M + Na]⁺, 987.25483 [M + K]⁺; found: 971.28094 [M + Na]⁺, 987.25470 [M + K]⁺.

Compound 8a

Macrocycle **6** (300 mg, 0.34 mmol) was dissolved in dry THF (30 mL), sodium methoxide (109 mg, 2.03 mmol) was added and the solution was stirred and heated to reflux (67 °C). After the entire starting compound disappeared (monitored by TLC, 2 h), the solvent was removed from the reaction mixture under reduced pressure. Subsequently, 1M HCl (30 mL) was added to the residue and the mixture was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic layers were dried over MgSO₄. Then the solvent was removed under reduced pressure to yield a crude mixture. Compound **8a** was isolated using radial chromatography (silica gel, eluent CH_2Cl_2 :isopropanol 60:1 v/v) as a white solid (230 mg, 74 %).

M.p. 262.7-266.5 °C (CH₂Cl₂/isopropanol, decomposes).

¹H NMR (600 MHz, THF- d_8 , 300 K) δ (ppm): 8.99 (s, 1H, OH), 8.54 and 8.52 (2xbrs, 2x1H, *B3* and *B5*), 8.48 – 8.46 (m, 2H, *D* and *C*), 8.44 (d, J = 2.6 Hz, 1H, *D*), 8.37 (d, J = 2.6 Hz, 1H, *C*), 7.75 (s, 1H, *A3*), 3.92 (s, 3H, *D*-CH₃), 3.85 (s, 3H, *C*-CH₃), 3.29 (s, 3H, *A*-CH₃), 3.18 (s, 3H, *B*-CH₃), 1.61 (s, 9H, *A*-tBu), 1.48 (s, 9H, *B*-tBu), 1.47 (s, 9H, *D*-tBu), 1.44 (s, 9H, *C*-tBu).

¹³C NMR (150 MHz, THF-*d*₈, 300 K) δ (ppm): 154.2 (Cq, *B1*), 153.3 (Cq, *D1*), 152.5 (Cq, *C1*), 150.2 (Cq, *A1*), 147.8 (Cq, *A6*), 147.6 (Cq, *A4*), 146.8 and 146.4 (2xCq, *B4* and *D4*), 144.2 (Cq, *C4*), 137.9, 137.9, 137.2, 136.9, 136.8 and 136.0 (6xCq, *B2*, *B6*, *C2*, *C6*, *D2* and *D6*), 135.8 (2xCq, *A2* or *A5*), *A2* or *A5* are overlapped; 135.4 (CH, *C*), 134.0 (CH, *D*), 133.9 (CH, *B*), 132.3 (CH, *B*), 133.0 (CH, *D*), 129.0 (CH, *C*), 118.2 (CH, *A3*), 65.1 (*D*-CH₃), 65.0 (*C*-CH₃), 64.2 (*B*-CH₃), 65.1 (*A*-CH₃), 37.7 (Cq, *A*-tBu), 34.9, 34.8 and 34.8 (Cq, *B*-tBu, *C* and *D*), 32.0 (*A*-tBu), 30.3, 30.2 and 30.2 (*B*-tBu, C, D).

IR (ATR) v (cm⁻¹): 3337, 2959, 2872, 1550.

HRMS (ESI⁺) (C₄₄H₅₆O₁₃S₄) m/z calc: 943.24960 [M + Na]⁺, 959.22353 [M + K]⁺; found: 943.24978 [M + Na]⁺, 959.22317 [M + K]⁺.

HRMS (ESI⁻) (C₄₄H₅₆O₁₃S₄) *m*/z calc: 919.25310 [M - H]⁻; found: 919.25414 [M - H]⁻.

Compound 8b

Macrocycle **6** (200 mg, 0.23 mmol) was dissolved in dry THF (20 mL), dry ethanol (0.08 mL, 1.35 mmol) and sodium hydride (60% suspension in oil; 54 mg, ca 1.35 mmol) were added and the solution was stirred and heated to reflux (67 °C). After the entire starting compound disappeared (monitored by TLC, 2 h), the solvent was removed from the reaction mixture under reduced pressure. Subsequently, 1M HCl (30 mL) was added to the residue and the mixture was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic layers were dried over MgSO₄. Then the solvent was removed under reduced pressure and the crude compound **8b** was obtained using radial chromatography (silica gel, eluent CH_2Cl_2 :isopropanol 90:1 v/v). After trituration with *n*-hexane (3x 20 mL), the crude product was suspended in another 10 mL of *n*-hexane and the pure compound **8b** was finally filtered off as a white solid (142 mg, 67 %).

M.p. 186.6-190.6 °C (*n*-hexane).

