Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI)

Peptide-based Short Single β-Strand Mimics, without Hydrogen Bonding or Aggregation

Luhan Zhai¹, Yuko Otani^{*,1} Yukiko Hori, ² Taisuke Tomita² and Tomohiko Ohwada^{*,1}

¹ Laboratory of Organic and Medicinal Chemistry, ² Laboratory of Neuropathology & Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan

> *E-mail:* ohwada@mol.f.u-tokyo.ac.jp otani@ mol.f.u-tokyo.ac.jp

Table of Contents

1. Supporting graphics	page 3
2. Experimental Section of Synthesis	page 9
3. NMR measurements	page 22
¹ H and ¹³ C-NMR charts of synthesized compounds	
4. Circular Dichroism	page 38
5. Calculations	page 39

1. Supporting graphics

Figure S1. Energy landscape of 1b' and 2b.

Figure S2. Energy landscape of Ac-(S)-Abh(OMe)-Leu-OMe 3b' in terms of (a), ψ_1 and ϕ_2 . (b), ψ_2 and ϕ_2 . (c) three possible dipeptide conformations.

Figure S3-1. Energy landscape of 5a' and 5b'.

Energy landscape of Boc-Val-(R)-AbhOMe-CO₂Me **5a**' and Boc-Val-(S)-AbhOMe-CO₂Me **5b**' in chloroform at 298K. The red arrows show the proximity between the α -proton of Val and bridgehead proton of Abh amino acid.

We examined the conformation of α -amino acids coupled with (*R*)- or (*S*)-Abh amino acid on the N-terminal side. We conducted metadynamics simulations of **Boc-Val-**(*R*)-AbhOMe-COOMe 5a' and **Boc-Val-**(*S*)-AbhOMe-COOMe 5b' (Supporting graphics Figure S3, Figure S3-2 with a different energy level). The results suggested that 5a' and 5b' both favor β -strand conformations, but 5a' favors parallel β -strand conformation to a greater extent (ϕ =-120°, ψ =115°), while 5b' favors anti-parallel β strand conformation to a greater extent (ϕ =-140°, ψ =135°). Experimentally, this is supported by the magnitudes of the ³*J* coupling constants: the ³*J* coupling constants of the Val residue in 5a in chloroform at 25°C and 0 °C (9.2 Hz, 9.2 Hz) are a little smaller than those of 5b in chloroform at 25°C and 0 °C (9.5 Hz, 9.4 Hz) (Main text, Figure 4). Thus, (*R*)/(*S*)-Abh amino acids can both enforce β -strand conformation on the α -amino acid at the N-terminal side. The NMR study indicated that the bridgehead proton is close to the α -proton of the α -amino acid, due to the characteristic upwardprojecting direction of the bridgehead proton, and this proximity would influence the main chain rotation of the adjacent α -amino acid.

Figure S3-2. Energy landscape of 5a' and 5b'. With a different Energy Scale.

Figure S4. (a) Representative structures of 6a (in equilibrium) from molecular dynamics calculation in chloroform. (b) The most populated structure (also extended structure) of 7a (50%) from molecular dynamics calculation in methanol.

Figure S5, Temperature dependency of ${}^{3}J$ coupling constants in chloroform (CDCl₃-d₁). (a) tetrapeptide 7a (b) tetrapeptide 6b. The concentration of the sample is 60 mM.

In the VT-NMR of **6a** and **6b**, the temperature-dependent change of ${}^{3}J$ coupling constants of the α -amino acid residues is small over a 30-degree temperature range, particularly for **6a**. The weak temperature dependency is consistent with the idea that **6a** takes conformationally biased structures.

Figure S6. Effect of pentapetides 7a and 7b on aggregation of amyloid- β_{42} . Thioflavin T fluorescence assay. The concentration of amyloid- β_{42} is 22 μ M and the concentration of 7a and 7b is 50 μ M, respectively.

Amyloid assay method

Synthetic A β (1–42) peptides were purchased from Peptide Institute, Inc.. A β fibrillization assay was conducted as previously reported.^{1,2} Briefly, synthetic A β (1–42) was solubilized at a concentration of 22 μ M without or with pentapeptides **7a** and **7b** at a concentration of 50 μ M and incubated at 37 °C. At the same time, only pentapeptides **7a** or **7b** were also incubated. Following incubation for the indicated times, samples were mixed with 3 μ M Thioflavin T (Tokyo Chemical) in 0.1 M glycine-NaOH (pH 8.5) and the fluorescence were measured to monitor fibril formation (Ex = 433 nm and Em = 484 nm).^{1,2}

	Proton	$\delta (obs)^b$	δ (random coil) ³
1a	Ala(CHa)	4.59 ppm	4.35 ppm
1b	Leu(CHa)	4.64 ppm	4.17 ppm
1c	Ile(CHa)	4.60 ppm	3.95 ppm
3b	Leu(CHa)	4.61 ppm	4.17 ppm
4b	D-Leu(CHa)	4.65 ppm	N/A
5a	Val(CHa)	4.17 ppm	3.95 ppm
	Leu(CHa)	4.67 ppm	4.17 ppm
5b	Val(CHa)	4.14 ppm	3.95 ppm
	Leu(CHa)	4.56 ppm	4.17 ppm
5c	Leu(CHa)	4.44 ppm	4.17 ppm
	D-Leu(CHa)	4.59 ppm	N/A

Table S1. Chemical Shift Values of α-Protons for 1a, 1b, 1c, 3b, 4b, 5a, 5b and 5c.^a

^a the α -Proton of α -amino acid residues for **6a** and **7a** is overlapped form ¹H-NMR, thus the chemical shift of α -Proton is not available.

^b the chemical shift of α -Proton is detected in d_1 -CDCl₃ at room temperature. In d_3 -CD₃OH, the big water peak from d_3 -CD₃OH is close and overlapped with α -Proton. Thus the chemical shift of α -Proton in d_3 -CD₃OH is not available.

