Electronic Supporting Information

Cis alkenes stabilized by intramolecular sulphur $\cdots \pi$ interactions

Xiaolei Zhao, ${ }^{\text {a,c }}$ Wei Zheng, ${ }^{\text {a }}$ Yi Zhang, ${ }^{\text {d }}$ Wei Huang, ${ }^{\text {a, }, \mathrm{b}}$

${ }^{\text {a }}$ State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (P.R. China). Fax: 86258968 2309; Tel: 86258968 6526; E-mail: whuang@nju.edu.cn
${ }^{\text {b }}$ Shenzhen Research Institute of Nanjing University, Shenzhen, 518057 (P.R. China) 'School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032 (P.R. China).
${ }^{\text {dKey Laboratory of Jiangxi Province for Professional Pollutants Control and Resources, }}$ Nanchang Hangkong University, Nanchang 330063 (P.R. China).

1. General

Analytical grade reagents were purchased from commercial suppliers Aladdin (AR) and Sigma-Aldrich (AR) and used without any further purification unless otherwise stated. Compounds $\mathbf{1 a}$ and $\mathbf{2 a - 2 c}$ were prepared according to the reported procedure. ${ }^{51}$ Column chromatography was carried out on silica gel (200-300 mesh). All melting points were measured without corrections. Ultraviolet-Visible (UV-Vis) spectra were recorded with a Shimadzu UV-3150 double-beam spectrophotometer using a quartz cell with a path length of 10 mm at room temperature $\left(25{ }^{\circ} \mathrm{C}\right)$. Irradiation experiments were conducted using a portable LED light source (HXGY-II, Beijing Huaxing science\&technology CO.LTD) equipped with ten light intensities (white light/365 nm/415 nm/450nm/CSS/490 nm/530 nm/ $555 \mathrm{~nm} / 570 \mathrm{~nm} / 610$ $n m)$. NMR spectroscopic measurements were performed on a Bruker X400 MHz, using chloroform-d $\left(\mathrm{CDCl}_{3}\right)$, dichloromethane $-d_{2}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ and tetrahydrofuran- d_{8}
(THF- d_{8}) as the solvents at room temperature $\left(25^{\circ} \mathrm{C}\right)$. Mass spectrometric data were obtained from SHIMADZU LCMS-2020.

2.1. Preparation of compound 1b

2-Amino-4-chloro-5-formylthiophene-3-carbonitrile ($0.94 \mathrm{~g}, 5.00 \mathrm{mmol}$) was dissolved in a mixture of concentrated sulfuric acid (3 mL) and phosphoric acid (2.5 mL) at $-5^{\circ} \mathrm{C}$ in an ice-salt bath. Nitrosylsulphuric acid (5 mL) was added dropwise to the reaction mixture within 15 min and the mixture was stirred for additional 0.5 h . The diazonium salt was obtained and used for the next coupling reaction. N, N diethylaniline ($0.75 \mathrm{~g}, 5.00 \mathrm{mmol}$) was dissolved in a mixture of methanol and water ($30 \mathrm{~mL}, \mathrm{v}: \mathrm{v}=2: 1$) in a three-necked flask immersed in an ice-salt bath. The freshly prepared diazonium salt was added dropwise to the reaction mixture under vigorous mechanical stirring $\left(0-5^{\circ} \mathrm{C}\right)$. After additional stirring for 2 h , the precipitate was filtered and dried after thorough washing with distilled water. The crude solid was subjected to column chromatography on silica gel (dichloromethane:petroleum ether $=\mathbf{2 : 1}$), and compound $\mathbf{1 b}$ was obtained as the purple powder in a yield of 1.21 $\mathrm{g}(70 \%) . \mathrm{Mp}: 251-253{ }^{\circ} \mathrm{C}$. UV-Vis in $\mathrm{CHCl}_{3}, \lambda_{\max }(\mathrm{nm}) / \varepsilon\left(\times 10^{4} \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}\right)=$ $591 / 3.94 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=10.02(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 2 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=$ $\left.8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(400} \mathrm{MHz} \mathrm{CDCl} 3, \mathrm{ppm},\right): \delta=$ 181.25, 153.63, 142.98, 134.67, 131.36, 129.90, 112.18, 111.85, 107.20, 105.97, 45.51, 12.78. MS (positive mode, m / z) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 347.1$, found: 347.0.

Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 b}$ in CDCl_{3}.

Fig. S2 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 b}$ in CDCl_{3}.

Fig. S3 ESI-MS spectrum of the compound $\mathbf{1 b}$.

2.2. Preparation of cis-3

Under dry and inert atmosphere, t-BuONa ($0.29 \mathrm{~g}, 3.00 \mathrm{mmol}$) was quickly added to a mixture of compound $\mathbf{2 a}(0.95 \mathrm{~g}, 2.00 \mathrm{mmol})$ in anhydrous THF (40 mL) at $0^{\circ} \mathrm{C}$. After stirring for 0.5 h at $0^{\circ} \mathrm{C}$, a solution of compound 1 a ($0.32 \mathrm{~g}, 1.00 \mathrm{mmol}$) in anhydrous THF (10 mL) was added dropwise into the reaction mixture. While the addition was completed, the reaction mixture was then refluxed for 5 h at $70^{\circ} \mathrm{C}$. Following, the mixture was cooled to RT and the solvent was removed under reduced pressure. The crude solid was subjected to column chromatography on silica gel (dichloromethane:petroleum ether = 1:1), and cis-3 was obtained as the purple powder in a yield of $0.23 \mathrm{~g}(53 \%)$. Mp: 213-215 ${ }^{\circ} \mathrm{C}$. UV-Vis in $\mathrm{CHCl}_{3}, \lambda_{\text {max }}(\mathrm{nm}) / \varepsilon$ $\left(\times 10^{4} \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}\right)=580 / 2.57 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=8.24(\mathrm{~d}, \mathrm{~J}=8.8$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.80(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.69 ($\mathrm{d}, \mathrm{J}=9.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.15(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm): $\delta=165.10,154.20,147.54,142.92,142.84,130.77,129.74,129.67,126.98$, 124.13, 122.16, 112.58, 111.83, 107.77. 96.00. 40.37. MS (positive mode, m/z) calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClN}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 438.1$, found: 438.0.

Fig. $\mathbf{S 4}{ }^{1} \mathrm{H}$ NMR spectrum of cis-3 in CDCl_{3}.

Fig. $\mathbf{S 5}^{13} \mathrm{C}$ NMR spectrum of cis-3 in CDCl_{3}.

Line\#:1 R.Time:----(Scan\#:----)
MassPeaks:132
RawMode:Averaged 0.300-0.367(19-23) BasePeak:438(2954)
BG Mode:Averaged 0.033-0.733(3-45) Segment 1 - Event 1

Fig. S6 ESI-MS spectrum of the compound cis-3.

2.3. Preparation of $c i s-4$

The synthetic procedure for cis-4 was analogous to that described for cis-3 except that compound $\mathbf{1 b}$ ($0.35 \mathrm{~g}, 1.00 \mathrm{mmol}$) was used as the starting material to replace compound 1a. Yield: $0.32 \mathrm{~g}(68 \%)$. Mp: 208-211 ${ }^{\circ} \mathrm{C}$. UV-Vis in $\mathrm{CHCl}_{3}, \lambda_{\text {max }}(\mathrm{nm}) / \varepsilon$ $\left(\times 10^{4} \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}\right)=582 / 2.77 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) : $\delta=8.27-8.21(\mathrm{~m}$, $2 \mathrm{H}), 7.78$ (d, J = 9.2 Hz, 2H), $7.52(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}$ $=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=154.11,152.38,147.54,142.97,142.65,130.53,129.76$, 129.38, 129.06, 127.34, 126.90, 124.12, 122.21, 112.76, 111.61, 45.16, 12.71. Single crystals of cis-4 suitable for X-ray diffraction measurement were obtained by slow evaporation of a mixture of CHCl_{3} and $\mathrm{MeOH}(\mathrm{v}: \mathrm{v}=1: 1$) in air for one week. MS (positive mode, m / z) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClN}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 466.1, found: 466.0.

Fig. $\mathbf{S 7}{ }^{1} \mathrm{H}$ NMR spectrum of cis-4 in CDCl_{3}.

Fig. $\mathbf{S 8}{ }^{13} \mathrm{C}$ NMR spectrum of cis-4 in CDCl_{3}.

Fig. $\mathbf{S 9}$ ESI-MS spectrum of the compound cis-4.

