Electronic supplementary information for the manuscript:

Direct arylation of $C_{60}Cl_6$ and $C_{70}Cl_8$ with carboxylic acids: a synthetic avenue to watersoluble fullerene derivatives with promising antiviral activity

Table of contents

Experimental procedures	3
Water-soluble fullerene C_{60} derivatives were synthesized according to the following procedure:	3
Selected data	3
Fig. S1. HPLC profiles of the $C_{60}Cl_6$ reaction with hydrocinnamic acid methyl ester catalyzed by FeC and SnCl ₄ (C18 Cosmosil column, elution with toluene/acetonitrile mixtures 80%/20% v/v, 30oC, flo rate 1 mL/min)	213 9W 6
Fig. S2. ¹ H NMR spectrum of compound 1	7
Fig. S3. ¹³ C NMR spectrum of compound 1	7
Fig. S4. ¹ H- ¹ H COSY NMR spectrum of compound 1	8
Fig. S5. ¹ H- ¹³ C HSQC NMR spectrum of compound 1	8
Fig. S6. ¹ H- ¹³ C HMBC NMR spectrum of compound 1	9
Fig. S7. ¹ H NMR spectrum of compound 2	9
Fig. S8. ¹³ C NMR spectrum of compound 2	10
Fig. S9. ¹ H- ¹ H COSY NMR spectrum of compound 2	10
Fig. S10. ¹ H- ¹³ C HSQC NMR spectrum of compound 2	11
Fig. S11. ¹ H- ¹³ C HMBC NMR spectrum of compound 2	11
Fig. S12. ¹ H NMR spectrum of compound 3	12
Fig. S13. ¹³ C NMR spectrum of compound 3	12
Fig. S14. ¹⁹ F NMR spectrum of compound 3	13
Fig. S15. ¹ H- ¹ H COSY NMR spectrum of compound 3	13
Fig. S16. ¹ H- ¹³ C HSQC NMR spectrum of compound 3	14
Fig. S17. ¹ H- ¹³ C HMBC NMR spectrum of compound 3	14
Fig. S18. ¹ H NMR spectrum of compound 4	15
Fig. S19. ¹³ C NMR spectrum of compound 4	15
Fig. S20. ¹ H- ¹ H COSY NMR spectrum of compound 4	16
Fig. S21. ¹ H- ¹³ C HSQC NMR spectrum of compound 4	16
Fig. S22. ¹ H- ¹³ C HMBC NMR spectrum of compound 4	17
Fig. S23. ¹ H NMR spectrum of compound 5	17
Fig. S24. ¹³ C HMBC NMR spectrum of compound 5	18

Fig. S25.	¹ H- ¹ H COSY NMR spectrum of compound 5	18
Fig. S26.	¹ H- ¹³ C HSQC NMR spectrum of compound 5	19
Fig. S27.	¹ H- ¹³ C HMBC NMR spectrum of compound 5	19
Fig. S28.	¹ H NMR spectrum of compound 6	20
Fig. S29.	¹³ C NMR spectrum of compound 6	20
Fig. S30.	¹ H- ¹ H COSY NMR spectrum of compound 6	21
Fig. S31.	¹ H- ¹³ C HSQC NMR spectrum of compound 6	21
Fig. S32.	¹ H- ¹³ C HMBC NMR spectrum of compound 6	22
Fig. S33.	¹ H NMR spectrum of compound 7	22
Fig. S34.	¹³ C NMR spectrum of compound 7	23
Fig. S35.	¹ H- ¹ H COSY NMR spectrum of compound 7	23
Fig. S36.	¹ H- ¹³ C HSQC NMR spectrum of compound 7	24
Fig. S37.	¹ H- ¹³ C HMBC NMR spectrum of compound 7	24
Fig. S38.	¹ H NMR spectrum of compound 8	25
Fig. S39.	¹³ C NMR spectrum of compound 8	25
Fig. S40.	¹ H- ¹ H COSY NMR spectrum of compound 8	26
Fig. S41.	¹ H- ¹³ C HSQC NMR spectrum of compound 8	26
Fig. S42.	¹ H- ¹³ C HMBC NMR spectrum of compound 8	27
Fig. S43.	¹ H NMR spectrum of compound 9	27
Fig. S44.	¹³ C NMR spectrum of compound 9	28
Fig. S45.	¹ H- ¹ H COSY NMR spectrum of compound 9	28
Fig. S46.	¹ H- ¹³ C HSQC NMR spectrum of compound 9	29
Fig. S47.	¹ H- ¹³ C HMBC NMR spectrum of compound 9	29
Fig. S48.	¹ H NMR spectrum of compound 10	30
Fig. S49.	¹³ C NMR spectrum of compound 10	30
Fig. S50.	¹ H- ¹ H COSY NMR spectrum of compound 10	31
Fig. S51.	¹ H- ¹³ C HSQC NMR spectrum of compound 10	31
Fig. S52.	¹ H- ¹³ C HMBC NMR spectrum of compound 10	32
Fig. S53.	¹ H NMR spectrum of compound 11	32
Fig. S54.	¹³ C NMR spectrum of compound 11	33
Fig. S55.	¹ H- ¹ H COSY NMR spectrum of compound 11	33
Fig. S56.	¹ H- ¹³ C HSQC NMR spectrum of compound 11	34
Fig. S57.	¹ H- ¹³ C HMBC NMR spectrum of compound 11	34
Fig. S58.	¹ H NMR spectrum of compound 12a	35
Fig. S59.	¹ H NMR spectrum of compound 12b	35