2. Experiment section of Synthesis

General methods

Open column chromatography was carried out on silica gel (silica gel 60N (100-210 μ m), Kanto Chemicals, Japan). All the NMR experiments were recorded on a Bruker Avance 400 NMR spectrometer. ¹H-NMR and ¹³C-NMR chemical shifts (δ) were calibrated with the solvent peak and are shown in ppm. Coupling constants are given in Hz. Mass spectra were recorded on a Bruker micrOTOF-05. HPLC data were obtained using a Hitachi instrument with Senshu Pak Pegasil Silica SP-100 (250 mm x 20 mm) for a normal phase column, and Mightysil RP-18 GP Aqua (250 mm x 10 mm) for a reverse phase column. Flow rate: 5.0 ml/min.

Scheme 1

The starting material, **21***R* and **21***S* were synthesized according to our previously published route. (Hosoya, M., Otani, Y., Kawahata, M., Yamaguchi, K., Ohwada, T. Water-Stable Helical Structure of Tertiary Amides of Bicyclic β -Amino Acid Bearing 7-Azabicyclo[2.2.1]Heptane. Full Control of Amide Cis-Trans Equilibrium by Bridgehead Substitution. *J. Am. Chem. Soc.* **132**, 14780–14789 (2010).)

Enantio-purity check

The R/S enantio-separation was achieved by coupling (1*S*, 2*R*, 4*R*)-(-)-2, 10camphorsultam to the C-terminal of Abh amino acid, followed by column chromatography or normal phase HPLC. From ¹H-NMR, the chemical shift of bicyclic β -amino acid enantiomers is different. The chemical shift difference of **20***R***/20***S* is shown in Figure S1.

¹H NMR (CDCl₃, 400MHz) & 4.730-4.707 (1H, m), 4.118-4.064 (1H, m), 4.023-3.998 (1H, m), 3.895-3.871 (1H, m), 3.856-3.824 (1H, m), 3.612-3.559 (1H, m), 3.468-3.429 (1H, m) 3.385 (3H, s), 2.067-1.611 (12H, m), 1.434 (9H, s), 1.114 (3H, s), 0.938 (3H, s).

¹H NMR (CDCl₃, 400MHz) δ 4.709-4.686 (1H, m), 4.039-4.015 (1H, m), 3.896-3.864 (2H, m), 3.649-3.583 (1H, m), 3.514-3.442 (2H, m), 3.409 (3H, s), 2.251-1.611 (12H, m), 1.454 (9H, s), 1.127 (3H, s), 0.962 (3H, s).

21*R*

¹H NMR (CDCl₃, 400MHz) δ 4.516-4.493 (1H, m), 3.976-3.9951 (2H, m), 3.422 (3H, s), 3.128-3.102 (1H, m), 2.038-1.454 (6H, m), 1.454 (9H, s) ¹³C-NMR (100 MHz, CDCl₃): 176.61, 155.12, 80.390, 74.09, 68.46, 60.58, 59.54, 45.27, 36.04, 33.09, 28.48, 24.87. HRMS (ESI, [M-H]⁻): Calcd. for C₁₄H₂₂NO₅⁻, 284.1503. Found: 284.1517.

21S

¹H NMR (CDCl₃, 400MHz) δ 4.488-4.464 (1H, m), 3.951-3.875 (2H, m), 3.396 (3H, s), 3.102-3.053 (1H, m), 1.990-1.593 (6H, m), 1.427 (9H, s) ¹³C-NMR (100 MHz, CDCl₃): 177.634, 155.056, 80.376, 74.009, 68.374, 62.889, 59.427, 45.432, 35.910, 33.007, 28.40, 24.79. HRMS (ESI, [M-H]⁻): Calcd. for C₁₄H₂₂NO₅⁻, 284.1503. Found: 284.1498.

22R

¹H NMR (CDCl₃, 400MHz) δ 4.467-4.444 (1H, m), 3.974-3.897 (2H, m), 3.701 (3H, s), 3.422 (3H, s), 3.090-3.032 (1H, m), 2.071-1.688 (6H, m), 1.452 (9H, s) ¹³C-NMR (100 MHz, CDCl₃): 173.20, 155.16, 80.22, 74.13, 68.42, 60.67, 59.53, 52.02, 45.48, 36.11, 33.07, 28.48, 24.89. HRMS (ESI, [M+Na]⁺): Calcd. for C₁₅H₂₅NNaO₅⁺, 322.1625. Found: 322.1638.

Boc N CH₂OMe

22S

¹H NMR (CDCl₃, 400MHz) δ 4.433-4.409 (1H, m), 3.936-3.858 (2H, m), 3.663 (3H, s), 3.381 (3H, s), 3.040-2.999 (1H, m), 2.033-1.606 (6H, m), 1.415 (9H, s) ¹³C-NMR (100 MHz, CDCl₃): 173.106, 155.060, 80.165, 73.994, 68.320, 60.560, 59.412, 51.948, 45.375, 36.002, 32.976, 28.374, 24.795. HRMS (ESI, [M+Na]⁺): Calcd. for C₁₅H₂₅NNaO₅⁺, 322.1625. Found: 322.1615.

Boc-*R*-Abh(OMe)-Ala-OMe (1a)

To a solution of **21***R* (32 mg, 0.11 mmol) in CH₂Cl₂ (2 mL) were added NH₂-Ala-OMe.HCl (24 mg, 0.17 mmol), CDMT (39 mg, 0.22 mmol), DMAP (0.02 mmol, 2 mg) and NMM (60 μ l, 0.55 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 24 h. The reaction mixture was diluted with Et₂O, washed with 1M aqueous solution of HCl and saturated aqueous solution of NaHCO₃, and the organic layer was dried over Na₂SO₄. The solution was concentrated, and the residue was purified with column chromatography (Hexane/EtOAc = 1/1) to afford Boc-Abh(OMe)-Ala-OMe (1a) (29 mg, 71%), as a colorless oil.

¹H NMR (CDCl₃, 400MHz) δ 6.104 (1H, d, J=7.4Hz), 4.622-4.551 (1H, m), 4.385-4.362 (1H, m), 3.930-3.869 (2H, m), 3.753 (3H, s), 3.413 (3H, s), 2.980-2.929 (1H, m), 2.071-2.028 (1H, m), 1.941-1.615 (5H, m), 1.458 (9H, s), 1.398 (3H, d, J=7.16Hz) ¹³C-NMR (100 MHz, CDCl₃): 173.66, 170.97, 155.33, 80.34, 73.96, 68.67, 61.25, 59.49, 52.69, 48.28, 46.44, 35.84, 33.21, 28.52, 24.09, 18.67. HRMS (ESI, $[M+Na]^+$): Calcd. for $C_{18}H_{30}N_2NaO_6^+$, 393.1996. Found: 322.2020.

