Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Extremely Twisted and Bent Pyrene-Fused N-Heterocyclic Germylenes

Kelsie E. Krantz, ^a Sarah L. Weisflog, ^a Wenlong Yang, ^a Diane A. Dickie, ^a Nathan C. Frey, ^b Charles Edwin Webster, ^b* Robert J. Gilliard, Jr^a*

^aDepartment of Chemistry, University of Virginia, 409 McCormick Rd., PO Box 400319, Charlottesville, VA 22904

^bDepartment of Chemistry, Mississippi State University, Box 9573, Mississippi State, MS 39762

^{*}To whom correspondence should be addressed: rjg8s@virginia.edu, ewebster@chemistry.msstate.edu.

Supporting Information

Table of Contents

General Procedures	S2
Experimental Procedures	S2
NMR Spectra	S4
IR Spectra	S10
X-ray Crystallography Data	S13
Reaction of 2 with Mel	S16
Theoretical Calculations	S17
References	S40

General Procedures

All manipulations involving air- and moisture-sensitive compounds were carried out under inert atmosphere of purified argon using an MBRAUN LABmaster glovebox equipped with a -37 °C freezer, or standard Schlenk line techniques. All solvents were purified by distillation over sodium and benzophenone. Glassware was oven-dried at 190 °C overnight. The NMR spectra were recorded at room temperature on a Bruker Advance 600 MHz spectrometer. Proton and carbon chemical shifts are reported in ppm and are referenced using the residual proton and carbon signals of the deuterated solvent (¹H; C_6D_6 , δ 7.16; ¹³C; δ 128.1 ppm). Single crystal X-ray diffraction data was collected on a Bruker Kappa APEXII diffractometer. The structures were solved and refined using the Bruker SHELXTL Software Package within APEX3 and OLEX2. The UV-visible spectra were recorded on a Cary 60 UV-vis Spectrophotometer with a resolution of 0.5 nm. Sample solutions were prepared in toluene in a 1 cm square air-free quartz cuvette. The IR spectra were recorded in the solid-state on a Cary 630 FTIR Spectrometer with attached Diamond ATR accessory. Deuterated solvents were purchased from Cambridge Isotope Laboratories. Suitable elemental analysis could not be obtained due to the reactivity of the products. The 1,3-bis(2,6-diiso-propylphenyl)imidazolium chloride (IPr•HCI),¹ 4,5,9,10-tetrabromo-2,7-di-tert-butylpyrene,² and 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene (sIPr)³ were prepared according to the literature procedure.

Experimental Procedures

Synthesis of Compound 1. In a 50 mL flask, 1,3-bis(2,6-diiso-propylphenyl)imidazolium chloride (IPr•HCl, 0.471 g, 1.11 mmol), [Pd(OAc)₂] (0.124 g, 0.554 mmol), and NaOtBu (0.160 g, 1.66 mmol) were stirred in 20 mL of toluene at room temperature for 1 hr until a clear orange solution was observed. In a Schlenk tube 4,5,9,10-tetrabromo-2,7-ditert-butylpyrene (5.00 g, 7.91 mmol) and NaOtBu (3.65 g, 38.0 mmol) were dissolved in anhydrous toluene (100 mL). The previous solution was added to the Schlenk tube, and tert-butylamine (3.99 mL, 38.0 mmol) was added under positive argon pressure. The resulting dark orange solution was removed from the filtrate to leave a dark orange solid. The crude solid was washed with hexanes (3 x 20 mL) to yield the pure yellow product (4.41 g, 93% yield). Colorless block-shaped crystals suitable for X-ray diffraction studies were obtained from a concentrated hexane solution at - 37 °C. ¹H NMR (600 MHz, C₆D₆, 298 K) δ = 8.85 (s, 4H, CH_{pyr}), 4.23 (br. s, 4H, NH), 1.65 (s, 18H, C(CH₃)₃), 1.26 ppm (s, 36H, N(C(CH₃)₃). ¹³C{¹H} NMR (150.90 MHz, C₆D₆, 298 K) δ = 146.3, 136.9, 132.1, 120.8, 119.6, 56.0, 35.9, 32.3, 31.8 ppm.

Synthesis of Compound 2. Compound **1** (1.00 g, 1.67 mmol) was dissolved in freshly distilled Et₂O (10 mL) in a 100 mL Schlenk flask to yield a yellow solution. *n*-BuLi (2.5 M in hexanes, 2.84 mL, 7.02 mmol) was added dropwise under argon at -78 °C, and a color change to red was observed. The reaction was slowly warmed to room temperature and stirred for 22 hrs. The solvent was removed under reduced pressure, and the orange residue was redissolved in toluene (60 mL). GeCl₂•dioxane (0.774 g, 3.34 mmol) was added, and the reaction was stirred for 17 hrs. The mixture was filtered over celite to leave a dark orange filtrate. The solvent was removed from the filtrate under reduced pressure to leave a dark orange solid. The crude solid was washed with hexane (3 x 10 mL) to leave the pure orange compound **2** (0.517 g, 46% yield). Yellow rod-shaped crystals suitable for X-ray diffraction studies were obtained from a concentrated toluene solution at -37 °C. ¹H NMR (600 MHz, C₆D₆, 298 K) δ = 8.50 (s, 4H, CH_{pyr}), 1.85 (s, 36H, N(C(CH₃)₃)) 1.59 ppm (s, 18H, C(CH₃)₃). ¹³C{¹H} NMR (150.90 MHz, C₆D₆, 298 K) δ = 143.7, 136.8, 126.7, 117.2, 116.3, 59.3, 37.5, 36.4, 32.6 ppm. Anal. Calcd for C₄₀H₅₈Ge₂H₄: C, 64.91; H, 7.90; N, 7.57%. Found: C, 64.38; H, 8.14; N, 7.24%.