Fig. S60. ¹ H NMR spectrum of compound 12c	36
Fig. S61. ¹ H NMR spectrum of compound 12d	36
ological assays	37

Experimental procedures

Water-soluble fullerene C_{60} derivatives were synthesized according to the following procedure: Chlorofullerene $C_{60}Cl_6$ (200 mg, 0.214 mmol) was dissolved in nitrobenzene (for phenyl substituted acids, 50 mL) or 1,2-dichlorobenzene (for thienyl substituted acids, 50 mL) under inert conditions. Then aromatic acid (5.36 mmol, 25 eq) and SnCl₄ (5 µL) were added. Reaction mixture was heated to 70-80°C and stirred at this temperature for ~1 hour. Then reaction mixture was allowed to cool down, precipitated with 100 mL of hexane and centrifuged. Residue was washed with hexane, dried, washed with acetonitrile 5 times. Obtained orange powder was dissolved in aqueous K_2CO_3 (73.8 mg, 0.535 mmol, 2.5 eq), filtered through syringe filter (average pore size 0.45 µm), precipitated with HCl or acetic acid (1-2 mL), washed with water 10 times and dried in vacuo.

Procedure for the synthesis of the C_{70} derivatives was similar, except 40 equivalents of the aromatic acid was used. Fullerene derivatives **1-11** were obtained with ~95% yields.

Potassium salts of the fullerene derivatives **1-11** were obtained by the dissolution of the compounds **1-11** (1 eq) in aqueous K_2CO_3 (2.5 eq for C_{60} derivatives and 4 eq for C_{70} derivatives) and filtration through the PES syringe filter followed by freeze-drying. Compounds **1-11** in form of potassium salts were obtained with quantitative yields.

Amides of aromatic acids ((3-phenylpropanoyl)glycine (**12a**), 6-(3-phenylpropanamido)hexanoic acid (**12b**), (3-(thiophen-2-yl)propanoyl)glycine (**12c**), 6-(2-(thiophen-2-yl)acetamido)hexanoic acid (**12d**)) were synthesized using standard method reported previously (*Chem. Commun.*, 2016, **52**, 7043-7046).

Selected data

Compounds 1 and 2 have been fully characterized earlier (*Org. Biomol. Chem.*, 2019, 17, 7155-7160).

3 (Yield 95%). ¹H NMR (600 MHz, $(CD_3)_2SO$, δ , ppm): 1.23 – 1.44 (m, 15H), 3.61 – 3.80 (m, 5H), 6.95 – 7.66 (m, 25H), 7.67 – 8.11 (m, 10H).