Boc-*R*-Abh(OMe)-Ile-OMe (1c)

To a solution of **21***R* (49 mg, 0.17 mmol) in CH₂Cl₂ (2 mL) were added NH₂-Ile-OMe.HCl (46 mg, 0.26 mmol), CDMT (60 mg, 0.34 mmol), DMAP (2 mg, 0.02 mmol) and NMM (93 μ l, 0.85 mmol) at rt. The reaction mixture was stirred for 12 h. The reaction mixture was diluted with Et₂O, washed with 1M aqueous solution of HCl and saturated aqueous solution of NaHCO₃, and the organic layer was dried over Na₂SO₄. The solution was concentrated, and the residue was purified with column chromatography (Hexane/EtOAc = 1/1) to afford Boc-Abh(OMe)-Ile-OMe (1c) (46.7 mg, 71%), as a colorless oil.

¹H-NMR (400 MHz, CDCl₃) δ 6.081 (1H, d, J=8.4Hz), 4.614-4.580 (1H, m), 4.377-4.354 (1H, m), 3.867 (2H, s), 3.721 (3H, s), 3.397 (3H, s), 2.990-2.940 (1H, m), 2.056-1.638 (7H, m), 1.451 (9H, s), 1.164-0.868 (8H, m). ¹³C-NMR(100 MHz, CDCl₃): 172.68, 171.16, 155.37, 80.38, 73.85, 68.62, 61.28, 59.42, 56.50, 54.86, 52.27, 46.68, 37.96, 35.82, 33.25, 28.49, 25.31, 15.62, 11.60. HRMS (ESI, [M+Na]⁺): Calcd. for C₂₁H₃₆N₂NaO₆⁺, 435.2466. Found: 435.2481.

Boc-*R*-Abh(OMe)-Leu-OMe (1b)

To a solution of **21***R* (96 mg, 0.33 mmol) in CH₂Cl₂ (3 mL) were added NH₂-Leu-OMe.HCl (91 mg, 0.50 mmol), CDMT (116 mg, 0.66 mmol), DMAP (4 mg, 0.03 mmol) and NMM (187 μ l, 1.70 mmol) at rt. The reaction mixture was stirred for 12 h. The reaction mixture was diluted with Et₂O, washed with 1M aqueous solution of HCl and saturated aqueous solution of NaHCO₃, and the organic layer was dried over Na₂SO₄. The solution was concentrated, and the residue was purified with column chromatography (Hexane/EtOAc = 1/1) to afford Boc-Abh(OMe)-Leu-OMe (1b) (102.3 mg, 76%), as a colorless oil.

¹H-NMR (400 MHz, CDCl₃) δ 5.903 (1H, d, J=8.4Hz), 4.667-4.612 (1H, m), 4.381-4.358 (1H, m), 3.887 (2H, s), 3.733 (3H, s), 3.414 (3H, s), 2.992-2.937 (1H, m), 2.074-1.511 (9H, m), 1.464 (9H, s), 0.946-0.925 (6H, m) ¹³C-NMR(100 MHz, CDCl₃): 173.75, 171.23, 155.44, 80.38, 73.87, 68.66, 61.28, 59.45, 54.83, 50.87, 46.58, 35.82, 33.26, 28.50, 25.03, 23.98, 22.94, 21.94. HRMS (ESI, $[M+Na]^+$): Calcd. for C₂₁H₃₆N₂NaO₆⁺, 435.2466. Found: 435.2467. HPLC (Hexane: IPA = 6:1, 215 nm): t_R 16.42 min, 92% purity.

13. 84 15. 64 13. 00 10. 32

0

- 75 T

-10)

Boc-S-Abh(OMe)-Leu-OMe (3b)

To a solution of **21***S* (30 mg, 0.11 mmol) in CH₂Cl₂ (1.5 mL) were added NH₂-Leu-OMe.HCl (24 mg, 0.13 mmol), CDMT (39 mg, 0.22 mmol), DMAP (2 mg, 0.02 mmol) and NMM (60 μ l, 0.55 mmol) at rt. The reaction mixture was stirred for 12 h. The reaction mixture was diluted with Et₂O, washed with 1M aqueous solution of HCl and saturated aqueous solution of NaHCO₃, and the organic layer was dried over Na₂SO₄. The solution was concentrated, and the residue was purified with column chromatography (Hexane/EtOAc = 1/1) to afford Boc-*S*-Abh(OMe)-Leu-OMe (**3b**) (31 mg, 71 %), as a colorless oil.

¹H-NMR (400 MHz, CDCl₃) δ 5.781 (1H, d, J=8.4Hz), 4.635-4.580 (1H, m), 4.437-4.415 (1H, m), 3.935-3.870 (2H, m), 3.729 (3H, s), 3.416 (3H, s), 2.984-2.930 (1H, m), 2.078-1.510 (9H, m), 1.460 (9H, s), 0.952-0.931 (6H, m) ¹³C-NMR(100 MHz, CDCl₃): 173.57, 171.39, 155.37, 80.32, 73.99, 68.69, 61.20, 59.49, 52.44, 51.03, 46.41,

35.91, 33.21, 28.54, 25.06, 24.14, 22.94, 22.01. HRMS (ESI, $[M+Na]^+$): Calcd. for $C_{21}H_{36}N_2NaO_6^+$, 435.2466. Found: 435.2460. HPLC (Hexane: IPA = 6:1, 215 nm): t_R 15.62 min, 94% purity.