Synthesis of Compound 3. To a solution of compound **2** (0.200 g, 0.270 mmol) in toluene (25 mL), sIPr (0.0974 g, 0.540 mmol) was added. After addition, the reaction was stirred at room temperature for 3.5 hrs. The yellow precipitate was then collected through filtration and washed with hexane (3 x 5 mL), and the remaining solid was dried under reduced pressure to yield compound **3** (0.122 g, 41% yield). Yellow block-shaped crystals suitable for X-ray diffraction were obtained from a concentrated NMR sample in C₆D₆. ¹H NMR (600 MHz, C₆D₆, 298 K) δ = 8.57 (s, 4H, CH_{pyr}), 6.68 (br. s, 4H, CH(CH₃)₂), 1.99 (s, 36H, N(C(CH₃)₃)), 1.72 (s, 18H, C(CH₃)₃), 1.49 (s, 12H, CCH₃), 1.05 ppm (s, 24H, CH(CH₃)₂). ¹³C{¹H} NMR (150.90 MHz, C₆D₆, 298 K) δ = 188.4, 141.9, 120.1, 119.3, 111.8, 58.4, 48.4, 36.2, 35.8, 33.0, 21.4, 9.8 ppm.

NMR Spectra: ¹H and ¹³C NMR Spectra

Figure S1. ¹H NMR spectrum (600 MHz, C₆D₆, 298 K) of **1**.

Figure S2. ¹³C NMR spectrum (151 MHz, C₆D₆, 298 K) of 1.

Figure S3. 1 H NMR spectrum (600 MHz, C₆D₆, 298 K) of **2**.

Figure S4. ¹³C NMR spectrum (151 MHz, C₆D₆, 298 K) of **2**.

Figure S5. ¹H NMR spectrum (600 MHz, C₆D₆, 298 K) of **3**.

Figure S6. ¹³C NMR spectrum (151 MHz, C₆D₆, 298 K) of **3**.

Figure S7. IR spectrum of compound 1.

Figure S8. IR spectrum of compound 2.

Figure S9. IR spectrum of compound 3.

X-ray Crystallographic Data

Single crystals of 1, 2, or 3 were coated with Paratone oil and mounted on a MiTeGen MicroLoop. The X-ray intensity data were measured on a Bruker Kappa APEXII Duo diffractometer. Compound 1 was measured using an Incoatec Microfocus I μ S (Cu K α , λ = 1.54178 Å) and a multilayer mirror monochromator, and **2**, **3**, and **S4** used a fine-focus sealed tube (Mo K_a, λ = 0.71073 Å) and a graphite monochromator. The frames were integrated with the Bruker SAINT software package⁴ using a narrow-frame algorithm. Data were corrected for absorption effects using the Multi-Scan method (SADABS).⁴ The structures were solved and refined using the Bruker SHELXTL Software Package⁵ within APEX3⁴ and OLEX2.⁶ Non-hydrogen atoms were refined anisotropically. The N-H hydrogen atoms in 1 were located in the diffraction map and refined isotropically. All other hydrogen atoms were placed in geometrically calculated positions with U_{iso} = 1.2U_{equiv} of the parent atom (U_{iso} = 1.5U_{equiv} for methyl). For **1**, two of tert-butyl groups and one N-H group were disordered over two positions, and one tert-butyl group was disordered over four positions. The relative occupancies of each disordered site were freely refined, and constraints were used on the anisotropic displacement parameters of the four-fold disordered tert-butyl. The symmetry disordered toluene solvent molecule was modeled at 50% occupancy. For 2, two toluene solvent molecules that co-crystallized with the complex were well-behaved, but a third one was severely disordered and could not be successfully modeled with or without restraints. Thus, the structure factors were modified using the PLATON SQUEEZE⁷ technique, in order to produce a "solvate-free" structure factor set. PLATON reported a total electron density of 53 e⁻ and total solvent accessible volume of 315 Å.⁶ One tert-butyl group was found to be disordered over two positions. The relative occupancies were freely refined, and no constraints or restraints were used on the disordered atoms. For 3, one benzene solvent molecule was disordered over two positions. The relative occupancy of the two positions was freely refined, and no constraints or restraints were needed on the disordered atoms. For the S4, the relative occupancy of each pair of disordered atoms was freely refined, with constraints on the anisotropic displacement parameters of all disordered atoms, and restraints on the bond lengths of minor tert-butyl components. Several molecules of severely disordered THF were present in the crystal but they could not be adequately modeled with or without restraints. Thus, the structure factors were modified using the PLATON SQUEEZE⁷ technique, in order to produce a "solvate-free" structure factor set. PLATON reported a total electron density of 603 e⁻ and total solvent accessible volume of 1989 ų.

Figure S10. Crystal Structure of **1**. a) front view with atom labels, and b) side view displaying no twist angles. Thermal ellipsoids shown at 50% probability and H atoms were omitted for clarity. Twist angles (°): C2-C1-C2'-C1': 0; N2-N1-N2'-N1': 0.