¹³C NMR (151 MHz, (CD₃)₂SO, δ, ppm): 18.72 (<u>C</u>H₃), 44.48 (<u>C</u>H), 44.56 (<u>C</u>H), 57.85 (<u>C</u>_{sp3} fullerene cage), 60.56 (<u>C</u>_{sp3} fullerene cage), 63.18 (<u>C</u>_{sp3} fullerene cage), 76.24 (<u>C</u>_{sp3} fullerene cage), 115.61, 115.62, 115.77, 118.59, 124.35, 124.39, 124.50, 124.53, 125.99, 126.08, 126.10, 126.11, 126.19, 128.61, 128.70, 128.71, 128.75, 129.90, 129.92, 129.95, 129.98, 130.00, 131.04, 131.06, 135.30, 135.37, 136.32, 137.71, 137.73, 142.63, 142.88, 143.17, 143.68, 143.88, 144.47, 144.93, 145.28, 145.32,

146.22, 146.59, 147.14, 148.51, 148.63, 148.67, 150.25, 151.07, 154.15, 156.59, 158.45, 158.56, 160.19, 175.24 (<u>C</u>O), 175.29 (<u>C</u>O).

¹⁹F NMR (376 MHz, (CD₃)₂SO, δ, ppm): -118.20 (s, 2F) -117.90 (s, 3F). ESI MS: m/z= 1936 ([M-Cl]⁻).

4 (Yield 95%). ¹H NMR (500 MHz, $(CD_3)_2SO$, δ , ppm): 2.31 – 2.38 (m, 2H), 2.42 – 2.53 (m, 8H), 2.69 – 2.75 (m, 2H), 2.77 – 2.94 (m, 8H), 3.66 – 3.84 (m, 10H), 6.96 – 7.14 (m, 4H), 7.19 – 7.31 (m, 8H), 7.51 – 7.59 (m, 4H), 7.74 – 7.82 (m, 4H), 8.09 – 8.13 (m, 1H), 8.14 – 8.29 (m, 4H), 12.43 (br.s, 5H).

¹³C NMR (126 MHz, (CD₃)₂SO, δ, ppm): 30.38 (<u>C</u>H₂), 30.76 (<u>C</u>H₂), 31.01 (<u>C</u>H₂), 36.60 (<u>C</u>H₂), 36.89 (<u>C</u>H₂), 37.00 (<u>C</u>H₂), 41.07 (<u>C</u>H₂), 57.85 (<u>C_{sp3} fullerene cage</u>), 60.59 (<u>C_{sp3} fullerene cage</u>), 63.15 (<u>C_{sp3} fullerene cage</u>), 76.54 (<u>C_{sp3} fullerene cage</u>-Cl), 128.33, 128.48, 128.66, 128.74, 129.40, 129.48, 130.06, 134.51, 135.97, 141.28, 141.60, 141.84, 141.99, 142.79, 143.58, 143.61, 143.65, 143.76, 143.89, 144.07, 144.22, 144.39, 144.44, 145.49, 146.97, 147.03, 147.18, 147.22, 147.33, 147.79, 148.08, 148.17, 148.40, 148.53, 148.57, 148.61, 148.72, 150.66, 151.39, 156.82, 156.86, 171.79 (<u>CO</u>), 171.85 (<u>CO</u>), 172.16 (<u>CO</u>), 172.24 (<u>CO</u>), 174.15 (<u>CO</u>), 174.20 (<u>CO</u>). ESI MS: m/z= 1751 ([M-Cl][¬]).

5 (Yield 95%). ¹H NMR (500 MHz, $(CD_3)_2SO$, δ , ppm): 1.16 – 1.28 (m, 10H), 1.29 – 1.38 (m, 10H), 1.41 – 1.51 (m, 10H), 2.09 – 2.22 (m, 10H), 2.23 – 2.46 (m, 10H), 2.68 – 2.90 (m, 10H), 2.92 – 3.08 (m, 10H), 6.61 – 7.66 (m, 20H), 7.69 – 7.99 (m, 5H), 11.92 (br.s, 5H).