Boc-S-Abh(OMe)-D-Leu-OMe (4b)

To a solution of **21***S* (30 mg, 0.11 mmol) in CH_2Cl_2 (1.5 mL) were added NH_2 -D-Leu-OMe.HCl (24 mg, 0.13 mmol), CDMT (39 mg, 0.22 mmol), DMAP (2 mg, 0.02 mmol) and NMM (60 µl, 0.55 mmol) at rt. The reaction mixture was stirred for 12 h. The reaction mixture was diluted with Et_2O , washed with 1M aqueous solution of HCl and saturated aqueous solution of NaHCO₃, and the organic layer was dried over Na₂SO₄. The solution was concentrated, and the residue was purified with column

chromatography (Hexane/EtOAc = 1/1) to afford Boc-*S*-Abh(OMe)-Leu-OMe (**4b**) (25 mg, 58 %) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃) δ 5.823 (1H, d, J=8.4Hz), 4.673-4.618 (1H, m), 4.380-4.357 (1H, m), 3.893 (2H, m), 3.737 (3H, s), 3.418 (3H, s), 2.989-2.938 (1H, m), 2.074-1.623 (9H, m), 1.468 (9H, s), 0.949-0.930 (6H, m) ¹³C-NMR(100 MHz, CDCl₃): 173.70, 171.20, 155.38, 80.39, 73.91, 68.66, 61.30, 59.48, 52.49, 50.89, 46.65, 41.75, 35.88, 33.28, 28.53, 25.06, 24.02, 22.96, 22.00. HRMS (ESI, [M+Na]⁺): Calcd. for C₂₁H₃₆N₂NaO₆⁺, 435.2466. Found: 435.2475. HPLC (Hexane: IPA = 6:1, 215 nm): t_R 16.66 min, >95% purity.

Boc-Val-R-Abh(OMe)-Leu-OMe (5a)

To a solution of **1b** (73 mg, 0.18 mmol) in CH₂Cl₂ (1 mL) was added TFA (1.0 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 20 min. The reaction was then quenched with 2 M aqueous solution of NaOH. The resulting solution was extracted with EtOAc (3 times). The combined organic layer was dried over Na₂SO₄, and filtered. The solvent was evaporated to afford crude amine, which was used in the next reaction without further purification. To a solution of crude amine in CH₂Cl₂ (2 mL) were added Boc-Val-OH (59 mg, 0.27 mmol), CDMT (63 mg, 0.36 mmol), DMAP (2 mg, 0.02 mmol) and NMM (99 µl, 0.9 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 24 h. The reaction mixture was diluted with Et₂O, washed with 1M aqueous solution of HCl and saturated aqueous solution of NaHCO₃, and the organic layer was dried over Na₂SO₄. The solution was concentrated, and the residue was purified with column chromatography (Hexane/Acetone = 2/1) to afford Boc-Val-R-Abh(OMe)-Leu-OMe (**5a**) (9 mg, 10 %), as a colorless oil.

¹H-NMR (400 MHz, CDCl₃) δ 5.904 (1H, d, J=8.5Hz), 5.163 (1H, d, J=9.2Hz), 4.700-4.642 (1H, m), 4.521 (1H, brs), 4.294-4.051 (3H, m), 3.746 (3H, s), 3.418 (3H, s), 2.950-2.922 (1H, m), 2.079-1.595 (9H, m), 1.423 (9H, s), 0.990-0.911 (13H, m). ¹³C-NMR(100 MHz, CDCl₃): 173.84, 170.58, 169.86, 155.94, 79.70, 72.58, 69.34, 60.30,

16.20

10°.01

59.44, 52.57, 50.91, 47.37, 41.77, 32.20, 29.85, 28.47, 27.84, 25.03, 22.99, 21.94, 19.79, 17.68. HRMS (ESI, $[M+Na]^+$): Calcd. for C₂₆H₄₅N₃NaO₇⁺, 534.3150. Found: 534.3180. HPLC (Hexane: IPA = 6:1, 215 nm): t_R 17.14 min, >95% purity.

Boc-Val-S-Abh(OMe)-Leu-OMe (5b)

To a solution of **3b** (31 mg, 0.18 mmol) in CH₂Cl₂ (1 mL) was added TFA (1.0 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 20 min. The reaction was then quenched with 2 M aqueous solution of NaOH. The resulting solution was extracted with EtOAc (3 times). The combined organic layer was dried over Na₂SO₄, and filtered. The solvent was evaporated to afford crude amine, which was used in the next reaction without further purification. To a solution of crude amine in CH₂Cl₂ (2 mL) were added Boc-Val-OH (26 mg, 0.12 mmol), CDMT (28 mg, 0.16 mmol), DMAP (2 mg, 0.02 mmol) and NMM (44 µl, 0.4 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 24 h. The reaction mixture was diluted with Et₂O, washed with 1M aqueous solution of HCl and saturated aqueous solution of NaHCO₃, and the organic layer was dried over Na₂SO₄. The solution was concentrated, and the residue was purified with column chromatography (Hexane/Acetone = 2/1) to afford Boc-Val-S-Abh(OMe)-Leu-OMe (**5b**) (12 mg, 31 %), as a colorless oil.

¹H-NMR (400 MHz, CDCl₃) δ 6.206 (1H, d, J=8.0Hz), 5.163 (1H, d, J=9.5Hz), 4.708 (1H, brs), 4.590-4.535 (1H, brs), 4.154-4.039 (3H, m), 3.735 (3H,

s), 3.408 (3H, s), 2.925-2.873 (1H, m), 2.177-1.544 (9H, m), 1.429 (9H, s), 0.956-0.840 (13H, m). ¹³C-NMR(100 MHz, CDCl₃): 173.56, 170.77, 170.22, 156.24, 79.89, 73.97, 69.67, 59.48, 58.42, 53.95, 52.41, 51.10, 41.18, 33.55, 29.85, 28.50, 27.84, 24.95, 23.79, 21.79, 19.67, 18.12. HRMS (ESI, $[M+Na]^+$): Calcd. for C₂₆H₄₅N₃NaO₇⁺, 534.3150. Found: 534.3177. HPLC (Hexane: IPA = 6:1, 215 nm): t_R 15.59 min, >95% purity.