	S4
Chemical formula C ₈₇ H ₁₃₂ N ₈ C ₅₄ H ₇₄ Ge ₂ N ₄ C ₈₆ H ₁₂₂ Ge ₂ N ₈	$C_{42.74}H_{66.23}Ge_2I_{1.26}N_4$
FW (g/mol) 1290.00 924.35 1413.09	940.89
Temperature (K) 100(2) 100(2) 100(2)	100(2)
Wavelength (Å) 1.54178 0.71073 0.71073	0.71073
Crystal size (mm) 0.131 x 0.132 x 0.074 x 0.102 x 0.161 x 0.167 x	0.294 x 0.314 x
0.148 0.228 0.214	0.438
Crystal habit colorless block yellow rod yellow block	yellow block
Crystal system triclinic triclinic monoclinic	orthorhombic
Space group P -1 P -1 C 2/c	Pnma
a (Å) 11.1927(4) 11.7824(12) 16.5571(11)	19.7850(18)
b (Å) 13.6662(6) 13.8010(13) 17.5990(13)	17.7220(17)
c (Å) 13.8032(5) 16.8291(16) 27.336(2)	17.0451(16)
α (°) 108.458(2) 80.933(3) 90	90
β(°) 94.156(3) 77.324(3) 99.608(2)	90
γ(°) 96.504(2) 89.214(3) 90	90
Volume (Å ³) 1976.66(14) 2635.9(4) 7853.7(10)	5976.5(10)
Z 1 2 4	4
Calcd. Density 1.084 1.165 1.195	1.046
(g/cm ³)	
μ (mm ⁻¹) 0.470 1.176 0.814	
Theta range 3.40 to 68.34 1.26 to 25.71 1.70 to 28.32	1.58 to 25.40
$-12 \le h \le 13$ $-12 \le h \le 14$ $-22 \le h \le 21$	-23 ≤ h ≤ 23
Index ranges $-16 \le k \le 16$ $-16 \le k \le 16$ $-23 \le k \le 23$	-20 ≤ k ≤ 21
-16≤ ≤16 -20≤ ≤20 -34≤ ≤36	-20 ≤ l ≤ 20
Reflections 28562 42614 47450	47710
collected	
Independent /244 [R _{int} = 10041 [R _{int} = 9759 [R _{int} =	$56/7 [R_{int} = 0.0517]$
reflections 0.0530] 0.0828] 0.0578]	
Data / restraints / 7244 / 1 / 589 10041 / 0 / 592 9759 / 0 / 477	5677 / 6 / 2252
parameters	
Goodness-of-fit 1.043 1.019 1.008	1.052
R1 >2σ(l) 0.0463 0.0468 0.0365	0 1012
wR2 (all data) 0.1261 0.1143 0.0804	0.2220
CCDC number 1946973 1946974 1946975	1962780

Table S1. Crystal data for compounds 1-3 and S4.

Reaction of 2 with Methyl Iodide

To address a reviewer comment regarding whether or not the twisting of compound **2** was due to a steric or electronic effect, we reacted **2** with MeI to obtain a compound containing two Ge(IV) centers. After heating a mixture of **2** and MeI to 50 °C in THF for 16 hrs the solvent was removed. Proton NMR of the solid indicated a complex mixture containing several products. Single crystals from six different batches were grown from a concentrated THF solution at -37 °C. In each case the structure distinctly revealed Ge(IV) centers with different ratios of Me and I (Figure S11). In all cases the structures contain a bent pyrene core and therefore we attribute the extremely twisted structure of **2** to be due to the steric interaction of the *N*-(*tert*-butyI) groups and the pyrene-H.

Figure S11. Crystal Structure of **S4**. a) Front view with atom labels, and b) side view displaying bend angle. Thermal ellipsoids shown at 50% probability and H atoms were omitted for clarity. The structure is a mixture of methyl iodide to dimethyl where the occupancy of the I atom is 60%, and the remaining 40% corresponds to Me. Bend angle (°): 134. The bend angle refers to the angle between the torsion planes containing the C7-C8-C7', and C9-C10-C9' atoms.

Theoretical Calculations

The starting geometries of compounds 2 and 3 were extracted from the X-ray crystal structures. Hydrogen positions were optimized using the Universal Force Field (UFF) freezing the location of all other atoms. The geometry of structure of 1 was generated from the molecular geometry of compound 2 from the X-ray crystal structure (the valency of the four amine nitrogens were satisfied with hydrogen atoms) and subsequently optimizing the structure at the B3LYP/BS1 level of theory. The DFT-optimized geometry of compound 2 (structure 2^a, the lowest energy conformer) compares quite favorably with molecular geometry from the X-ray crystal structure. All subsequent electronic structure theory computations were carried out as single-point computations on these geometries. All computations were carried out using Gaussian 16 Revision B.01.⁸ The basis sets used were BS1 (BS1 = 6-31G(d') basis set⁹⁻¹¹ for C, H, and N; LANL2DZ(d,p) with LANL2DZ ECP for Ge)^{12,13} and BS2 (BS2 = $6-311+G^{**}$ basis sets^{14,15} for C, H, and N; 6-311G** basis set¹⁶ for Ge). Nucleus-Independent Chemical Shift (NICS) values¹⁷ were computed for each aromatic ring of the compounds by computing gas phase magnetic shielding tensors of ghost atoms placed at the centroid of each ring [NICS(0)] using the Gauge Independent Atomic Orbital (GIAO)¹⁸⁻²¹ method at the B3LYP/BS2 level of theory.^{22,23} To simulate the absorption spectra, the first twenty vertical transitions were computed with B3LYP/BS1 using time dependent density functional theory (TD-DFT).²⁴ Simulated absorption spectra were obtained using an in-house Fortran program by convoluting the computed excitation energies and oscillator strengths with a Gaussian line-shape and a broadening of 20 nm. Orbital pictures were generated using Chemcraft with a contour value of 0.05. Structural comparisons and overlay figures were generated with JIMP2.²⁵⁻²⁷

Frontier Molecular Orbitals

Figure S12. Selected frontier molecular orbitals for the DFT-optimized geometry of compound **1** and their energies in Hartrees (Ha).