¹³C NMR (126 MHz, (CD₃)₂SO, δ , ppm): 24.66 (<u>C</u>H₂), 26.39 (<u>C</u>H₂), 29.32 (<u>C</u>H₂), 31.18 (<u>C</u>H₂), 34.05 (<u>C</u>H₂), 37.04 (<u>C</u>H₂), 37.28(<u>C</u>H₂), 38.77(<u>C</u>H₂), 38.81(<u>C</u>H₂), 57.88 (<u>C_{sp3} fullerene cage</u>), 60.59 (<u>C_{sp3} fullerene cage</u>), 63.15 (<u>C_{sp3} fullerene cage</u>), 74.87 (<u>C_{sp3} fullerene cage</u>-Cl), 127.88, 128.02, 128.28, 128.44, 128.68, 129.02, 129.37, 129.45, 129.49, 129.75, 129.97, 132.09, 135.98, 141.83, 142.04, 142.79, 142.89, 143.04, 143.17, 143.39, 143.57, 143.64, 143.77, 143.87, 144.08, 144.24, 144.38, 144.43, 145.50, 146.97, 147.02, 147.09, 147.19, 147.25, 147.35, 147.75, 147.83, 148.02, 148.11, 148.19, 148.32, 148.42, 148.56, 148.74, 150.65, 151.40, 156.87, 171.41 (<u>CO</u>), 171.46 (<u>CO</u>), 171.50 (<u>CO</u>), 174.87 (<u>CO</u>). ESI MS: m/z= 1016 ([M-Cl]^{2–}).

6 (Yield 95%). ¹H NMR (500 MHz, $(CD_3)_2$ SO, δ , ppm): 3.75 (s, 2H), 3.83 (s, 4H), 3.86 (s, 4H), 6.78 (d, 1H, J = 3.5 Hz), 6.83 (d, 1H, J = 3.6 Hz), 6.91 (d, 2H, J = 3.5 Hz), 6.95 (d, 2H, J = 3.6 Hz), 7.09 (d, 2H, J = 3.5 Hz), 7.37 (d, 2H, J = 3.5 Hz).

¹³C NMR (126 MHz, (CD₃)₂SO, δ, ppm): 35.37 (<u>C</u>H₂), 35.54 (<u>C</u>H₂), 35.62 (<u>C</u>H₂), 54.07 (<u>C</u>_{sp3} fullerene cage), 56.28 (<u>C</u>_{sp3} fullerene cage), 59.64 (<u>C</u>_{sp3} fullerene cage), 75.47 (<u>C</u>_{sp3} fullerene cage-Cl), 126.87, 127.04, 127.45, 127.47, 127.60, 129.88, 137.90, 138.11, 138.45, 139.14, 140.21, 142.26, 142.54, 142.82, 143.10, 143.37, 143.89, 144.29, 144.30, 144.33, 144.61, 144.66, 144.93, 145.60, 146.00, 147.12, 147.26, 147.83, 148.18, 148.23, 148.32, 148.62, 148.69, 148.72, 149.95, 150.58, 153.32, 155.70, 171.79 (<u>CO</u>), 171.92 (<u>CO</u>), 171.93 (<u>CO</u>). ESI MS: m/z= 1425 ([M-Cl]⁻).

7 (Yield 95%). ¹H NMR (500 MHz, (CD₃)₂SO, δ , ppm): 3.69 – 3.84 (m, 20H), 6.75 – 6.82 (m, 2H), 6.89 (d, 2H, J = 3.2 Hz), 6.92 (d, 2H, J = 3.3 Hz), 7.07 (d, 2H, J = 3.4 Hz), 7.35 (d, 2H, J = 3.5 Hz), 8.33 – 8.52 (m, 5H), 12.58 (br.s, 5H).