2.4. Preparation of cis-/trans-5

The synthetic procedure for cis-/trans-5 was analogous to that described for cis-3 except that compound $\mathbf{2 b}(0.86 \mathrm{~g}, 2.00 \mathrm{mmol})$ was used as the starting material to replace compound 2a. A mixture of cis-5 and trans-5 was obtained in a ratio of 3:2 in a yield of $0.20 \mathrm{~g}(51 \%)$. Mp: 121-123 ${ }^{\circ} \mathrm{C}$. UV-Vis of cis-/trans-5 in $\mathrm{CHCl}_{3}, \lambda_{\text {max }}(\mathrm{nm}) / \varepsilon$ $\left(\times 10^{4} \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}\right)=565 / 2.62 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.80(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}$, 0.66 H , trans-), 7.69 ($\mathrm{d}, \mathrm{J}=9.3 \mathrm{~Hz}, 1.01 \mathrm{H}$, cis-), 7.47 (d, $J=7.3 \mathrm{~Hz}, 0.82 \mathrm{H}$), $7.34-7.19$ $(\mathrm{m}, 3.82 \mathrm{H}), 7.03$ (d, $J=16.1 \mathrm{~Hz}, 0.39 \mathrm{H}$, trans-), 6.81 ($\mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, 0.60 \mathrm{H}$, cis-), 6.70 (d, J = 9.3 Hz, 0.78H), 6.64 (dd, $J=10.7,2.4 \mathrm{~Hz}, 1.80 \mathrm{H}$), 3.09 (s, 2.38H), 3.05 (s, 3.63H). ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=164.31$ (cis-), 163.71 (tran-), 153.93 (trans-), 153.84 (cis-), 143.01 (trans-), 142.93 (cis-), 135.94, 134.80, 134.05, 132.61, 131.59, 128.93 (trans-), 128.88 (cis-), 128.67 (cis-), 128.50 (trans-), 126.98, 125.7, 123.87, $119.55,117.90,112.86$ (cis-), 112.71 (trans-), 111.89 (trans-), 111.70 (cis-), 108.82, 107.95, 40.38 (trans-), 40.33 (cis-). MS (positive mode, m / z) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{~S}$ [M $+\mathrm{H}^{+}$: 393.1, found: 393.0.

Fig. S10 ${ }^{1} \mathrm{H}$ NMR spectrum of cis-/trans-5 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Fig. S11 ${ }^{13} \mathrm{C}$ NMR spectrum of cis-/trans-5 in CDCl_{3}.

Fig. S12 ESI-MS spectrum of the compound cis-/trans-5

2.5. Preparation of cis-/trans-6

The synthetic procedure for cis-/trans-6 was analogous to that described for cis-4 except that compound $\mathbf{2 b}$ ($0.86 \mathrm{~g}, 2.00 \mathrm{mmol}$) was used as the starting material to replace compound 2a. A mixture of cis-6 and trans-6 was obtained in a ratio of 3:2 in a yield of $0.23 \mathrm{~g}(55 \%)$. Mp: $125-127^{\circ} \mathrm{C}$. UV-Vis of cis-/trans- 6 in $\mathrm{CHCl}_{3}, \lambda_{\max }(\mathrm{nm}) / \varepsilon$ $\left(\times 10^{4} \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}\right)=565 / 2.85 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) : $\delta=7.88(\mathrm{~d}, \mathrm{~J}=9.3$ $\mathrm{Hz}, 0.74 \mathrm{H}$, trans-), 7.77 ($\mathrm{d}, \mathrm{J}=9.3 \mathrm{~Hz}, 1.09 \mathrm{H}$, cis-), 7.51 (d, $J=7.4 \mathrm{~Hz}, 0.82 \mathrm{H}$, trans-), $7.41-7.30(\mathrm{~m}, 3.60 \mathrm{H}), 7.27$ (d, J=16.1 Hz, 0.19H, trans-), 7.05 (d, J = $16.1 \mathrm{~Hz}, 0.21 \mathrm{H}$, trans-), 6.84 (d, J = $12.0 \mathrm{~Hz}, 0.37 \mathrm{H}$, cis-), 6.74-6.71 (m, 0.56H, trans-), 6.69-6.65 (m, 2.53 H, cis-), 3.48 ($\mathrm{m}, \mathrm{J}=14.2,7.1 \mathrm{~Hz}, 4 \mathrm{H}$), 1.32-1.23 (m, 6H). ${ }^{13} \mathrm{C}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=152.03$ (trans-), 151.91 (cis-), 142.68 (trans-), 142.57 (cis-), 136.00 (trans-), 135.96 (cis-), 134.41, 133.82, 132.41, 128.92 (trans-), 128.86 (cis-), 128.69, 128.45, 126.96, 119.58, 118.76, 117.98, 112.97 (trans-), 112.82 (cis-), 111.64 (trans-), 111.43 (cis-), 45.14 (trans-), 45.06 (cis-), 12.75 (trans-), 12.71 (cis-). Single crystals of compounds cis-6 and trans-6 suitable for X-ray diffraction measurement were obtained separately by slow evaporation of a mixture of CHCl_{3} and $\mathrm{MeOH}(\mathrm{v}: \mathrm{v}=1: 1)$ in air for one week. MS (positive mode, m / z) calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 421.1,
found: 421.0.