Boc-Leu-S-Abh(OMe)-D-Leu-OMe (5c)

To a solution of 4b (25 mg, 0.06 mmol) in CH₂Cl₂ (1 mL) was added TFA (1.0 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 20 min. The reaction was then guenched with 2 M aqueous solution of NaOH. The resulting solution was extracted with EtOAc (3 times). The combined organic layer was dried over Na₂SO₄, and filtered. The solvent was evaporated to afford crude amine, which was used in the next reaction without further purification. To a solution of crude amine in CH₂Cl₂ (2 mL) were added Boc-Leu-OH (21 mg, 0.09 mmol), CDMT (21 mg, 0.12 mmol), DMAP (2 mg, 0.02 mmol) and NMM (44 µl, 0.4 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 24 h. The reaction mixture was diluted with Et₂O, washed with 1M aqueous solution of HCl and saturated aqueous solution of NaHCO₃, and the organic layer was dried over Na₂SO₄. The solution was concentrated, and the residue was purified with column chromatography (Hexane/Acetone = 2/1) to afford 88 Boc-Leu-S-Abh(OMe)-D-Leu-OMe (5c) (4 mg, 13 %), as a 0

colorless oil.

¹H-NMR (400 MHz, CDCl₃) δ 6.276 (1H, d, J=8.3Hz), 5.045 (1H, d, J=9.4Hz), 4.694 (1H, brs), 4.624-4.569 (1H, m), 4.469-4.409 (1H, m), 4.133-4.022 (2H, m), 3.716 (3H, s), 3.409 (3H, s), 2.899-2.862 (1H, m), 2.134-2.091 (1H, m), 1.904-1.643 (9H,

m), 1.445 (9H, s), 0.975-0.923 (14H, m). HRMS (ESI, $[M+Na]^+$): Calcd. for $C_{27}H_{47}N_3NaO_7^+$, 548.3306. Found: 548.3315. HPLC (Hexane: IPA = 6:1, 215 nm): t_R 16.00 min, 90% purity.

17. LO

5寸

()

Boc-Ala-S-Abh(OMe)-Ala-Val-OMe (6a)

To a solution of **22S** (80 mg, 0.27 mmol) in CH₂Cl₂ (1 mL) was added TFA (1.0 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 20 min. The reaction was then quenched with 2 M aqueous solution of NaOH. The resulting solution was extracted with EtOAc (3 times). The combined organic layer was dried over Na₂SO₄, and filtered. The solvent was evaporated to afford crude amine, which was used in the next reaction without further purification. To a solution of crude amine in CH₂Cl₂ (2 mL) were added Boc-Ala-OH (78 mg, 0.41 mmol), CDMT (95 mg, 0.54 mmol), DMAP (4 mg, 0.03 mmol) and NMM (148 μ l, 1.35 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 24 h. The reaction mixture was diluted with Et₂O, washed with 1M aqueous solution of HCl and saturated aqueous solution of NaHCO₃, and the organic layer was dried over Na₂SO₄. The solution was concentrated, and the residue was purified with column chromatography (Hexane/EtOAc = 1/1) to afford **Boc-Ala-S-Abh(OMe)-OMe** (54 mg, 55 %), as a colorless oil.

¹H-NMR (400 MHz, CDCl₃) δ 5.370 (1H, d, J=7.68Hz), 4.509 (1H, brs), 4.420-4.384 (1H, m), 4.092-4.038 (2H, m), 3.701 (3H, s), 3.417 (3H, s), 3.104-3.075 (1H, m), 2.118-1.547 (6H, m), 1.422 (9H, s), 1.302 (3H, d, J=6.88Hz) ¹³C-NMR(100 MHz, CDCl₃): 172.25, 169.45, 155.14, 79.61, 73.53, 69.26, 59.38, 52.11, 48.37, 46.43, 35.28, 32.93, 28.42, 19.86. HRMS (ESI, [M+Na]⁺): Calcd. for C₁₈H₃₀N₂NaO₆⁺, 393.1996. Found: 393.2024.

To a solution of **Boc-Ala-S-Abh(OMe)-OMe** (53 mg, 0.14 mmol) in THF (3 mL) was added a solution of LiOH.H₂O (12 mg, 8.46 mmol) in H₂O (1 mL) at rt. MeOH (0.5 mL) was added to the reaction mixture and the mixture was stirred for 12 h at rt. The reaction mixture was poured into 5% aqueous solution of KHSO₄, and the whole was extracted with CHCl₃ (×3 times). The combined organic phase was washed with brine, dried over Na₂SO₄, and the solvent was evaporated. Compound **Boc-Ala-S-Abh(OMe)-OH** (50 mg, 100%) was afforded, which was used in the next reaction without further purification.

To a solution of Boc-Ala-Val-OMe (78 mg, 0.21 mmol) in CH₂Cl₂ (1 mL) was added TFA (1.0 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 20 min. The solvent was evaporated to afford crude amine, which was used in the next reaction without further purification. To a solution of crude amine in CH₂Cl₂ (3 mL) were added Boc-Ala-S-Abh(OMe)-OH (50 mg), CDMT (49 mg, 0.28 mmol), DMAP (3 mg, 0.02 mmol) and NMM (66 μ l, 0.6 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 24 h. The reaction mixture was diluted with Et₂O, washed with 1M aqueous solution of HCl and saturated aqueous solution of NaHCO₃, and the organic layer was dried over Na₂SO₄. The solution was concentrated, and the residue was purified with column chromatography (EtOAc) to afford **Boc-Ala-S-Abh(OMe)-Ala-Val-OMe (6a)** (57 mg, 75 %), as a colorless oil.

¹H-NMR (400 MHz, CDCl₃) δ 6.662 (1H, d, J=7.4Hz), 6.616 (1H, d, J=8.7Hz), 5.387 (1H, d, J=8.4Hz), 4.614 (1H, brs), 4.507-4.449 (3H, m), 4.063-4.018 (2H, m), 3.731 (3H, s), 3.406 (3H, s), 2.970-2.919 (1H, m), 2.175-1.703 (7H, m), 1.417 (9H, s), 1.381 (3H, d, J=7.04Hz), 1.302 (3H, d, J=6.88Hz), 0.932-0.899 (6H, m). ¹³C-NMR(100 MHz, CDCl₃): 172.33, 172.28, 170.80, 170.24, 155.53, 80.02, 73.63, 69.69, 60.80, 59.43, 57.41, 52.32, 49.34, 48.27, 45.44, 34.29, 33.19, 31.33, 28.51, 24.18, 19.79, 19.01, 17.97, 17.83. HRMS (ESI, [M+Na]⁺): Calcd. for C₂₆H₄₄N₄NaO₈⁺, 563.3051. Found: 563.3046. Reverse-phase HPLC (CH₃CN 100%, 215 nm): t_R 4.62 min, >95% purity.