¹³C NMR (126 MHz, (CD₃)₂SO, δ, ppm): 36.59 (<u>C</u>H₂), 36.81 (<u>C</u>H₂), 36.87 (<u>C</u>H₂), 41.28 (<u>C</u>H₂), 54.12 (<u>C</u>_{sp3} fullerene cage), 56.35 (<u>C</u>_{sp3} fullerene cage), 59.65 (<u>C</u>_{sp3} fullerene cage), 75.49 (<u>C</u>_{sp3} fullerene cage-Cl), 126.44, 126.72, 126.78, 127.48, 129.85, 138.89, 139.01, 139.25, 139.60, 139.94, 142.29, 142.54, 142.81, 143.00, 143.06, 143.38, 143.93, 144.30, 144.58, 144.63, 144.93, 145.41, 146.05, 147.12, 147.26, 147.83, 148.16, 148.22, 148.31, 148.60, 148.71, 149.98, 150.60, 153.36, 155.76, 169.49 (<u>C</u>O), 169.67 (<u>C</u>O), 171.57 (<u>C</u>O), 171.61 (<u>C</u>O). ESI MS: m/z= 1711 ([M-Cl]⁻).

8 (Yield 95%). ¹H NMR (500 MHz, $(CD_3)_2SO$, δ , ppm): 1.19 – 1.29 (m, 10H), 1.33 – 1.42 (m, 10H), 1.43 – 1.51 (m, 10H), 2.12 – 2.20 (m, 10H), 2.94 – 3.08 (m, 10H), 3.55 (s, 2H), 3.62 (s, 4H), 3.65 (s, 4H), 6.73 – 6.78 (m, 1H), 6.81 – 6.83 (m, 1H), 6.84 – 6.86 (m, 2H), 6.87 – 6.90 (m, 2H), 7.05 – 7.08 (m, 2H), 7.32 – 7.36 (m, 2H), 7.98 – 8.18 (m, 5H), 12.18 (br.s, 5H).

¹³C NMR (126 MHz, (CD₃)₂SO, δ, ppm): 24.66 (<u>C</u>H₂), 26.43 (<u>C</u>H₂), 29.19 (<u>C</u>H₂), 34.05 (<u>C</u>H₂), 37.10 (<u>C</u>H₂), 37.27 (<u>C</u>H₂), 37.36 (<u>C</u>H₂), 39.07 (<u>C</u>H₂), 54.12 (<u>C</u>_{sp3} fullerene cage), 56.34 (<u>C</u>_{sp3} fullerene cage), 59.65 (<u>C</u>_{sp3} fullerene cage), 75.51 (<u>C</u>_{sp3} fullerene cage-Cl), 126.12, 126.37, 126.54, 126.71, 127.03, 127.41, 129.80, 137.89, 138.09, 138.44, 138.73, 138.79, 139.24, 139.55, 139.76, 140.25, 142.29, 142.36, 142.53, 142.56, 142.81, 143.00, 143.07, 143.38, 143.91, 144.21, 144.31, 144.59, 144.64, 144.93, 145.28, 146.04, 147.12, 147.26, 147.83, 148.17, 148.22, 148.31, 148.60, 148.70, 149.98, 150.60, 153.34, 155.75, 169.03 (<u>CO</u>), 174.88 (<u>CO</u>).

ESI MS: m/z= 1991 ([M-Cl]⁻).

9 (Yield 95%). ¹H NMR (500 MHz, (CD₃)₂SO, δ, ppm): 3.67 (s, 4H), 3.70 (s, 4H), 3.73 (s, 4H), 3.82 (s, 4H), 6.56 (d, 2H, *J* = 3.4 Hz), 6.60 (d, 2H, *J* = 3.5 Hz), 6.66 (d, 2H, *J* = 3.5 Hz), 6.69 (d, 2H, *J* = 3.4 Hz), 6.72 (d, 2H, *J* = 3.5 Hz), 6.78 (d, 2H, *J* = 3.4 Hz), 6.83 (d, 2H, *J* = 3.5 Hz), 6.99 (d, 2H, *J* = 3.5 Hz).