Figure S13. Selected frontier molecular orbitals for the DFT-optimized geometry of compound **2**^a and their energies in Hartrees (Ha).

Figure S14. Selected frontier molecular orbitals for the DFT-optimized geometry of compound **3**^a and their energies in Hartrees (Ha).

Simulated UV-vis Spectra

Figure S15. Simulated UV-vis absorption spectra of **1-3**. The above spectrum shows simulated UV-vis for **1**, **2**^a, and **3**^a. The λ_{max} of **1** is very similar in wavelength to the shoulder peak of **3** (399 nm and 404 nm, respectively). The λ_{max} of **2**^a is more red shifted than the λ_{max} of both **1** and **3**^a.

Figure S16. Simulated UV-vis absorption spectrum from TDDFT excitations for compound 1.

Table S2. Electronic transitions for the calculated transitions of 1 and their orbital contributions.

λ (nm)	Character	% NTO
		Contribution
399	$\pi ightarrow \pi^{*}$	96%
350	$\pi ightarrow \pi^{*}$	90%
312	$\pi ightarrow \pi^{*}$	59%
	$\pi \to \pi^*$	37%

Figure S17. Natural Transition Orbitals (NTO) for the calculated transitions of 1.

Output for TDDFT excitations for compound 1

HOMO is 165

ES with f > 0.01

Excited Stat Excited Stat	te 1: Sing te 2: Sing te 3: Sing te 4: Sing te 5: Sing te 6: Sing te 6: Sing te 9: Sing te 10: Sing te 10: Sing te 12: Sing te 12: Sing te 15: Sing te 15: Sing te 16: Sing te 17: Sing te 18: Sing te 19: Sing	let-A 3.1058 let-A 3.4204 let-A 3.5437 let-A 3.9802 let-A 4.0915 let-A 4.0915 let-A 4.2730 let-A 4.4183 let-A 4.6835 glet-A 4.6921 glet-A 4.6921 glet-A 5.0209 glet-A 5.1493 glet-A 5.1907 glet-A 5.2168 glet-A 5.3219 glet-A 5.3564 glet-A 5.4745	ev 399.21 nm ev 362.49 nm ev 349.88 nm ev 311.50 nm ev 303.03 nm ev 290.16 nm ev 264.22 nm ev 264.24 ni ev 264.24 ni ev 240.78 ni ev 240.78 ni ev 238.86 ni ev 237.66 ni ev 232.97 ni ev 231.47 ni ev 226.47 ni	0.1968 0.0148 0.0677 0.1996 0.0361 0.1047 0.0163 0.0474 m 0.0373 m 0.0712 m 0.4341 m 0.1031 m 0.1031 m 0.1105 m 0.0400 m 0.2195 m 0.0196 m 0.2745	<pre><s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2>=(<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s**2))((<s*< th=""><th>D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 =0.000 =0.000 =0.000 =0.000 =0.000 =0.000 =0.000 =0.000 =0.000 =0.000 =0.000</th><th></th></s*<></s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2))((</s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></pre>	D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 =0.000 =0.000 =0.000 =0.000 =0.000 =0.000 =0.000 =0.000 =0.000 =0.000 =0.000	
Excited Sta 163 ->1 164 ->1 165 ->1	ite 1: .67 .66 .66	Singlet-A 0.10976 0.18117 0.66529	3.1058	eV 399	.21 nm	0.1968	<s**2>=0.000</s**2>
Excited Sta 163 ->1 164 ->1 165 ->1	nte 2: .66 .66 .67	Singlet-A -0.31092 0.26769 0.56513	3.4204	eV 362	.49 nm	0.0148	<s**2>=0.000</s**2>
Excited Sta 163 ->1 164 ->1 165 ->1 165 ->1	1te 3: 166 166 166 166	Singlet-A 0.21797 0.61442 -0.13819 -0.19637	3.5437	ev 349	.88 nm	0.0677	<s**2>=0.000</s**2>
Excited Sta 161 ->1 163 ->1 164 ->1 165 ->1 165 ->1	1te 4: 66 66 67 67 68	Singlet-A 0.12628 0.51186 0.24665 0.32611 -0.15490	3.9802	eV 311	.50 nm	0.1996	<s**2>=0.000</s**2>
Excited Sta 163 ->1 165 ->1	nte 5: .66 .68	Singlet-A 0.10538 0.67430	4.0915	eV 303	.03 nm	0.0361	<s**2>=0.000</s**2>
Excited Sta 160 ->1 162 ->1 163 ->1 163 ->1 164 ->1	lte 6: 166 166 166 168 167	Singlet-A 0.10046 -0.12630 -0.21391 0.11001 0.61440	4.2730	ev 290	.16 nm	0.1047	<s**2>=0.000</s**2>
Excited Sta 161 ->1 163 ->1 165 ->1	nte 8: 166 167 169	Singlet-A 0.63521 -0.13486 -0.17218	4.4183	ev 280	.62 nm	0.0163	<s**2>=0.000</s**2>
Excited Sta 160 ->1 163 ->1 165 ->1	nte 9: 166 167 169	Singlet-A 0.43921 -0.29525 -0.39108	4.6835	ev 264	.72 nm	0.0474	<s**2>=0.000</s**2>
Excited Sta 159 ->1 160 ->1	te 10: 66 66	Singlet-A 0.16359 0.42049	4.6921	eV 264	.24 nm	0.0373	<s**2>=0.000</s**2>