Boc-Ala-β-Ala-Ala-Val-OMe (6b)

To a solution of Boc-Ala-Val-OMe (51 mg, 0.17 mmol) in CH_2Cl_2 (1 mL) was added TFA (1.0 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 20 min. The solvent was evaporated to afford crude amine, which was used in the next reaction without further purification. To a solution of crude amine in CH_2Cl_2 (3 mL) were added Boc-Ala- β -Ala-OH (29 mg, 0.11), CDMT (39 mg, 0.22 mmol), DMAP (3 mg, 0.02 mmol) and NMM (60 μ l, 0.55 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 24 h. The reaction mixture was diluted with Et₂O, washed with 1M aqueous solution of

HCl and saturated aqueous solution of NaHCO₃, and the organic layer was dried over Na₂SO₄. The solution was concentrated, and the residue was purified with column chromatography (EtOAc/MeOH=20:1) to afford Boc-Ala- β -Ala-Ala-Val-OMe (6b) (20 mg, 41 %), as white powder.

¹H-NMR (400 MHz, CDCl₃) δ 7.532 (1H, brs), 6.976 (1H, d, J=6.6Hz), 6.807 (1H, d, J=9.1Hz), 5.201 (1H, d, J=6.5Hz), 4.633-4.598 (1H, m), 4.477-4.441 (1H, m), 4.071-4.037 (1H, m), 3.788 (1H, brs), 3.747 (3H, s), 3.214 (1H, brs), 2.525-2.454 (1H, m), 2.309-2.277 (1H, m), 2.169-2.123 (1H, m), 1.423 (9H, s), 1.332-1.247 (6H, m), 0.936-0.854 (6H, m) ¹³C-NMR(100 MHz, CDCl₃): 172.31, 172.28, 170.79, 170.26, 155.52, 80.02, 69.69, 59.43, 57.40, 49.34, 48.26, 31.34, 28.51, 19.76, 19.01, 17.96, 17.83. HRMS (ESI, [M+Na]⁺): Calcd. for C₂₀H₃₆N₄NaO₇⁺, 467.2476. Found: 467.2470. Reverse-phase HPLC (CH₃CN 100%, 215 nm): t_R

Boc-Val-Ala-R-Abh(OMe)-Ala-Val-OMe (7a)

To a solution of **22***R* (40 mg, 0.13 mmol) in CH₂Cl₂ (1 mL) was added TFA (1.0 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 20 min. The reaction was then quenched with 2 M aqueous solution of NaOH. The resulting solution was extracted with EtOAc (3 times). The combined organic layer was dried over Na₂SO₄, and filtered. The solvent was evaporated to afford crude amine, which was used in the next reaction without further purification. To a solution of crude amine in CH₂Cl₂ (2 mL) were added Boc-Val-Ala-OH (57 mg, 0.2 mmol), CDMT (46 mg, 0.26 mmol), DMAP (2 mg) and NMM (71 µl, 0.65 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 24 h. The reaction mixture was diluted with Et₂O, washed with 1M aqueous solution of HCl and saturated aqueous solution of NaHCO₃, and the organic layer was dried over Na₂SO₄. The solution was concentrated, and the residue was purified with column chromatography (Hexane/EtOAc = 1/1) to afford **Boc-Val-Ala-***R***-Abh(OMe)-OMe** (30 mg, 49 %), as a colorless oil.

¹H-NMR (400 MHz, CDCl₃) δ 6.826 (1H, d, J=6.4Hz), 5.009 (1H, d, J=8.4Hz), 4.657-4.591 (1H, m), 4.535 (1H, brs) 4.109-3.948 (3H, m), 3.705 (3H, s), 3.405 (3H,

s), 3.052-2.998 (1H, m), 2.160-2.047 (7H, m), 1.424 (9H, s), 1.346 (3H, d, J=6.8Hz), 0.936-0.849 (6H, m). ¹³C-NMR(100 MHz, CDCl₃): 172.19, 170.82, 170.67, 169.05, 155.86, 79.98, 73.48, 69.44, 59.80, 59.62, 59.40, 52.22, 47.27, 45.70, 35.83, 32.36, 31.05, 28.37, 19.63, 19.42, 17.42. HRMS (ESI, [M+H]⁺): Calcd. for $C_{23}H_{40}N_3O_7^+$, 470.2861. Found: 470.2887.

To a solution of **Boc-Val-Ala-***R***-Abh(OMe)-OMe** (30 mg, 0.06 mmol) in THF (2 mL) was added a solution of LiOH.H₂O (5 mg, 0.13 mmol) in H₂O (1 mL) at rt. MeOH (0.5 mL) was added to the reaction mixture and the mixture was stirred for 12 h at rt. The reaction mixture was poured into 5% aqueous solution of KHSO₄, and the whole was extracted with CHCl₃ (×3 times). The combined organic phase was washed with brine, dried over Na₂SO₄, and the solvent was evaporated. Compound **Boc-Val-Ala-***R***-Abh(OMe)-OH** (30 mg, 100%) was afforded, which was used in the next reaction without further purification.

To a solution of Boc-Ala-Val-OMe (30 mg, 0.1 mmol) in CH₂Cl₂ (1 mL) was added TFA (1.0 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 20 min. The solvent was evaporated to afford crude amine, which was used in the next reaction without further purification. To a solution of crude amine in CH₂Cl₂ (2 mL) were added **Boc-Val-Ala-***R***-Abh(OMe)-OH** (30 mg), CDMT (21 mg, 0.12 mmol), DMAP (2 mg) and NMM (33 μ l, 0.3 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 24 h. The reaction mixture was diluted with Et₂O, washed with 1M aqueous solution of HCl and saturated aqueous solution of NaHCO₃, and the organic layer was dried over Na₂SO₄. The solution was concentrated, and the residue was purified with column chromatography (EtOAc) to afford **Boc-Val-Ala-***R***-Abh(OMe)-Ala-Val-OMe (7a)** (32 mg, 84 %), as a colorless oil.