¹³C NMR (126 MHz, (CD₃)₂SO, δ, ppm): 35.46 (<u>C</u>H₂), 35.57 (<u>C</u>H₂), 56.05 (<u>C_{sp3} fullerene cage</u>), 56.76 (<u>C_{sp3} fullerene cage</u>), 57.11 (<u>C_{sp3} fullerene cage</u>), 57.59 (<u>C_{sp3} fullerene cage</u>), 108.13, 126.48, 126.58, 126.72, 126.85, 126.97, 126.99, 127.35, 131.57, 132.79, 134.03, 134.56, 135.65, 137.15, 137.50, 137.69, 140.56, 140.84, 141.19, 142.12, 142.14, 142.30, 142.34, 145.31, 145.44, 145.48, 145.77, 146.28, 146.52, 148.06, 148.42, 149.45, 149.50, 150.39, 150.51, 151.74, 152.16, 152.55, 153.05, 153.29, 153.79, 154.48, 155.01, 161.06, 171.88 (<u>C</u>OOH), 171.91 (<u>C</u>OOH), 171.92 (<u>C</u>OOH), 172.03 (<u>C</u>OOH).

ESI MS: m/z= 1969 ([M]⁻).

10 (Yield 95%).¹H NMR (500 MHz, $(CD_3)_2SO$, δ , ppm): 2.43 – 2.62 (m, 16H), 2.84 – 3.06 (m, 16H), 6.53 (d, 2H, J = 3.5 Hz), 6.57 (d, 2H, J = 3.4 Hz), 6.61 (d, 2H, J = 3.6 Hz), 6.64 (d, 2H, J = 3.5 Hz), 6.66 (d, 2H, J = 3.5 Hz), 6.73 (d, 2H, J = 3.4 Hz), 6.77 (d, 2H, J = 3.5 Hz), 6.94 (d, 2H, J = 3.5 Hz).

¹³C NMR (126 MHz, (CD₃)₂SO, δ, ppm): 25.26 (<u>C</u>H₂), 25.29 (<u>C</u>H₂), 25.41(<u>C</u>H₂), 35.85(<u>C</u>H₂), 35.89 (<u>C</u>H₂), 35.91(<u>C</u>H₂), 56.70 (<u>C</u>sp₃ fullerene cage), 57.07 (<u>C</u>sp₃ fullerene cage), 57.33 (<u>C</u>sp₃ fullerene cage), 57.53 (<u>C</u>sp₃ fullerene cage), 124.99, 125.02, 125.13, 125.45, 126.73, 126.76, 126.89, 127.12, 131.57, 132.67, 133.97, 134.52, 135.63, 139.26, 139.47, 139.89, 141.02, 141.99, 142.20, 142.27, 144.37, 144.39, 144.72, 144.89, 145.24, 145.38, 145.78, 146.12, 146.41, 147.99, 148.46, 149.42, 149.51,

150.36, 150.47, 151.76, 152.14, 152.50, 152.58, 153.01, 153.25, 153.74, 154.44, 154.98, 155.05, 160.97, 173.72 (<u>C</u>OOH), 173.80 (<u>C</u>OOH). ESI MS: m/z= 1041 ([M]^{2–}).

11 (Yield 95%). ¹H NMR (500 MHz, (CD₃)₂SO, δ , ppm): 1.65 – 1.90 (m, 16H), 2.12 – 2.32 (m, 16H), 2.60 – 2.82 (m, 16H), 6.48 (d, 2H, J = 3.5 Hz), 6.52 (d, 2H, J = 3.4 Hz), 6.59 (d, 2H, J = 3.2 Hz), 6.68 – 6.71 (m, 4H), 6.73 (d, 2H, J = 3.5 Hz), 6.82 (d, 2H, J = 3.4 Hz), 7.02 (d, 2H, J = 3.5 Hz).

¹³C NMR (126 MHz, DMSO, δ, ppm): 26.92 (<u>CH</u>₂), 27.00 (<u>CH</u>₂), 29.08 (<u>CH</u>₂), 29.21 (<u>CH</u>₂), 33.04 (<u>CH</u>₂), 33.07 (<u>CH</u>₂), 33.17 (<u>CH</u>₂), 56.72 (<u>Csp3 fullerene cage</u>), 57.11 (<u>Csp3 fullerene cage</u>), 57.36 (<u>Csp3 fullerene cage</u>), 57.56 (<u>Csp3 fullerene cage</u>), 124.78, 124.81, 124.88, 125.27, 126.78, 126.81, 126.96, 127.13, 131.62, 132.82, 134.13, 134.52, 135.63, 139.22, 139.48, 139.91, 140.90, 142.00, 142.14, 142.25, 145.18, 145.22, 145.29, 145.40, 145.50, 145.67, 145.73, 146.23, 146.57, 148.03, 148.48, 149.40, 149.45, 150.34, 150.47, 151.83, 152.10, 152.15, 152.55, 152.95, 153.11, 153.72, 154.30, 155.02, 161.05, 174.55 (<u>COOH</u>), 174.57 (<u>COOH</u>), 174.59 (<u>COOH</u>). ESI MS: m/z= 1097 ([M]²⁻).