161 ->166 163 ->167 165 ->169		0.14810 -0.13675 0.47233				
Excited State 160 ->166 161 ->167 163 ->167 164 ->168	11:	Singlet-A -0.25110 -0.10452 -0.38864 0.48384	4.7965 eV	258.49 nm	0.0712	<s**2>=0.000</s**2>
Excited State 160 ->166 160 ->167 161 ->166 161 ->167 163 ->167 163 ->168 164 ->168	12:	Singlet-A 0.10523 -0.14007 0.12780 0.24031 0.34616 -0.17960 0.44059	5.0209 eV	246.94 nm	0.4341	<s**2>=0.000</s**2>
Excited State 158 ->166 159 ->167 160 ->167 161 ->167 162 ->167 163 ->167 163 ->168 164 ->169	14:	Singlet-A 0.16162 0.39917 -0.11303 -0.10661 0.15928 0.22047 -0.11130 -0.35844 -0.17832	5.1493 eV	240.78 nm	0.1031	<s**2>=0.000</s**2>
Excited State 159 ->166 161 ->167 162 ->167 163 ->168 164 ->168 164 ->169	15:	Singlet-A 0.26724 0.14115 0.24601 0.50698 0.10538 -0.15318	5.1907 eV	238.86 nm	0.1105	<s**2>=0.000</s**2>
Excited State 158 ->166 159 ->166 161 ->167 162 ->167 164 ->169	16:	Singlet-A 0.16744 0.16213 -0.39266 0.21079 0.44372	5.2168 eV	237.66 nm	0.0400	<s**2>=0.000</s**2>
Excited State 158 ->166 159 ->166 161 ->167 162 ->167 162 ->168 163 ->167 163 ->169 164 ->169 165 ->170 165 ->171	17:	Singlet-A 0.19924 -0.25110 0.33648 0.15553 -0.14050 -0.13769 -0.18458 0.27053 0.12876 -0.13889 -0.15128	5.3219 eV	232.97 nm	0.2195	<s**2>=0.000</s**2>
Excited State 158 ->166 164 ->170 165 ->170	18:	Singlet-A 0.12140 -0.14663 0.65388	5.3564 eV	231.47 nm	0.0196	<s**2>=0.000</s**2>
Excited State 158 ->166 159 ->167 160 ->167 161 ->167 163 ->167 163 ->169 164 ->169 165 ->171	19:	Singlet-A 0.33708 -0.18228 0.13266 -0.26499 0.10321 -0.15887 -0.30850 -0.22431	5.4745 eV	226.47 nm	0.2745	<s**2>=0.000</s**2>

Figure S18. Simulated UV-vis absorption spectrum from TDDFT excitations for compound 2^a.

Table S3. Electronic transitions for the calculated transitions of 2^a and their orbital contributions.

λ (nm)	Character	% NTO
		Contribution
464	$\pi \rightarrow \text{Ge } p + \pi^*$	98%
411	$\pi \rightarrow \pi^*$	92%
383	$\pi \rightarrow \text{Ge } p + \pi^*$	99%
309	$\pi ightarrow \pi^{*}$	52%
	$\pi \rightarrow \pi^{*}$	41%

Figure S19. Spectral overlay for **2**, comprised of **2**^a and **2**^b, in which **2** is the weighted average simulated spectrum of **2**^a and **2**^b (**2**^a and **2**^b are low energy structures of **2**).

Figure S20. Natural Transition Orbitals (NTO) for the calculated transitions of 2^a.

Output for TDDFT excitations for compound 2^a

HOMO is 167

ES with f > 0.01

Excited St Excited St Excited St Excited St Excited St Excited St Excited St Excited St Excited St	tate 1: tate 3: tate 6: tate 9: tate 12 tate 14 tate 18 tate 20	Single Single Single Single Single Single Single Single Single	et-A 2.6 et-A 3.0 et-A 3.2 et-A 3.8 let-A 4. let-A 4. let-A 4. let-A 4.	5724 e 202 e 364 e 0125 0813 4408 4737	eV 463. eV 410. eV 383. eV 325. eV 309 eV 303 eV 279 eV 277	94 nm 51 nm 10 nm 79 nm .00 nr .79 nr .19 nr .14 nr	0.24 0.16 0.20 n 0.1 n 0.0 n 0.0 n 0.0	463 <s 560 <s 088 <s 175 <s 3017 < 0506 < 0465 < 0118 <</s </s </s </s 	**2>=(**2>=(**2>=(\$**2>= \$**2>= \$**2>= \$**2>= \$\$*2>= \$\$*2>=	0.000 0.000 0.000 0.000 =0.000 =0.000 =0.000 =0.000 =0.000	
Excited 9 167 ·	State ->168	1:	Sing] 0.70098	et-A 3	2	.6724	eV	463.9	4 nm	0.2463	<s**2>=0.000</s**2>
Excited 9 165 - 167 -	State ->168 ->170	3:	Sing 0.15969 0.67799	et-A))	3	.0202	eV	410.5	1 nm	0.1660	<s**2>=0.000</s**2>
Excited S 166	State ->169	6:	Sing] 0.70267	et-A	3	.2364	eV	383.1	.0 nm	0.2088	<s**2>=0.000</s**2>
Excited 9 165 - 167 -	State ->168 ->170	9:	Sing] 0.66981 0.13868	et-A	3	.8057	eV	325.7	9 nm	0.1175	<s**2>=0.000</s**2>
Excited 9 165 - 167 - 167 -	State ->170 ->171 ->174	12:	Sing] 0.50746 -0.28504 -0.34784	et-A	4	.0125	eV	309.0	0 nm	0.3017	<s**2>=0.000</s**2>
Excited 9 165 - 166 - 166 - 167 - 167 -	State ->170 ->172 ->173 ->171 ->174	14:	Sing] 0.30890 0.13547 0.11972 -0.16560 0.56747	et-A	4	.0813	eV	303.7	9 nm	0.0506	<s**2>=0.000</s**2>
Excited 5 160 - 163 - 164 - 165 - 165 - 166 - 166 -	State ->168 ->168 ->169 ->168 ->171 ->172 ->173	18:	Sing -0.10640 0.15378 0.42484 -0.11940 -0.14770 -0.29580 0.36737	et-A	4	.4408	eV	279.1	9 nm	0.0465	<s**2>=0.000</s**2>
Excited 9 164	State ->168	20:	Sing] 0.67393	et-A	4	.4737	eV	277.1	.4 nm	0.0118	<s**2>=0.000</s**2>