Fig. S13 ${ }^{1} \mathrm{H}$ NMR spectrum of cis-/trans- 6 in CDCl_{3}.

Fig. S14 ${ }^{13} \mathrm{C}$ NMR spectrum of cis-/trans- 6 in CDCl_{3}.

Fig. S15 ESI-MS spectrum of the compound cis-/trans-6.

2.6. Preparation of trans-7

The synthetic procedure for trans-7 was analogous to that described for cis-4 except that compound $\mathbf{2 c}(0.89 \mathrm{~g}, 2.00 \mathrm{mmol})$ was used as the starting material to replace compound 2a. Yield: $0.30 \mathrm{~g}(70 \%)$. Mp: $122-124{ }^{\circ} \mathrm{C}$. UV-Vis in $\mathrm{CHCl}_{3}, \lambda_{\text {max }}(\mathrm{nm}) / \varepsilon$ $\left(\times 10^{4} \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}\right)=567 / 5.90 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=7.87(\mathrm{~d}, \mathrm{~J}=9.1$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.41(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=12.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ ($\mathrm{d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.51(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=163.62,152.02,142.64,139.17,134.85,134.18$, 133.16, 132.50, 129.65, 128.48, 126.91, 118.87, 117.00, 112.81, 111.62, 45.12, 21.42, 12.75. Single crystals of trans-7 suitable for X-ray diffraction measurement were obtained by slow evaporation of a mixture of CHCl_{3} and $\mathrm{MeOH}(\mathrm{v}: \mathrm{v}=1: 1$) in air for one week. MS (positive mode, m / z) calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 435.1, found: 435.0.

Fig. S16 ${ }^{1} \mathrm{H}$ NMR spectrum of trans-7 in CDCl_{3}.

Fig. $\mathbf{S 1 7}{ }^{13} \mathrm{C}$ NMR spectrum of trans-7 in CDCl_{3}.

Line\#:1 R.Time:----(Scan\#:----)
MassPeaks:36
RawMode:Averaged 0.367-0.433(23-27) BasePeak:435(4553)
BG Mode:Averaged 0.033-0.800(3-49) Segment 1 - Event 1

Fig. S18 ESI-MS spectrum of the compound trans-7.

2.7. Preparation of trans-8

The synthetic procedure for trans-8 was analogous to that described for cis-3 except that 2-amino-4-chloro-5-formylthiophene-3-carbonitrile ($0.19 \mathrm{~g}, 1.00 \mathrm{mmol}$) was used as the starting material to replace compound 1a. Yield: 0.16 g (52%). Mp: >300 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, \mathrm{ppm}\right): \delta=8.10-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.33(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H}), 6.53(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (400 MHz , THF- $\left.d_{8}, \mathrm{ppm}\right): \delta=162.81,146.66,143.47,126.47,124.11,123.76,123.02,122.98$, 121.93, 116.93, 112.48, 87.02. MS (negative mode, m / z) calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}$ H]: 304.0, found: 304.0.

Fig. S19 ${ }^{1} \mathrm{H}$ NMR spectrum of trans-8 in THF- d_{8}.

Fig. S20 ${ }^{13} \mathrm{C}$ NMR spectrum of trans-8 in THF- d_{8}.