12a (Yield 95%). ¹H NMR (600 MHz, $(CD_3)_2SO$, δ , ppm): 2.44 (t, 2H, J = 7.9 Hz), 2.82 (t, 2H, J = 7.9 Hz), 3.75 (d, 2H, J = 5.8 Hz), 7.16 – 7.29 (m, 5H), 8.19 (s, 1H).

12b (Yield 95%). ¹H NMR (600 MHz, $(CD_3)_2SO$, δ , ppm): 2.32 – 2.38 (m, 4H), 2.79 (t, 2H, J = 7.8 Hz), 3.20 - 3.26 (m, 2H), 7.15 - 7.29 (m, 5H), 7.91 (s, 1H).

12c (Yield 95%). ¹H NMR (500 MHz, $(CD_3)_2SO$, δ , ppm): 3.69 (d, 2H, J = 0.4 Hz), 3.76 (d, 2H, J = 5.9 Hz), 6.89 – 6.99 (m, 2H), 7.34 (dd, 1H, J = 5.1, 1.3 Hz), 8.39 (t, 1H, J = 5.7 Hz).

12d (Yield 95%). ¹H NMR (500 MHz, $(CD_3)_2$ SO, δ , ppm): 2.41 (t, 2H, J = 6.8 Hz), 3.24 – 3.31 (m, 2H), 3.64 (s, 2H), 6.89 – 6.92 (m, 1H), 6.96 (dd, 1H, J = 5.1, 3.4 Hz), 7.37 (dd, 2H, J = 5.1, 1.3 Hz), 8.19 (t, 1H, J = 5.1 Hz).

Fig. S1. HPLC profiles of the $C_{60}Cl_6$ reaction with hydrocinnamic acid methyl ester catalyzed by FeCl₃ and SnCl₄ (C18 Cosmosil column, elution with toluene/acetonitrile mixtures 80%/20% v/v, 30oC, flow rate 1 mL/min)