The assignment of ¹H NMR and ¹³C NMR spectra was not possible due to broad resonances caused by chemical exchange between several conformers (see VT NMR spectra in the range of 203 K – 403 K). IR (ATR) v (cm⁻¹): 3234, 3145, 3076, 2960, 1548.

HRMS (ESI⁺) ($C_{45}H_{58}O_{13}S_4$) *m*/*z* calc: 957.26525 [M + Na]⁺; found: 957.26530 [M + Na]⁺.

HRMS (ESI⁻) (C₄₅H₅₈O₁₃S₄) *m/z* calc: 933.26875 [M - H]⁻; found: 933.27759 [M - H]⁻.

Compound 8c

Macrocycle **6** (100 mg, 0.11 mmol) was dissolved in dry THF (10 mL), *n*-propanol (0.051 mL, 0.68 mmol) and sodium hydride (60% suspension in oil; 27 mg, ca 0.68 mmol) were added and the solution was stirred and heated to reflux (67 °C). After the entire starting compound disappeared (monitored by TLC, 45 min), the solvent was removed from the reaction mixture under reduced pressure. Subsequently, 1M HCl (30 mL) was added to the residue and the mixture was extracted with ethyl acetate (3 x 20 mL). The combined organic layers were dried over MgSO₄. Then the solvent was removed under reduced pressure to yield a crude mixture. Compound **8c** was isolated using radial chromatography (silica gel, eluent cyclohexane:ethyl acetate 3:1 v/v) as a white solid (66 mg, 62 %).

1,3-alternate

M.p. 244.8-249.5 °C (CH₂Cl₂/CH₃NO₂, decomposes).

¹H NMR (600 MHz, CD₃CN, 298 K) δ (ppm): 8.50 (brs, 1H, *C*), 8.48 (d, J = 2.2 Hz, 1H, *D*), 8.43 – 8.41 (m, 3H, *B*, *C* and *D*), 8.39 (d, J = 2.6 Hz, 1H, *B*), 7.74 (s, 1H, *A3*), 4.31 – 4.23 (m, 1H, OCH₂), 3.95 – 3.87 (m, 1H, OCH₂), 3.80 (s, 3H, *D*-CH₃), 3.48 (s, 6H, *C*-CH₃), 2.40 (brs, 3H, *A*-CH₃), 1.59 (s, 9H, *A*-tBu), 1.46 (s, 9H, *D*-tBu), 1.44 (s, 9H, *B*-tBu), 1.43 (s, 9H, *C*-tBu), 1.35 – 1.25 (m, 1H, CH₂), 1.15 – 1.05 (m, 1H, CH₂), 0.73 (t, J = 7.1 Hz, 3H, CH₃).

¹³C NMR (150 MHz, CD₃CN, 298 K) δ (ppm): 153.7, 152.8, 150.1, 149.4, 148.8, 148.7, 147.5, 147.4, 142.7, 137.9, 137.7, 136.6, 136.3, 136.2, 136.0, 134.3 (16xCq, 1xCq is overlapped), 135.0, 134.7, 132.7, 132.6, 130.3, 129.5 and 118.1 (7xCH arom.), 79.1 (OCH₂), 65.5 (*D*-CH₃), 62.0 and 62.0 (*C*-CH₃ and *A*-CH₃), 38.3 (Cq, *A*-tBu), 35.0, 34.9 and 34.9 (Cq, *B*-tBu, *C* and *D*), 31.9 (*A*-tBu), 30.1, 30.1 and 30.0 (*B*-tBu, *C*, *D*), 21.4 (CH₂), 8.3 (CH₃).

IR (ATR) v (cm⁻¹): 3657, 3563, 3350, 3077, 2961, 2873, 1734, 1597, 1550.

HRMS (ESI⁺) (C₄₆H₆₀O₁₃S₄) m/z calc: 971.28090 [M + Na]⁺, 987.25483 [M + K]⁺; found: 971.28114 [M + Na]⁺, 987.25454 [M + K]⁺.

HRMS (ESI⁻) (C₄₆H₆₀O₁₃S₄) *m*/z calc: 947.28440 [M - H]⁻; found: 947.28467 [M - H]⁻.

partial cone D (in a mixture with 1,3-alternate)

¹H NMR (600 MHz, $C_2D_2Cl_4$, 373 K) δ (ppm): 8.58 (d, J = 2.5 Hz, 1H, *B5*), 8.53 and 8.48 (2xd, 2x1H, J = 2.5 Hz, J = 2.5 Hz, *D3* and *D5*), 8.40 (d, 1H, J = 2.4 Hz, *D3*), 8.27 (brs, 1H, *C5*), 7.65 (s, 1H, *A3*), 7.54 (brs, 1H, *C3*), 4.15, 4.13 and 3.96 (3xbrs, 9H, *A*-CH₃, *C*-CH₃, *D*-CH₃), 4.16 – 4.03 (overlapped m, 2H, OCH₂), 1.55 (s, 9H, *D*-tBu), 1.49 (s, 9H, *B*-tBu), 1.29 (s, 9H, *C*-tBu), 1.00 – 0.90 (overlapped m, 2H, CH₂), 1.22 (s, 9H, *A*-tBu).