Fig. S21 ESI-MS spectrum of the trans-8.

3. X-ray data collection and solution

Single-crystal samples of cis-4, trans-4, cis-6, trans-6 and trans-7 were covered with glue and were mounted on glass fibers for data collection on a Bruker SMART 1 K CCD area detector at 291(2) K, using graphite mono-chromated Mo K α radiation (λ $=0.71073 \AA$ A). The collected data were reduced by using the program SAINT ${ }^{\text {S2 }}$ and empirical absorption corrections were done by SADABS ${ }^{53}$ program. The crystal systems were determined by Laue symmetry and the space groups were assigned on the basis of systematic absences by using XPREP. The structures were solved by direct method and refined by least-squares method. All the non-hydrogen atoms were refined on F^{2} by full-matrix least-squares procedure using anisotropic displacement parameters. All the other hydrogen atoms were inserted in the calculated positions assigned fixed isotropic thermal parameters at 1.2 times of the equivalent isotropic U of the atoms to which they are attached (1.5 times for the methyl groups) and allowed to ride on their respective parent atoms. The carbon atoms (C22, C23 in compound cis-6 and C21, C22 in trans-7) were refined as the disordered mode with the site occupancy factors as 0.62(2):0.38(2) and $0.70(1): 0.30(1)$, respectively. All calculations were carried out on a PC with the

SHELXTL ${ }^{\text {S4 }}$ PC program package and molecular graphics were drawn by using XSHELL, Diamond and ChemBioDraw software. Details of the data collection and refinement results for cis-4, trans-4, cis-6, trans-6 and trans-7 are listed in Table S1. Selected bond distances and bond angles are given in Table S2.

Table S1 Crystal data and structural refinements for cis-4, trans-4, cis-6, trans-6 and trans-7.

Compound	cis-4	trans-4	cis-6	trans-6	trans-7
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{2} \mathrm{OClN}_{5} \mathrm{O}_{2} \mathrm{~S}$	$\mathrm{C}_{23} \mathrm{H}_{2} \mathrm{OClN}_{5} \mathrm{O}_{2} \mathrm{~S}$	$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{~S}$	$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{~S}$	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{~S}$
Formula weight	465.95	465.95	420.95	420.95	434.97
Temperature / K	291(2)	291(2)	291(2)	291(2)	291(2)
Wavelength / A	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal Size (mm)	$0.12 \times 0.12 \times 0.10$	$0.10 \times 0.10 \times 0.08$	$0.12 \times 0.12 \times 0.10$	$0.12 \times 0.10 \times 0.10$	$0.12 \times 0.10 \times 0.10$
Crystal system	monoclinic	monoclinic	triclinic	monoclinic	triclinic
Space group	$P 2_{1} / \mathrm{c}$	$P 2_{1} / n$	P $\overline{1}$	$P 2_{1} / \mathrm{c}$	P $\overline{1}$
a / \AA	5.093(4)	10.936(1)	12.225(4)	14.773(2)	7.902(2)
b / \AA	18.689(15)	10.859(1)	12.945(4)	7.626(1)	9.496(2)
c / \AA	24.05(2)	38.833(4)	15.227(5)	19.442(2)	15.018(3)
$\alpha /{ }^{\circ}$	90	90	114.539(5)	90	78.986(4)
6/ ${ }^{\circ}$	93.684(10)	91.052(2)	95.090(6)	95.253(2)	87.800(5)
$v /{ }^{\circ}$	90	90	93.604(5)	90	85.372(5)
V / \AA^{3}	2284(3)	4610.9(8)	2170.2(11)	2181.1(4)	1102.3(3)
$Z / D_{\text {calcd }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	4 / 1.355	8/1.342	4 / 1.288	4 / 1.282	2 / 1.311
$F(000)$	968	1936	880	880	456
μ / mm^{-1}	0.289	0.286	0.289	0.287	0.286
$h_{\text {min }} / h_{\text {max }}$	-6/4	-12 / 13	-11/14	-17/17	-10 / 10
$k_{\text {min }} / k_{\text {max }}$	-22/22	-12 / 12	-15/15	-7/9	-12/11
$I_{\text {min }} / I_{\text {max }}$	-28/28	-46/46	-18/18	-23/23	-19/19
Data / parameters	3995 / 291	8049 / 581	7575 / 546	3811 / 264	5033 / 294
Final R indices	$\begin{aligned} & R_{1}=0.0988 \\ & w R_{2}=0.2219 \end{aligned}$	$\begin{aligned} & R_{1}=0.0892 \\ & w R_{2}=0.2135 \end{aligned}$	$\begin{aligned} & R_{1}=0.0825 \\ & w R_{2}=0.2026 \end{aligned}$	$\begin{aligned} & R_{1}=0.0662 \\ & w R_{2}=0.1768 \end{aligned}$	$\begin{aligned} & R_{1}=0.0525 \\ & w R_{2}=0.1076 \end{aligned}$
R indices	$\begin{aligned} & R_{1}=0.2352 \\ & w R_{2}=0.2838 \end{aligned}$	$\begin{aligned} & R_{1}=0.1599 \\ & w R_{2}=0.2444 \end{aligned}$	$\begin{aligned} & R_{1}=0.1638 \\ & w R_{2}=0.2456 \end{aligned}$	$\begin{aligned} & R_{1}=0.0894 \\ & w R_{2}=0.1920 \end{aligned}$	$\begin{aligned} & R_{1}=0.0998 \\ & w R_{2}=0.1248 \end{aligned}$
S	0.907	1.010	0.945	1.100	1.014
Max. / min. $\Delta \rho / \mathrm{e} \cdot \AA^{-3}$	0.421 / -0.487	0.861 / -0.773	$0.534 /-0.415$	1.158 / -0.683	$0.340 /-0.312$