Figure S21. Simulated UV-vis absorption spectrum from TDDFT excitations for compound 3^a.

Table S4. Electronic transitions for the calculated transitions of **3**^a and their orbital contributions.

λ (nm)	Character	% NTO
		Contribution
446	$\pi \rightarrow \pi^*$	96%
404	$\pi ightarrow \pi^{*}$	87%
335	$\pi ightarrow \pi^{*}$	81%

Figure S22. Natural Transition Orbitals (NTO) for the calculated transitions of 3^a.

Output for TDDFT excitations for compound 3^a

HOMO is 267

ES with f > 0.01

Excited S Excited S Excited S Excited S Excited S	tate 1: tate 3: tate 5: tate 12 tate 15	Singl Singl Singl : Sing : Sing	et-A 2.7802 et-A 3.0722 et-A 3.2074 let-A 3.704 let-A 3.880	2 eV 44 2 eV 40 4 eV 38 42 eV 3 00 eV 3	5.96 nm 3.57 nm 5.55 nm 34.71 nn 19.55 nn	0.12 0.07 0.02 n 0.3 n 0.3	253 <s** 775 <s** 232 <s** 8859 <s* 1472 <s*< th=""><th>²>=0 2>=0 2>=0 *2>= *2>= *2>=</th><th>.000 .000 .000 0.000 0.000</th><th></th></s*<></s* </s** </s** </s** 	² >=0 2>=0 2>=0 *2>= *2>= *2>=	.000 .000 .000 0.000 0.000	
Excited 267	State -> 268	1:	Singlet 0.68224	-A	2.7802	eV	445.96	nm	0.1253	<s**2>=0.000</s**2>
Excited 263 266 267 267	State -> 268 -> 269 -> 270 -> 271	3:	Singlet 0.19711 -0.12537 0.62347 -0.21467	-A	3.0722	eV	403.57	nm	0.0775	<s**2>=0.000</s**2>
Excited 263 266 267 267 267	State -> 268 -> 269 -> 268 -> 270 -> 271	5:	Singlet -0.14752 -0.25054 0.10456 0.19795 0.59571	-A	3.2074	eV	386.55	nm	0.0232	<s**2>=0.000</s**2>
Excited 263 267 267	State -> 268 -> 270 -> 271	12:	Singlet 0.63056 -0.11125 0.19929	-A	3.7042	eV	334.71	nm	0.3859	<s**2>=0.000</s**2>
Excited 262 264 264 265	State -> 268 -> 270 -> 271 -> 269	15:	Singlet -0.17992 0.37277 0.18752 0.51094	-A	3.8800	eV	319.55	nm	0.1472	<s**2>=0.000</s**2>

Nucleus Independent Chemical Shifts

NICS(0) values (B3LYP/BS2):

	1
Bq ²	-3.89
Βq ³	-10.66
Bq ⁴	-3.95
Bq⁵	-10.45

Figure S23. NICS(0) values for 1.

				tBu
	2	2 ª	2-H	
Bq ¹	-5.90	-5.85	-7.91	$\begin{array}{c c} & tBu \\ & & Bq^3 \\ & & N \\ & $
Bq ²	-3.66	-3.02	-4.91	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bq ³	-9.98	-10.11	-11.52	N H Ba^5 H H Ba^5 H
Bq ⁴	-2.86	-3.74	-4.92	tBu tBu
Bq⁵	-9.99	-10.11	-11.52	l tBu
Bq ⁶	-5.83	-5.84	-7.91	

(Expt) and computed distances of Ge-N bond given in Å.

Figure S24. NICS(0) values for **2**, **2**^a (low energy isomer of **2**), and **2-H** (where *tert*-butyl groups were replaced with hydrogens).

	3	3-H
Bq ¹	-0.56	-2.57
Bq ²	-3.87	-5.20
Bq ³	-10.26	-10.45
Bq ⁴	-3.87	-5.10
Bq⁵	-10.26	-10.27
Bq ⁶	-0.56	-2.44
Bq ⁷	-11.83	-12.51
Bq ⁸	-11.83	-12.49

Figure S25. NICS(0) values for 3 and 3-H (where *iso*-propyl and *tert*-butyl groups were replaced with hydrogens).

Benzene (B)

Bq¹ -8.06

Anthracene (A)

Bq ¹	-7.49
Bq ²	-11.30
Bq ³	-7.52

Naphthalene (N)

Bq ¹	-8.54
Bq ²	-8.54

Phenanthrene (Phen)

Bq ¹	-8.57
Bq ²	-5.69
Bq ³	-8.61

Pyrene (Pn)

Bq ¹	-11.40
Bq ²	-3.99
Bq ³	-11.38
Bq ⁴	-4.03

JUTPIX (JX)²⁸

Bq¹ –2.63 (Expt) and computed distances of Ge-N bond given in Å.