Fig. S2. ¹H NMR spectrum of compound 1

Fig. S3. ¹³C NMR spectrum of compound 1

Fig. S5. ¹H-¹³C HSQC NMR spectrum of compound 1

Fig. S6. ¹H-¹³C HMBC NMR spectrum of compound 1

Fig. S7. ¹H NMR spectrum of compound 2

Fig. S8. ¹³C NMR spectrum of compound 2

Fig. S9. ¹H-¹H COSY NMR spectrum of compound 2

Fig. S10. ¹H-¹³C HSQC NMR spectrum of compound 2

Fig. S11. ¹H-¹³C HMBC NMR spectrum of compound 2

Fig. S12. ¹H NMR spectrum of compound 3

Fig. S13. ¹³C NMR spectrum of compound 3

Fig. S14. ¹⁹F NMR spectrum of compound 3

Fig. S15. ¹H-¹H COSY NMR spectrum of compound 3

Fig. S16. ¹H-¹³C HSQC NMR spectrum of compound 3

Fig. S17. ¹H-¹³C HMBC NMR spectrum of compound 3

Fig. S18. ¹H NMR spectrum of compound 4

Fig. S19. ¹³C NMR spectrum of compound 4

Fig. S21. ¹H-¹³C HSQC NMR spectrum of compound 4

Fig. S22. ¹H-¹³C HMBC NMR spectrum of compound 4

Fig. S23. ¹H NMR spectrum of compound 5

Fig. S24. ¹³C HMBC NMR spectrum of compound 5

Fig. S25. ¹H-¹H COSY NMR spectrum of compound 5

Fig. S27. ¹H-¹³C HMBC NMR spectrum of compound 5

Fig. S28. ¹H NMR spectrum of compound 6

Fig. S29. ¹³C NMR spectrum of compound 6

Fig. S31. ¹H-¹³C HSQC NMR spectrum of compound **6**

Fig. S32. ¹H-¹³C HMBC NMR spectrum of compound **6**

Fig. S33. ¹H NMR spectrum of compound 7

Fig. S34. ¹³C NMR spectrum of compound 7

Fig. S35. ¹H-¹H COSY NMR spectrum of compound 7

Fig. S37. ¹H-¹³C HMBC NMR spectrum of compound 7

Fig. S38. ¹H NMR spectrum of compound 8

Fig. S39. ¹³C NMR spectrum of compound 8

Fig. S40. ¹H-¹H COSY NMR spectrum of compound 8

Fig. S41. ¹H-¹³C HSQC NMR spectrum of compound 8

Fig. S42. ¹H-¹³C HMBC NMR spectrum of compound 8

Fig. S43. ¹H NMR spectrum of compound 9

Fig. S44. ¹³C NMR spectrum of compound 9

Fig. S45. ¹H-¹H COSY NMR spectrum of compound 9

Fig. S46. ¹H-¹³C HSQC NMR spectrum of compound 9

Fig. S47. ¹H-¹³C HMBC NMR spectrum of compound 9

Fig. S48. ¹H NMR spectrum of compound 10

Fig. S49. ¹³C NMR spectrum of compound 10

Fig. S50. ¹H-¹H COSY NMR spectrum of compound 10

Fig. S51. ¹H-¹³C HSQC NMR spectrum of compound 10

Fig. S52. ¹H-¹³C HMBC NMR spectrum of compound 10

Fig. S53. ¹H NMR spectrum of compound 11

Fig. S54. ¹³C NMR spectrum of compound 11

Fig. S55. ¹H-¹H COSY NMR spectrum of compound 11

Fig. S56. ¹H-¹³C HSQC NMR spectrum of compound 11

Fig. S57. ¹H-¹³C HMBC NMR spectrum of compound 11

Fig. S58. ¹H NMR spectrum of compound 12a

Fig. S59. ¹H NMR spectrum of compound 12b

Fig. S60. ¹H NMR spectrum of compound 12c

Fig. S61. ¹H NMR spectrum of compound 12d

Biological assays

The antiviral assay in TZM-bl cells has been described in detail by Gordts *et al.* 2015 (S.C. Gordts, G. Ferir, T. D'Huys, M.I. Petrova, S. Lebeer, R. Snoeck, et al., The low cost compound lignosulfonic acid (LA) exhibits broad-spectrum anti-HIV and anti-HSV activity and has potential for microbicidal applications, *PLoS One*, **2015**, 10, 7, e0131219).

Briefly, 1.7×104 TZM-bl cells were pre-incubated with various concentrations of compounds in standard cell culture medium supplemented with diethylaminoethyl-dextran (15 µg/ml; Sigma-Aldrich) at 37 °C for 30 min. Then the cells were infected with HIV-1 NL4-3 or HIV-1 BaL virus or HIV-2 ROD stock. After two days of incubation at 37 °C, steady-lite plus substrate solution (PerkinElmer, Waltham, MA, USA) was added. The luminescent signal, which is proportional to the amount of viral replication, was measured using the SpectraMax L® microplate reader (Molecular Devices) and analyzed using Softmax Pro® software (Molecular Devices).

The anti-HIV assays in MT-4 cells were performed as follows. Compound-treated MT-4 cells (5×104 cells per sample in cell culture medium; 30 min incubation at 37 °C) were infected with HIV-1 NL4-3 or HIV-2 ROD virus stocks. After five days, virus-induced cytopathogenic effect was checked using optical microscopy and cell viability (i.e. measurement of viral replication) was evaluated using the MTS/PES-based CellTiter 96 Aqueous One Solution Cell Proliferation assay (Promega, Fitchburg, WI, USA). Absorbance was recorded using the VersaMax ELISATM microplate reader (Molecular Devices) and analyzed with the Softmax Pro® software (Molecular Devices).