$R_{1}=\Sigma| | F \mathrm{o}|-|F \mathrm{C} \| / \Sigma| F \mathrm{Fo}|, w R_{2}=\left[\Sigma\left[w\left(\mathrm{Fo}^{2}-F^{2}\right)^{2}\right] / \Sigma w\left(\mathrm{Fo}^{2}\right)^{2}\right]^{1 / 2}$

Table S2 Selected bond distances $\left({ }^{\circ}\right)$ and angles $\left({ }^{\circ}\right)$ for cis-4, trans-4, cis-6, trans-6 and trans-7.

cis-4		trans-4		cis-6	
Bond distances					
Cl1-C2	1.726(7)	Cl1-C3	1.717(6)	S1-C1	1.738(5)
S1-C1	1.736(6)	$\mathrm{Cl} 2-\mathrm{C} 26$	1.709(6)	S1-C4	1.744(6)
S1-C4	1.733(6)	S1-C4	1.745(6)	S2-C24	1.734(5)
O1-N5	1.263(18)	S1-C1	1.725(6)	S2-C27	1.719(5)
O2-N5	1.17(2)	S2-C27	1.736(6)	N1-N2	1.284(6)
N1-N2	1.292(8)	S2-C24	1.733(6)	N1-C4	1.362(6)
N1-C4	1.351(8)	O1-N5	1.227(9)	N2-C14	1.389(6)
N2-C14	1.363(8)	O2-N5	1.211(9)	N3-C13	1.142(9)
N3-C13	1.144(12)	O3-N10	1.082(15)	N4-C22	1.479(13)
N4-C17	1.347(10)	O4-N10	1.265(15)	N4-C17	1.364(7)
N4-C20	1.468(12)	N1-C1	1.370(7)	N4-C20	1.471(8)
N4-C22	1.474(11)	N1-N2	1.289(6)	N4-C22'	1.585(19)
N5-C10	1.484(19)	N2-C14	1.380(7)	N5-C27	1.382(6)
		N3-C13	1.156(10)	N5-N6	1.292(6)
		N4-C17	1.377(11)	N6-C37	1.388(6)
		N4-C20	1.524(14)	N7-C36	1.145(10)
		N4-C22	1.539(15)	N8-C43	1.463(7)
		N5-C10	1.461(9)	N8-C45	1.446(8)
		N6-C24	1.374(7)	N8-C40	1.367(7)
		N6-N7	1.287(6)		
		N7-C37	1.391(7)		
		N8-C36	1.143(9)		
		N9-C40	1.364(9)		
		N9-C43	1.504(11)		
		N9-C45	1.555(10)		