¹H-NMR (400 MHz, CDCl₃) δ 6.928 (1H, brs), 6.803 (2H, d, J=8.8Hz), 5.191 (1H, d, J=8.4Hz), 4.712-4.661 (1H, m), 4.597-4.526 (2H, m), 4.508-4.473 (1H, m), 4.070-3.987 (3H, m), 3.729 (3H, s), 3.403 (3H, s), 2.959-2.906 (1H, m), 2.173-1.714 (8H, m), 1.416 (9H, s), 1.354-1.315 (6H, m), 0.923-0.849 (12H, m). ¹³C-NMR(100 MHz, CDCl₃): 172.40, 172.35, 172.31, 171.70,

155.97, 79.92, 77.36, 69.67, 60.38, 59.78, 59.32, 57.38, 53.97, 52.35, 49.09, 47.14, 32.44, 31.29, 29.40, 28.43, 19.62, 19.46, 19.06, 18.16, 17.80, 17.57. HRMS (ESI, $[M+Na]^+$): Calcd. for C₃₁H₅₃N₅NaO₉⁺, 622.3735. Found: 622.3754. Reverse-phase HPLC (CH₃CN 100%, 215 nm): t_R 7.60 min, >95% purity.

3. NMR measurements

Dry samples were dissolved in organic solvents and aqueous solvents and the final concentrations were 2-3 mg in 700µl NMR solvents.

NMR experiments were performed on a Bruker Avance 400MHz NMR spectrometer. The NMR data were processed with Bruker TopSpin 2.1. The ${}^{3}J(H_{N},H_{*})$ coupling constants were determined with the amide proton doublets by deconvolution of the peaks by fitting a Lorentz function to the peaks. About Lorentz fitting, a representative fit for AbhOMe-Leu-OMe (**1b**) in CHCl₃ at 298K is shown in Figure S2. This process was repeated for all samples.

Figure S8. Deconvolution spectra of AbhOMe-Leu-OMe (1b) in CHCl₃ at 298K: blue, original line; red, deconvolution line.

¹H and ¹³C-NMR charts of synthesized compounds

4. Circular Dichroism

The CD spectra were obtained in a 1mm path length quartz cell with scanning speed of 100nm/min and scan range of 190-300nm. The values are expressed in terms of $[\theta]$ the total molar ellipticity (deg.cm².dmol⁻¹).

Figure S9, solvent effect of 7a (100 μ M) in MeOH, MeOH:H₂O=1:1, and MeOH:H₂O=1:9 at 20°C.

Figure S10, temperature-dependence of 7a (100µM) in MeOH:H₂O=1:9 at 0-80 °C.

As the temperature increases from 0 to 80 $^{\circ}$ C, the CD spectrum of 7a shows little change in ellipticity, reflecting 7a takes stable conformation in water environment.

Figure S11, CD spectrum of 6a, 6b and 7a (1mM) in MeOH at 20 °C.

The spectrum for **7a** shows one band of positive ellipticity ≈ 202 nm and one minima of negative ellipticity ≈ 224 nm. The spectrum for β conformation has in general a positive band between 195-200 nm and a negative band between 216-218nm.⁴ Therefore, **7a** adopts β configuration. For **6a**, **6b** and **7a**, one positive band is detected between 200-210nm in methanol, while the intensity of negative band become weaker from **7a** to **6a**, which may suggest the population of β conformation is reducing. And in **6b**, the negative band is almost disappeared, thus **6b** don't take β conformation.

5. Calculations

Metadynamics simulation

The metadynamic calculation we used in this work is Desmond metadynamics with OPLS3 force field. The cubic solvent model is built in chloroform. The box size calculation method is buffer. The distance of the solvent box is 10 Å each and the angle is 90° each. About the simulation, collective variable (CV) is defined as dihedral angles. One is φ and the other is ψ . The ensemble class is NPT. Metadynamics parameters (size of the Gaussians) are set to height as 0.03 kcal/mol, torsion angle as 5° and interval as 0.09 ps. The total simulation time is 20 ns and the trajectory of recording interval is 6.0 ps. The approximate number of frames is 3333 and the temperature is set to 298K. Thermostat method is Nose-Hoover chain. Relaxation time is 2ps and coupling style is isotropic.

DFT calculation

Energy minimum of β conformation of 1b': B3LYP/6-31G(d), scrf=(smd, solvent=chloroform)

NIMG=1 (15.9252 cm⁻¹)0.477232 (Hartree/Particle)Zero-point correction=0.504828Thermal correction to Enthalpy=0.505772Thermal correction to Gibbs Free Energy=0.416318Sum of electronic and zero-point Energies=-1189.174013Sum of electronic and thermal Energies=-1189.146417Sum of electronic and thermal Enthalpies=-1189.145473Sum of electronic and thermal Free Energies=-1189.234927

Center	Atomic	Atomic	Coordinates (Angstroms)		stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-2.066788	-0.918112	1.991808
2	6	0	-1.903972	-1.531539	0.556062
3	6	0	-3.054805	0.379301	0.313284
4	6	0	-2.778869	0.357624	1.737169
5	1	0	-2.674329	-1.562599	2.627156
6	1	0	-1.774057	-2.613703	0.565299
7	1	0	-3.737921	0.407432	2.252672
8	1	0	-2.219581	1.219068	2.102342
9	6	0	-1.695487	0.586941	-0.517156
10	1	0	-1.148649	1.416137	-0.068293
11	1	0	-1.871715	0.762744	-1.578300
12	6	0	-0.966567	-0.742456	-0.271260
13	1	0	-0.779757	-1.285204	-1.197980
14	7	0	-3.162604	-1.033814	0.004618
15	6	0	-4.140050	1.304516	-0.097635
16	1	0	-4.443789	1.291337	-1.144442
17	1	0	-4.985502	1.044453	0.539387
18	8	0	-3.678215	2.637428	0.272481
19	6	0	-4.333264	3.603003	-0.529625
20	1	0	-4.151977	4.591631	-0.107919
21	1	0	-5.408067	3.448621	-0.624375
22	1	0	-1.156232	-0.781328	2.575046
23	6	0	-3.958549	-3.225958	-0.530197
24	6	0	-4.013498	-1.722231	-0.777976
25	8	0	-4.926653	-1.166793	-1.397203
26	1	0	-3.541454	-3.713195	-1.411465
27	1	0	-3.906008	3.660226	-1.530705
28	1	0	-5.004947	-3.529969	-0.504178
29	1	0	-3.514287	-3.631933	0.378713
30	6	0	0.446277	-0.632489	0.243743
31	8	0	0.761331	-1.457955	1.076737
32	7	0	1.308692	0.153578	-0.411127
33	1	0	0.942795	0.611276	-1.233721
34	6	0	2.796384	0.207379	-0.079870
35	1	0	2.789976	0.023128	0.994494
36	6	0	3.253918	1.658483	-0.328718
37	8	0	2.586382	2.595495	-0.799039
38	8	0	4.390848	1.813703	0.255999
39	6	0	5.009772	3.143344	0.455778
40	1	0	5.624225	3.302977	1.341943
41	1	0	5.640308	3.423144	-0.388180