JUTPOD (JD)²⁸

Bq¹ —8.74 (Expt) and computed distances of Ge-N bond given in Å.

Pyrene-fused NHC (Pn_{NHC})

Bq ¹	-9.40	
Bq ²	-5.34	
Bq³	-10.65	
Bq⁴	-5.34	
Bq⁵	-10.65	
Bq ⁶	-9.40	

Figure S26. NICS(0) values for comparable aromatics and germylenes.

	1	2	2 ª	2-H	3	3-H	В	Α	Ν	Phen	Pn	JX	JD	Pn _{NHC}
Bq^{1}	n.a.	-5.90	-5.85	-7.91	-0.56	-2.57	-8.06	-7.49	-8.54	-8.57	-11.40	-2.63	-8.74	-9.40
Bq ²	-3.89	-3.66	-3.02	-4.91	-3.87	-5.20	n.a.	-11.30	-8.54	-5.69	-3.99	n.a.	n.a.	-5.34
Bq ³	-10.66	-9.98	-10.11	-11.52	-10.26	-10.45	n.a.	-7.52	n.a.	-8.61	-11.38	n.a.	n.a.	-10.65
Bq^4	-3.95	-2.86	-3.74	-4.92	-3.87	-5.10	n.a.	n.a.	n.a.	n.a.	-4.03	n.a.	n.a.	-5.34
Bq⁵	-10.45	-9.99	-10.11	-11.52	-10.26	-10.27	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	-10.65
Bq ⁶	n.a.	-5.83	-5.84	-7.91	-0.56	-2.44	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	-9.40
Βq ⁷	n.a.	n.a.	n.a.	n.a.	-11.83	-12.51	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Bq ⁸	n.a.	n.a.	n.a.	n.a.	-11.83	-12.49	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

Table S5. Comparison of NICS(0) values of the reported germylenes and aromatic compounds.

*Note: A more coarse grid leads to numerical instabilities in the NICS(0) values for NICS(0) values that should be numerically identical by symmetry.

Figure S27. Potential Energy Surface (ΔE_e) for **2**. All energies reported in kcal mol⁻¹.

The potential energy surface above depicts various fluxional and higher-energy processes for compound 2. The two lowest-energy structures for compound 2 are 2^a and 2^b . Structures 2^a and 2^b are connected by a low-energy transition state 2^{TS-a-b} . While both 2^a and 2^b are C_2 symmetric, 2^a has the same "twisting" of the germylene units where those units are staggered as observed in the geometry of the X-ray crystal structure. In 2^b , the germylene units are eclipsed, i.e., they are rotating in the same direction. Structures 2^b and $2^{b'}$ are mirror images that are connected by a high-energy C_{2v} -symmetric fourth-order saddle point (2^{4-OSP}) . Structures 2^c and 2^d are relatively low-energy C_{s-} and C_{2-} symmetric local minima, respectively, that buckle the pyrene core to form bowl-shaped structures, as opposed to the twisting of the pyrene in 2^a . The only difference between 2^c and 2^d is a low-energy *t*-butyl rotation. It is notable that the structure of 2^c is similar to the Ge-pyrene core part of the geometry of 3^{6-OSP} . Two other higher-order saddle points $(2^{2-OSP}$ and $2^{5-OSP})$ exist, and the relative energy of 2^{2-OSP} is only 9.2 kcal mol⁻¹ above the lowest energy structure 2^a . Structure 2^{2-OSP} connects mirror image enantiomers of 2^d and 2^d . Structure 2^{5-OSP} is 26.1 kcal mol⁻¹ above 2^a .

Figure S28. Potential Energy Surface for **3** (ΔE_e). All energies reported in kcal mol⁻¹.

The potential energy surface above depicts various fluxional and higher-energy processes for compound **3**. The lowest-energy structure for compound **3** is **3**^a, which has C_{NHC} -Ge distances of 2.21 Å. Structure **3**^{2-OSP-1} is a low-energy C_{2v} -symmetric second-order saddle point that connects two enantiomeric C_2 structures (**3**^a and **3**^a). Structure **3**^b is C_1 -symmetric where one of the NHCs has significantly lengthened away from the Ge-pyrene core (C_{NHC} -Ge distance of 4.12 Å), while the other NHC remains bound to the second germylene (C_{NHC} -Ge distance of 2.21 Å). Structures **3**^c and **3**^{c'} are high-energy local minimum enantiomers (C_{NHC} -Ge distances of 2.51 Å) that are connected through a fourth-order saddle point (**3**^{4-OSP} in which the Ge-C_{NHC} distances are 2.56 Å) by the double rotation of the NHCs about the Ge-C_{NHC} bond. Structure **3**^d is a C_s-symmetric structure in which both NHCs are significantly lengthened away from the Ge-pyrene core (C_{NHC} -Ge distances of 5.68 Å). A high-energy second-order saddle point (**3**^{2-OSP-2}) connects two equivalent structures of **3**^d through a motion of *t*-butyl rotation. Structure **3**^{6-OSP} is a C_{2v}-symmetric high-energy sixth-order saddle point with significantly lengthened C_{NHC}-Ge distances of 5.59 Å. Interestingly, the geometry of the Ge-pyrene core in **3**^{6-OSP} has a strong resemblance to the geometry observed in **2**^d (see overlay, *vide infra*).