		N10-C33	$1.448(16)$		
Bond angles				C1-S1-C4	$92.0(3)$
C1-S1-C4	$92.6(3)$	C1-S1-C4	$91.7(3)$	C24-S2-C27	$91.7(2)$
N2-N1-C4	$113.1(5)$	C24-S2-C27	$91.5(3)$	N2-N1-C4	$114.9(4)$
N1-N2-C14	$116.1(6)$	N2-N1-C1	$112.5(4)$	N1-N2-C14	$114.7(4)$
C17-N4-C20	$122.9(7)$	N1-N2-C14	$115.0(5)$	C17-N4-C20	$121.7(5)$
C17-N4-C22	$120.5(7)$	C17-N4-C22	$119.4(8)$	N4	N4-C20-C21

		N3-C13-C2	178.3(7)	N4-C22'-C23'	105.0(16)
		N2-C14-C15	125.2(5)		
		N2-C14-C19	116.4(5)		
		N4-C17-C16	120.9(7)		
		N4-C17-C18	121.5(7)		
		N4-C20-C21	101.9(9)		
		N4-C22-C23	107.1(10)		
trans-6		trans-7			
Bond distances					
Cl1-C2	1.715(4)	Cl1-C2	1.726(2)		
S1-C1	1.741(3)	S1-C1	1.744(3)		
S1-C4	1.731(3)	S1-C4	1.746 (3)		
N1-N2	1.285(4)	N1-C14	1.142(4)		
N1-C4	$1.376(5)$	N2-N3	1.291(3)		
N2-C14	1.382(4)	N2-C4	$1.379(3)$		
N3-C13	1.127(7)	N3-C15	1.391(3)		
N4-C17	1.357(6)	N4-C18	1.363(3)		
N4-C20	1.566(7)	N4-C21	1.491 (5)		
N4-C22	1.472(5)	N4-C23	$1.462(4)$		
		N4-C21'	1.609(12)		
Bond angles					
C1-S1-C4	91.7(2)	C1-S1-C4	91.6(1)		
N2-N1-C4	113.0(3)	N3-N2-C4	113.0(2)		
N1-N2-C14	115.5(3)	N2-N3-C15	115.2(2)		
C17-N4-C20	120.2(4)	C18-N4-C21	121.7(3)		
C17-N4-C22	121.9(4)	C18-N4-C23	121.7(2)		
C20-N4-C22	117.0(4)	C18-N4-C21'	115.4(5)		
S1-C1-C2	110.3(2)	C21-N4-C23	116.0(3)		
S1-C1-C5	122.4(3)	C21'-N4-C23	114.8(4)		

Cl1-C2-C1	$123.7(3)$	S1-C1-C2	$110.4(2)$
Cl1-C2-C3	$121.8(3)$	S1-C1-C5	$122.8(2)$
S1-C4-N1	$124.6(3)$	Cl1-C2-C1	$123.7(2)$
S1-C4-C3	$111.5(3)$	Cl1-C2-C3	$121.8(2)$
N1-C4-C3	$123.8(3)$	S1-C4-N2	$124.3(2)$
N3-C13-C3	$179.4(5)$	S1-C4-C3	$111.6(2)$
N2-C14-C15	$125.4(3)$	N2-C4-C3	$124.0(2)$
N2-C14-C19	$116.7(3)$	N4-C18-C17	$122.0(2)$
N4-C17-C16	$122.0(4)$	N4-C18-C19	$120.7(3)$
N4-C17-C18	$121.4(4)$	N4-C21-C22	$108.5(3)$
N4-C20-C21	$100.4(5)$	N4-C21'-C22'	$100.8(8)$
N4-C22-C23	$112.0(4)$	N4-C23-C24	$113.9(2)$

Fig. S22 ORTEP drawing of trans-4, trans-6 and trans-7 with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and the hydrogen atoms are shown as small spheres of arbitrary radii. The dihedral angles between adjacent aromatic rings are given (${ }^{\circ}$).

4. Calculation Details

Theoretical calculations were performed using the Gaussian 09 (revision D01) suite of programs. ${ }^{55}$ Both the cis conforms for alkenes were fully optimized by using the M062X method including the Grimme's dispersion correction in its version (DFTD3) ${ }^{56}$ and the $6-31+G^{* *}$ basis. Analyses of the noncovalent interactions and electron density difference were carried out by analyzing the wave functions for the optimized structures using the multiwfn software package. ${ }^{\text {S7 }}$

(a)

Fig. S23 Plots of reduced density gradient (RDG) versus $\operatorname{sign}\left(\lambda_{2}\right) \rho$, and electron density color-filled maps for cis-4 (a) and cis-6 (b). The data was obtained by evaluating M062X /6-31+G** density and gradient values on cuboid grids.

