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S1 Computational Methods

S1.1 System Preparation

An x-ray crystal structure of p38α MAP kinase in complex with an inhibitor (PDB ID:

1OUY) structurally similar to ligand 17 was selected as a starting point. This ligand was

then truncated and served as the common core substructure used to generate all other

compounds via the molecule growing program BOMB.1 Crystallographic water molecules

were removed and the protein and ligand z-matrices were prepared using the chop and pepz

utilities of MCPRO 3.2.2 Any residues within 20 Å of the ligand were retained and a fully

flexible region was defined within this region with a radius of 10 Å. It was confirmed that

an increase in the radius of the flexible region to 12.5 Å changed the computed relative

binding free energy by less than 0.2 kcal/mol for the transformation of 2 to 1 (from +0.36 to

+0.20 kcal/mol). The net charge of the system was set to zero via neutralization of distant,

titratable residues, and non-bonded energy terms used a 10 Å cutoff. Ligand and key host

degrees of freedom were optimized using BOMB. Each protein-ligand complex was solvated

in a water cap with radius 25 Å using the JAWS hydration protocol described in detail

elsewhere.3

S1.2 QUBE Force Field Parametrization

Ligand force fields were parametrized using the QUBEKit software package.4 Quantum chem-

istry geometry optimizations and frequency calculations were performed in Gaussian095 us-

ing the ωB97XD functional and 6-311++G(d,p) basis set. Equilibrium bond lengths and

angles were extracted from the QM optimized geometry, and the bond-stretching and angle-

bending force constants were derived from the QM Hessian matrix via the modified Seminario

method with a vibrational scaling factor of 0.957.6 Constrained one-dimensional torsional

optimizations were also performed using Gaussian09, with the same level of theory and basis

set, in 15◦ increments from 0◦ to 360◦. Torsion parameter optimizations of dihedrals φ1 and
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φ2 were performed for each ligand separately using QUBEKit with no Boltzmann weight-

ing or regularization.4 OPLS atom types were retained during torsion fitting to reduce the

parameter search space, while all remaining small molecule torsion parameters were taken

from the OPLS force field. Non-bonded parameter assignment was performed for both small

molecules and the protein (2961 atoms) using the ONETEP linear-scaling density functional

theory code and DDEC AIM analysis (see below). All bonded parameters of the protein were

assigned from a transferable library that has been specifically designed to be compatible with

the QUBE FF.7 Water molecules were described using the TIP4P water model.

S1.3 ONETEP Calculations

All ground state electron densities used to derive the non-bonded parameters of both the

18 ligands and the p38 kinase protein (2961 atoms) were computed using the linear-scaling

density functional theory code, ONETEP.8 ONETEP uses a basis set of spatially-truncated

nonorthogonal generalized Wannier functions (NGWFs) localized on each atom. Four NG-

WFs, with radii of 10 Bohr, were used for all atoms with the exception of hydrogen, which

used one. NGWFs were expanded in a periodic cardinal sine (psinc) basis, with a grid

size (0.45ao), corresponding to a plane wave cutoff energy of 1020 eV. The PBE exchange-

correlation functional was used with OPIUM norm-conserving pseudopotentials. The cal-

culation was carried out in an implicit solvent using a dielectric of 4 to model induction

effects in the ligands, and 10 in the protein. For several test cases, ligand charges were also

computed using a dielectric of 10, but the RMS/maximum differences between the charge

sets are just 0.01/0.03 e (see ESI data). The DDEC module implemented in ONETEP was

used to partition the electron density and assign atom-centered point charges and atomic

volumes. No off-center charges were used in this study.4 Electron density partitioning was

performed using an IH to ISA ratio of 0.02.9 Lennard-Jones parameters were calculated using

the Tkatchenko-Scheffler relations,10 and protocols described previously.9
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S1.4 Free Energy Calculations

Free energy calculations were performed in MCPRO version 3.2 using the single topology

approach for both the bound (protein-ligand complex in water) and unbound (ligand in

water) simulations as part of a standard thermodynamic cycle. Ligands were transformed

over the course of 11 equally spaced λ windows. Simple overlap sampling was employed,

with each window comprising 10 million (M) (20M) configurations of equilibration and 30 M

(40 M) configurations of averaging for the bound (unbound) simulations. All computed free

energy changes (including those presented from previous studies) were computed by aligning

the mean energies of the experimental and computed distributions. Replica exchange with

solute tempering (REST) was used during each λ window to effectively rescale the non-

bonded and dihedral parameters of the ligand, thereby reducing potential energy barriers

in “high temperature” replicas of the system.11,12 Four replicas were run in parallel with

REST scaling factors exponentially distributed in the range from 25◦C to 250◦C (chosen to

allow reasonable replica exchange). Exchange attempts between pairs of neighboring replicas

were attempted every 10 000 MC steps, with acceptance criteria chosen to maintain detailed

balance,11 and the resulting free energy changes were computed from the room temperature

ensemble. The “flip” Monte Carlo (MC) dihedral move modification13 was also used to

encourage crossing between energetically separated poses 1 and 2, with random move sizes

that ranged from 60◦ to 180◦. Figure S1 shows the 2D distribution of φ1 and φ2 sampled

during MC simulations of compound 1, and confirms approximately equal populations of

poses 1 and 2. Protein conformal sampling employed new protocols, which generate more

efficient MC moves specifically targeted at the backbone and side-chains.14 These moves have

been shown to give good agreement with molecular dynamics simulations for the calculation

of protein conformational ensembles14 and protein-ligand binding.15
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Figure S1. Two-dimensional dihedral distribution observed during the protein-ligand com-
plex MC simulation of ligand 1.
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S2 Transition pathways

All FEP transitions were performed relative to ligand 1 via the following pathways.