	ΔE _e	ΔG
2 ^a	0.0	0.0
2 ^{TS-a-b}	8.7	9.4
2 ^b	0.9	0.4
2 ^{4-OSP}	26.0	34.6
2 ^b	0.9	0.4
2 ^c	8.0	6.8
2 ^d	8.0	7.6
2 ^{2-OSP}	9.2	9.8
2 ď	8.0	7.6
2 ^{5-OSP}	26.1	34.9
3 ^a	0.0	0.0
3 ^{2-OSP-1}	1.5	4.6
3 ª	0.0	0.0
3 ^b	9.7	3.4
3°	22.0	21.9
3 ^{4-OSP}	28.4	31.2
3 ^{c'}	22.0	21.9
3 ^d	26.7	3.4
3 ^{2-OSP-2}	27.9	6.9
3 ^{6-OSP}	33.7	27.4

Table S6. ΔE_e and ΔG of **2** and **3** (kcal mol⁻¹).

The above data tabulates the ΔE_e and ΔG of **2** and **3** in kcal mol⁻¹. Because the Ge-pyrene core of structures 2^{2-OSP} and 3^{6-OSP} are quite geometrically similar, it is interesting to compare the relative energetics to their respective lowest-energy structures. Structure 2^{2-OSP} is only 9.8 kcal mol⁻¹ higher in energy than 2^a while structure 3^{6-OSP} is 27.4 kcal mol⁻¹ higher than 3^a . This difference in energy indicates that the Ge-bound NHCs in 3 significantly increase the activation energy of the fluxional processes of 3. It should be noted that the ΔG values of 3^d and $3^{2-OSP-2}$ are artificially significantly lower than their corresponding ΔE_e values because of the large separation between the units in the computation (two NHCs and the Ge-containing pyrene core), making the system more entropically favored, but still higher in energy than 3^a .

Structural Comparisons

Figure S29. Structural comparison of 2^a (blue), 2^{TS-a-b} (red), 2^b (green), and 2^c (yellow) with a view down the axis containing the two Ge. Hydrogen atoms not shown for clarity.

Figure S30. Structural overlay comparing **2**^{2-OSP} (yellow) and **3**^{6-OSP} (blue). In **3**^{6-OSP}, the Ge-C_{NHC} distance is quite long at 5.59 Å.

Figure S31. Structural overlay of the mirror image structures 3^a (blue) and $3^{a'}$ (yellow).

References

- 1. A. J. Arduengo, R. Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich, W. J. Marshall and M. Unverzagt, *Tetrahedron*, 1999, **55**, 14523-14534.
- 2. Z. H. Wu, Z. T. Huang, R. X. Guo, C. L. Sun, L. C. Chen, B. Sun, Z. F. Shi, X. Shao, H. Li and H. L. Zhang, *Angew. Chem. Int. Ed.*, 2017, **56**, 13031-13035.
- 3. N. Kuhn and T. Kratz, *Synthesis*, 1993, **1993**, 561-562.
- 4. Bruker (2012). Saint; SADABS; APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
- 5. Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- 6. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *J. Appl. Cryst.* (2009). **42**, 339-341.
- 7. Spek, A. L. Acta Crystallogr. Sect C: Struct. Chem. 2015, C71, 9-18.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
 G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B.
 Mennucci, H. P. Hratchian, J. V., and D. J. F. Gaussian 16, Revision B.01. Gaussian, Inc: Wallingford, CT 2016.
- 9. Hariharan, P. C., and Pople, J. A. *Theor. Chim. Acta* **1973**, *28*, 213–222.
- 10. Hehre, W. J., Ditchfield, R., and Pople, J. A. J. Chem. Phys. **1972**, 56 (5), 2257–2261.
- 11. Petersson, G. A., and Al-Laham, M. A. J. Chem. Phys. **1991**, *94*, 6081–6090.
- 12. Check, C. E.; Faust, T. O.; Bailey, J. M.; Wright, B. J.; Gilbert, T. M.; Sunderlin, L. S. *J. Phys. Chem. A* **2001**, *105*.
- 13. Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82.
- 14. Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. J. Comput. Chem. **1983**, 4 (3), 294–301.
- 15. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. J. Chem. Phys. 1980, 72 (1), 650–654.
- 16. Curtiss, L. A.; McGrath, M. P.; Blaudeau, J.-P.; Davis, N. E.; Binning, R. C.; Radom, L. J. Chem. Phys. **1995**, 103.
- 17. Schleyer, P. von R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N. J. R. *J. Am. Chem. Soc.* **1996**, *118* (26), 6317–6318.
- 18. James R. Cheeseman, Gary W. Trucks, T. A. K.; Frisch, M. J. J. Chem. Phys. 1996, 104, 5497.
- 19. McWeeny, R. Phys. Rev. 1962, 126 (3), 1028–1034.
- 20. Ditchfield, R. Mol. Phys. 1974, 27 (4), 789–807.
- 21. Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. **1990**, *112* (23), 8251–8260.
- 22. A. D. Becke. J. Chem. Phys. **1993**, *98*, 5648.

- 23. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37 (2), 785–789.
- 24. Marques, M. A. L.; Gross, E. K. U. Annu. Rev. Phys. Chem. 2004, 55 (1), 427–455.
- 25. Hall, M. B.; Fenske, R. F. Inorg. Chem. **1972**, *11* (4), 768–775.
- 26. Bursten, B. E.; Jensen, J. R.; Fenske, R. F. J. Chem. Phys. **1978**, 68, 3320.
- 27. Manson, J.; Webster, C. E.; Perez, L. M.; Hall, M. B. JIMP 2. https://www.chem.tamu.edu/jimp2/
- 28. Herrmann, W. A.; Denk, M.; Behm, J.; Scherer, W.; Klingan, F.-R.; Bock, H.; Solouki, B.; Wagner, M. *Angew. Chemie Int. Ed. English* **1992**, *31* (11), 1485–1488.