¹³C NMR (150 MHz, C₂D₂Cl₄, 373 K) δ (ppm): 156.5, 155.0, 154.3, 153.6, 148.3, 148.1, 147.2, 146.2, 145.1, 139.7, 137.7, 137.3, 137.0, 136.9, 136.6, 136.3 and 135.4 (17xCq), 134.2 (CH, *D*), 133.7 (CH, *B*), 133.5 (CH, *C*), 133.2 (CH, *C*), 132.8 (CH, *A3*), 132.7 (CH, *D*), 131.3 (CH, *B*), 82.9 (OCH₂), 67.6, 67.1 and 61.9 (3x OCH₃), 38.8, 38.4, 38.3 and 37.2 (4xCq, tBu), 32.9 (*A*-tBu), 31.1, 31.1 and 31.1 (*B*-tBu, *C*, *D*), 29.7 (CH₂), 9.0 (CH₃).

HRMS (ESI⁺) ($C_{46}H_{60}O_{13}S_4$) *m/z* calc: 971.28090 [M + Na]⁺, 987.25483 [M + K]⁺; found: 971.28139 [M + Na]⁺, 987.25510 [M + K]⁺.

HRMS (ESI⁻) (C₄₆H₆₀O₁₃S₄) *m*/z calc: 947.28440 [M - H]⁻; found: 947.28385 [M - H]⁻.

3. Spectral characterization of compounds

Figure S1: ¹H NMR spectrum of compound 7a

Figure S2: ¹³C NMR (APT) spectrum of compound 7a

Figure S3: HMBC spectrum of compound 7a

Figure S4: HMQC spectrum of compound 7a

Figure S7: ¹H NMR spectrum of compound 7b

Figure S8: ¹³C NMR (APT) spectrum of compound 7b

Figure S9: COSY spectrum of compound 7b

Figure S10: HMBC spectrum of compound 7b

Figure S11: HMQC spectrum of compound 7b

Figure S12: HRMS spectrum of compound 7b (ESI+)

Figure S13: IR spectrum of compound 7b (ATR)

Figure S14: ¹H NMR spectrum of compound 7c

Figure S15: $^{\rm 13}{\rm C}$ NMR (APT) spectrum of compound 7c

Figure S16: COSY spectrum of compound 7c

Figure S17: HMBC spectrum of compound 7c

Figure S18: HMQC spectrum of compound 7c

Figure S20: IR spectrum of compound 7c (ATR)

Figure S21: ¹H NMR spectrum of compound 8a

Figure S22: ¹³C NMR (APT) spectrum of compound 8a

Figure S23: HMBC spectrum of compound 8a

Figure S24: HMQC spectrum of compound 8a

Figure S26: HRMS spectrum of compound 8a (ESI-)

Figure S27: IR spectrum of compound 8a (ATR)

Figure S28: ¹H NMR spectrum of compound 8b

Figure S29: ¹³C NMR (APT) spectrum of compound 8b

Figure S30: COSY spectrum of compound 8b

Figure S31: HMBC spectrum of compound 8b

Figure S32: HMQC spectrum of compound 8b

Figure S34: HRMS spectrum of compound 8b (ESI-)

Figure S35: IR spectrum of compound 8b (ATR)

Figure S36: ¹H NMR spectrum of compound 8c 1,3-alternate

Figure S37: ¹³C NMR (APT) spectrum of compound 8c 1,3-alternate

Figure S38: HMBC spectrum of compound 8c 1,3-alternate

Figure S39: HMQC spectrum of compound 8c 1,3-alternate

Figure S41: HRMS spectrum of compound 8c 1,3-alternate (ESI-)

Figure S42: IR spectrum of compound 8c 1,3-alternate (ATR)

Figure S43: ¹H NMR spectrum of compound 8c partial cone D

Figure S44: ¹³C NMR (APT) spectrum of compound 8c partial cone D

Figure S45: COSY spectrum of compound 8c partial cone D

Figure S46: HMBC spectrum of compound 8c partial cone D

Figure S47: HMQC spectrum of compound 8c partial cone D

Figure S49: HRMS spectrum of compound 8c partial cone D (ESI⁻)