42	1	0	4.172070	3.836532	0.379051
43	6	0	3.540271	-0.837692	-0.848600
44	1	0	2.868877	-1.690925	-0.945460
45	6	0	4.851859	-1.358989	-0.174768
46	1	0	5.506929	-0.507641	0.009951
47	1	0	3.645203	-0.555679	-1.896320
48	6	0	4.762463	-2.026255	1.144679
49	1	0	4.155458	-2.927856	1.062921
50	1	0	5.738913	-2.237103	1.580817
51	1	0	4.232878	-1.401699	1.864073
52	6	0	5.550856	-2.295922	-1.217835
53	1	0	4.911474	-3.146143	-1.455127
54	1	0	5.662902	-1.739839	-2.148572
55	1	0	6.534407	-2.620959	-0.878342

Energy minimum of α conformation of 1b': B3LYP/6-31G(d), scrf=(smd, solvent=chloroform)

NIMG=1 $(11.1106 \text{ cm}^{-1})$	
Zero-point correction=	0.477124 (Hartree/Particle)
Thermal correction to Energy=	0.504782
Thermal correction to Enthalpy=	0.505726
Thermal correction to Gibbs Free Energy=	0.415323
Sum of electronic and zero-point Energies=	-1189.174609
Sum of electronic and thermal Energies=	-1189.146951
Sum of electronic and thermal Enthalpies=	-1189.146007
Sum of electronic and thermal Free Energies=	-1189.236411
Standard orientation:	

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	х	Y	Z
1	6	0	1.858130	0.856785	2.002659
2	6	0	1.401973	1.324772	0.603568
3	6	0	3.001924	-0.208665	0.139030
4	6	0	2.822890	-0.292606	1.673900
5	1	0	2.390632	1.657242	2.517839
6	1	0	0.928141	2.307547	0.609166
7	1	0	3.768943	-0.182349	2.202547
8	1	0	2.408098	-1.261707	1.959331
9	6	0	1.758722	-0.778678	-0.579546
10	1	0	1.535289	-1.792822	-0.242328
11	1	0	1.935565	-0.833420	-1.655404
12	6	0	0.654504	0.265163	-0.270364
13	1	0	0.326607	0.731469	-1.200638
14	7	0	2.705029	1.220640	-0.041354
15	6	0	4.360459	-0.767234	-0.358477
16	1	0	4.412862	-0.717145	-1.448793
17	1	0	5.178613	-0.162162	0.038043
18	8	0	4.494045	-2.113878	0.088585
19	6	0	5.691326	-2.738533	-0.341500
20	1	0	5.703764	-2.857673	-1.425299
21	1	0	5.758501	-3.730641	0.104694
22	1	0	1.046065	0.555863	2.665412
23	6	0	2.832527	3.608189	-0.696032
24	6	0	3.366915	2.181081	-0.728463
25	8	0	4.391583	1.958606	-1.365362
26	1	0	2.624884	3.924004	0.327937

27	1	0	6.576527	-2.177366	-0.037841
28	1	0	1.925480	3.688127	-1.294733
29	1	0	3.575820	4.291088	-1.110108
30	6	0	-0.590463	-0.338602	0.420644
31	8	0	-0.468621	-0.923888	1.476045
32	7	0	-1.781164	-0.057711	-0.142539
33	1	0	-1.571712	0.431636	-1.000817
34	6	0	-3.092187	-0.360217	0.392932
35	1	0	-3.175404	-0.035290	1.430177
36	6	0	-3.377202	-1.893142	0.174250
37	8	0	-3.508349	-2.606949	1.105266
38	8	0	-3.411786	-2.224407	-1.124041
39	6	0	-3.844667	-3.517213	-1.519695
40	1	0	-4.832690	-3.739433	-1.110892
41	1	0	-3.920222	-3.559365	-2.606635
42	1	0	-3.149147	-4.290592	-1.191938
43	6	0	-4.067154	0.482714	-0.450793
44	1	0	-3.789048	0.369860	-1.498706
45	6	0	-4.279992	2.005331	-0.030465
46	1	0	-3.356748	2.555858	0.150410
47	1	0	-5.072340	0.066327	-0.516941
48	6	0	-4.834980	2.847757	-1.152321
49	1	0	-5.179731	3.794438	-0.736356
50	1	0	-4.145238	3.147759	-1.941260
51	1	0	-5.634852	2.311023	-1.662335
52	6	0	-5.093925	2.050684	1.326481
53	1	0	-6.117294	1.819586	1.030833
54	1	0	-4.806452	1.396740	2.153858
55	1	0	-5.199768	3.069497	1.699223

References

- [1] Y. Hori, T. Hashimoto, H. Nomoto, B. T. Hyman and T. Iwatsubo, J. Biol. Chem. 2015, 290, 15163–15174.
- [2] Y. Hori, T. Hashimoto, Y. Wakutani, K. Urakami, K. Nakashima, M. M. Condron, S. Tsubuki, T. C. Saido, D. B. Teplow and T. Iwatsubo, J. Biol. Chem. 2007, 282, 4916–4923.
- [3] D. S. Wishart, B. D. Sykes and F. M. Richards, *Biochemistry*. 1992, **31**, 1647-1651.
- [4] N. Greenfield, and G. D. Fasman, *Biochemistry*. 1969, **8**, 4108-4116.