Table S3Electron densities (ρ) and Laplacians of electron density ($\nabla^{2} \rho$) of BCP in cis-4 and cis-6

	$c i s-4(S \cdots \pi$ interaction $)$	$c i s-6(S \cdots \pi$ interaction $)$
ρ (a.u.)	$0.1043 \mathrm{E}-01$	$0.1033 \mathrm{E}-01$
$\nabla^{2} \rho$ (a.u.)	$0.3493 \mathrm{E}-01$	$0.3443 \mathrm{E}-01$

5. UV-Vis spectra of compounds 4 and 6

Fig. S24 Normalized UV-Vis spectra of the photoisomerization of cis-/trans-6 (black dotted line) in CHCl_{3} at $25^{\circ} \mathrm{C}$, and trans-6 (red line) obtained upon irradiation of the sample at 570 nm (59 \% cis-isomer; irradiation time 1 h). The reverse isomerization of trans-6 back to cis-/trans-6 (blue dotted line) triggered by heating under $60^{\circ} \mathrm{C}$ for 1 h.

Fig. $\mathbf{S 2 5}$ The reverse isomerization of trans-4 (red line) back to cis-4 (blue dotted line) triggered by heating under $60^{\circ} \mathrm{C}$ for 1 h .

Note

We first prepared a solution with a concentration of $8 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$ for cis -4 and cis-/trans-6, respectively, for irradiation with a 570 nm laser light at $25^{\circ} \mathrm{C}$. In the case of cis-4, the changes of the molecular structure were monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy every 20 minutes until the spectrum keeps unchangeable (about illumination for 80 min). Meanwhile, the corresponding solutions before and after complete irradiation were diluted to $8 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$ and tested using UV-Vis spectroscopy method. Thus, the UV-Vis absorption spectra of cis and trans isomers for compound $\mathbf{4}$ were obtained. Then, the diluted solution of trans-4 was heated for about 1 h to obtain the cis isomer, in which the UV-Vis spectrum coincided with that of original cis isomer. As for cis-/trans-6, similar procedures were performed and the complete isomerization of cis-trans took about 1 h via irradiation and heating, respectively.

Fig. S26 Normalized UV-Vis spectra of cis-4 in CHCl_{3} at $25^{\circ} \mathrm{C}$ (d: days).

6. ${ }^{1} \mathrm{H}$ NMR spectra of compounds 4 and 6

Fig. S27 ${ }^{1} \mathrm{H}$ NMR spectra of cis-4 (red line), photostationary states (cis \rightarrow trans) and trans-4 (purple line) recorded in CDCl_{3} (up: full spectra; below: partial enlarged detail).

Fig. S28 ${ }^{1} \mathrm{H}$ NMR spectra of cis/trans-6 (red line) and trans-6 (blue line) recorded in CDCl_{3}.

7. Scheme

i): $\mathrm{NaNO}_{2} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{3} \mathrm{PO}_{4}$; ii): PPh_{3}, toluene, $90^{\circ} \mathrm{C}$

Scheme S1 Synthesis of compounds $\mathbf{1 a} \mathbf{- 1 b}, \mathbf{2 a - 2 b}$ and trans-8.

8. References:

S1 (a) J. Geng, Y. Dai, H. F. Qian, N. Wang and W. Huang, Dyes Pigm., 2015, 117, 133-140; (b) M. C. Cui, Z. J. Li, R. K. Tang, H. M. Jia and B. L. Liu, Eur. J. Med. Chem., 2011, 46, 2908-2916.

S2 Siemens. SAINT v4 software reference manual. Madison, Wisconsin, USA: Siemens Analytical XeRay Systems, Inc.; 2000.

S3 Sheldrick GM. SADABS, program for empirical absorption correction of area dectector data. Germany: Univ. of Gottingen; 2000.

S4 Siemens. SHELXTL, Version 6.10 reference manual. Madison, Wisconsin, USA: Siemens Analytical X-Ray Systems, Inc.; 2000.

S5 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.

S7 T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.