4. Crystallographic data

Crystallographic data for compound 7a

M = 936.50 g.mol⁻¹, orthorhombic system, space group *Pbcn*, a = 39.4032(8) Å, b = 10.2963(2) Å, c = 23.4609(5) Å, Z = 8, V = 9518.3(3) Å³, D_c = 1.307 g.cm⁻³, μ(Cu-Kα) = 2.36 mm⁻¹, crystal dimensions of 0.37 × 0.21 × 0.09 mm. Data were collected at 180 K on a D8 Venture Photon CMOS diffractometer with Incoatec microfocus sealed tube Cu-Kα radiation. The structure was solved by charge flipping methods⁵³ and anisotropically refined by full matrix least squares on F squared using the CRYSTALS suite of programs⁵⁴ to final value R = 0.046 and wR = 0.096 using 8733 independent reflections (Θ_{max} = 68.3°), 639 parameters and 88 restrains. The disordered functional group positions were found in difference electron density maps and refined with restrained geometry. The occupancy of disordered functional group was restrained to full. The hydrogen atoms present in structure model were placed in calculated positions and refined with riding constrains. Hydrogen atoms of weakly occupied water molecule could not be located in difference electron density maps; therefore, they are absent in the structure model. The MCE program⁵⁵ was used for visualization of residual electron density maps. The structure was deposited into Cambridge Structural Database under number CCDC 1955160.

Crystallographic data for compound 8c

M = 1010.22 g.mol⁻¹, monoclinic system, space group $P2_1/c$, a = 18.5665(5) Å, b = 21.0808(6) Å, c = 13.5866(4) Å, β = 103.8797(9)°, Z = 4, V = 5162.5(3) Å³, D_c = 1.300 g.cm⁻³, µ(Cu-Kα) = 2.238 mm⁻¹, crystal dimensions of 0.51 × 0.36 × 0.23 mm. Data were collected at 180 K on a D8 Venture Photon CMOS diffractometer with Incoatec microfocus sealed tube Cu-Kα radiation. The structure was solved by charge flipping methods⁵³ and anisotropically refined by full matrix least squares on F squared using the CRYSTALS suite of programs⁵⁴ to final value R = 0.039 and wR = 0.0943 using 10175 independent reflections (Θ_{max} = 72.225°), 633 parameters and 46 restrains. The hydrogen atoms were placed in calculated positions and refined with riding constrains. The disordered functional group positions were found in difference electron density maps and refined with restrained geometry. The electron density maps were visualized using MCE software.⁵⁶ The occupancy of disordered functional group was constrained to full. The structure was deposited into Cambridge Structural Database under number CCDC 1943887.

⁽S3) Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786.

⁽S4) Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin D. J. J. Appl. Cryst. 2003, 36, 1487.

⁽S5) Rohlicek, J.; Husak, M. J. Appl. Cryst. 2007, 40, 600.

⁽S6) Husak, M.; Kratochvil, B. J. Appl. Cryst. 2003, 36, 1104.

5. Crystal structure of the compound 7a

Figure S50: Single crystal X-ray structures of the compound **7a**: (a) side-view, (b) top-view (the *para*-substituted moiety shown as balls for better clarity).

6. NMR spectra of **7a**, **7b** with chiral shift agent

Figure S51a: ¹H NMR spectra (600 MHz, 298 K, CDCl₃) of: (a) compound **7a**, (b) **7a** with 2 molar eq. of europium tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorate]

Figure S51b: ¹H NMR spectra (600 MHz, 298 K, CDCl₃) of: (a) compound **7b**, (b) **7b** with 2 molar eq. of europium tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorate].

7. NOE experiments of 8c partial cone D

Figure S52: NOE experiment of **8c** *partial cone D* (600 MHz, $C_2D_2Cl_4$, 373 K): a) NOE spectrum with Me (Pr) irradiated, b) NOE spectrum with tBu *A* irradiated, c) NOE spectrum with *C3* irradiated, d) NOE spectrum with *B5* irradiated, e) ¹H NMR of compound **8c** *partial cone D* in $C_2D_2Cl_4$.

8. Dissolution of 8c 1,3-alternate in various solvents

Figure S53: Standing of 8c 1,3-alternate solutions in various solvents (600 MHz, 298 K).

9. Variable temperature NMR spectra

Figure S54: VT NMR spectra (600 MHz, above 298 K C2D2Cl4, below 298 K CD2Cl2) of compound 7a

Figure S55: VT NMR spectra (600 MHz, above 298 K C₂D₂Cl₄, below 298 K CDCl₃) of compound 7b

Figure S56: VT NMR spectra (600 MHz, above 298 K C₂D₂Cl₄, below 298 K CDCl₃) of compound 7c

Figure S57: VT NMR spectra (600 MHz, above 298 K C₂D₂Cl₄, below 298 K THF-d₈) of compound 8a

Figure S58: VT NMR spectra (600 MHz, above 298 K C2D2Cl4, below 298 K CD2Cl2) of compound 8b

Figure S59: VT NMR spectra (600 MHz, above 298 K C₂D₂Cl₄, below 298 K CD₂Cl₂) of compound 8c