2→ 1

3→ 1

4→ 9→ 10→ 7→ 1

5→ 1

6→ 3→ 1

7→ 1

8→ 1

9→ 10→ 7→ 1

10→ 7→ 1

11→ 8→ 1

12→ 18→ 1

13→ 3→ 1

14→ 18→ 1

15→ 2→ 1

16→ 17→ 18→ 1

17→ 18→ 1

18→ 1
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S3 Torsion fitting

Table S1. Root mean square deviation between QM and QUBE torsional energy profiles for
rotation of φ1 and φ2 for each of the 18 molecules.

RMSE (kcal/mol)
Compound φ1 φ2

1 0.038 0.107
2 0.061 0.063
3 0.057 0.061
4 0.132 0.230
5 0.046 0.259
6 0.073 0.192
7 0.284 0.188
8 0.372 0.287
9 0.147 0.141
10 0.116 0.158
11 0.215 0.363
12 0.407 0.453
13 0.381 0.140
14 0.341 0.053
15 0.475 0.303
16 0.161 0.144
17 0.103 0.438
18 0.112 0.539

Average 0.196 0.229
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S4 Correlation between QUBE and QM Energetics

By deriving the QUBE force field directly from QM, our goal is to provide accurate and

automated molecule-specific parameters that reproduce as closely as possible the full QM

potential energy surface. Figure S2 shows the correlation between QUBE and QM relative

energies of structures 3 and 10 extracted from Monte Carlo simulations. The correlation

between QUBE and QM energetics is similar to that previously reported,4 and significantly

QUBE does not predict any physically unreasonable structures (either bound to the protein

or in water) whilst retaining the fixed MM functional form that provides us with a practical

method for deployment in free energy predictions. Table S2 further reports correlations for

all 18 ligands studied here.
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Figure S2. Comparison between QUBE and QM single point energies of structures of 3 (top)
and 10 (bottom) extracted from bound and unbound (in water) MC simulations. The mean
energies of each distribution have been shifted to zero. Also shown are the correlation (r2)
and root mean square errors (rmse, kcal/mol) between the two distributions.
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Table S2. The correlation between the single point energies calculated using the QUBE FF
and QM on structures extracted from MC simulations in the bound (protein-ligand complex
in water) and unbound (ligand in water) states. Note that the correlation is relatively low
for 14 in the bound state, but this appears to be due to the limited variability of structures,
and hence energies, sampled.

correlation (r2) rmse (kcal/mol)
Compound Bound Unbound Bound Unbound

1 0.665 0.507 3.08 3.61
2 0.694 0.643 3.26 3.89
3 0.822 0.705 3.60 3.41
4 0.682 0.735 3.02 3.60
5 0.860 0.681 2.82 3.80
6 0.714 0.697 2.97 3.63
7 0.480 0.571 3.06 3.90
8 0.460 0.574 4.50 3.31
9 0.651 0.713 4.10 3.49
10 0.693 0.659 3.11 3.70
11 0.593 0.651 3.51 3.40
12 0.660 0.615 3.74 4.06
13 0.684 0.722 3.94 3.58
14 0.220 0.643 3.63 3.88
15 0.570 0.675 4.37 3.33
16 0.591 0.623 3.11 3.73
17 0.583 0.622 2.79 3.51
18 0.631 0.759 3.22 3.61

Average 0.625 0.655 3.44 3.64
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S5 Analysis of QUBE and OPLS Binding Free Ener-

gies

Figure S3 shows the correlation between the QUBE and OPLS predictions of the binding free

energies of the 17 inhibitors to p38α MAP kinase. Although both force fields have similar

errors relative to experiment, as demonstrated by several statistical measures (Table S3),

there are some quite large differences in individual predictions. For example, there are

differences between QUBE and OPLS in excess of 2 kcal/mol in the computed binding free

energies for compounds 2, 12 and 13. The latter two are perhaps not surprising given

the sampling and force field difficulties discussed in the main text. Compound 2 has a F

substituent at the R3 position with QUBE non-bonded parameters: q = −0.21 e, σ = 2.89 Å,

ε = 0.066 kcal/mol. The corresponding OPLS/CM1A parameters are: q = −0.08 e, σ =

2.90 Å, ε = 0.060 kcal/mol. The difference in the charge sets may be sufficient to explain the

difference in binding prediction for compound 2, but larger datasets involving fluorinated

compounds will be required to investigate further.
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Figure S3. Correlation between QUBE and OPLS predictions of the binding free energy for
the 17 inhibitors.
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Table S3. Comparison between force field methods and experiment. Mean unsigned error
(MUE, kcal/mol), root mean square error (RMSE, kcal/mol) and Spearman’s rank corre-
lation coefficient for each theoretical method are shown. OPLS data are taken from the
previous literature.16

Force Field MUE RMSE Spearman’s rho

OPLS 0.88 1.30 0.46
QUBE 0.98 1.14 0.40
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