Nickel-catalyzed Reductive Amidation of Aryltriazine Ethers

Outline

1.	Experimental	SI-2
	1.1. General	SI-2
	1.2. General procedure for the synthesis of 2,4,6-triaryloxy-1,3,5-triazine (TAT)	SI-2
	1.3. General procedure for nickel-catalyzed reductive amidation of aryl-triazine ethers	SI-2
2.	Spectral data for synthesized compounds	. SI-3
3.	Copy of ¹ HNMR and ¹³ CNMR of synthesized compounds	SI-12

1. Experimental section

1.1. General

Chemicals were purchased from Fluka, Merck and Aldrich chemical companies and used without further purification. The known products were characterized by comparison of their spectral and physical data with those reported in the literature. ¹H (400 and 500 MHz) and ¹³C NMR (100 and 126 MHz) spectra were recorded on a Bruker Advance spectrometer in CDCl₃ solution with tetramethylsilane (TMS) as the internal standard. FT-IR spectroscopy (Shimadzu FT-IR 8300 spectrophotometer) was employed for characterization of the products. Melting points were determined in open capillary tubes in a Barnstead electro-thermal 9100 BZ circulating oil melting point apparatus. The reaction monitoring was accomplished by TLC on silica gel PolyGram SILG/UV254 plates. Column chromatography was carried out on columns of silica gel 60 (70–230 mesh).

1.2. General procedure for the synthesis of 2,4,6-triaryloxy-1,3,5-triazine (TAT)

Into a canonical flask (50 mL), a mixture of phenol (3.3 mmol), and sodium hydride (3.6 mmol, 0.087 g) was stirred in THF (5 mL) for 1.5 h at room temperature. Then cyanuric chloride (1.0 mmol, 0.184 g) was added and the reaction media was refluxed for 5 h. The reaction was then allowed to cool down to room temperature. The precipitate was filtered, washed with THF and dried in vacuum to afford the product TAT.

1.3. General procedure for nickel-catalyzed reductive amidation of aryl-triazine ethers

An oven-dried reaction tube containing a stirring bar was charged with aryl-triazine ether (0.2 mmol), NiCl₂.dmg (10 mol%, 15 mg), dppf (20 mol%, 66 mg), Zn (1.2 mmol, 78 mg) and K₂HPO₄ (1.2 mmol, 210 mg). Afterward, the reaction tube was evacuated and back-filled with dry argon (this sequence was repeated three times). Dry DMF (2 mL) and isocyanate/carbodiimide (1.0 mmol) were subsequently added under argon atmosphere by syringe. The reaction mixture was warmed up to 90 °C and stirred for 24h. After completion of the reaction, the mixture was cool down to room temperature and quenched with 5% aq. HCl (2 mL) and it was extracted with ethyl acetate (3 x 10 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and then concentrated in vacuum. The crude product was purified by column chromatography, eluting with n-hexane/ EtOAc, to afford the title compound.

2. Spectral data for synthesized compounds

2.1. N-cyclohexylbenzamide (3a)¹

Yield: 91% (111 mg)

¹**H NMR (400 MHz, CDCl₃)** δ 7.88 – 7.70 (m, 1H), 7.49 – 7.44 (m, 1H), 7.40 (ddd, J = 6.5, 4.5, 1.4 Hz, 1H), 6.06 (s, 1H), 4.04 – 3.88 (m, 1H), 2.02 (dq, J = 11.7, 3.8 Hz, 1H), 1.85 – 1.70 (m, 1H), 1.69 – 1.58 (m, 1H), 1.49 – 1.35 (m, 1H), 1.32 – 1.12 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 166.71, 135.19, 131.26, 128.54, 126.91, 48.77, 33.28,

25.65, 24.98.

Anal. Cal. For C₁₃H₁₇NO (203.29): C, 76.81; H, 8.43; N, 6.89; Found: C, 76.75; H, 8.37; N, 6.81.

2.2. N-pentylbenzamide (3b)²

Yield: 88% (101 mg)

¹**H** NMR (400 MHz, CDCl₃) δ 7.76 (ddd, J = 6.9, 3.4, 1.7 Hz, 1H), 7.45 – 7.40 (m, 1H), 7.37 – 7.32 (m, 1H), 6.76 (s, 1H), 3.38 (dd, J = 12.1, 7.3 Hz, 1H), 1.61 – 1.52 (m, 1H), 1.35 – 1.26 (m, 2H), 0.89 – 0.83 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 167.71, 134.79, 131.19, 128.39, 126.96, 40.15, 29.31, 29.15, 22.37, 13.95.

Anal. Cal. For C₁₂H₁₇NO (191.27): C, 75.35; H, 8.96; N, 7.32; Found: C, 75.28; H, 8.91; N, 7.25.

2.3. N-cyclohexyl-3-methylbenzamide (3c)³

Yield: 86% (112 mg)

¹**H NMR (400 MHz, CDCl₃)** δ 7.57 (dt, J = 3.2, 1.3 Hz, 1H), 7.53 – 7.49 (m, 1H), 7.33 – 7.28 (m, 1H), 5.92 (s, 1H), 4.04 – 3.91 (m, 1H), 2.40 (s, 1H), 2.09 – 1.97 (m, 1H), 1.76 (dt, J = 13.5, 3.9 Hz, 1H), 1.71 – 1.62 (m, 1H), 1.51 – 1.36 (m, 1H), 1.30 – 1.15 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 166.89, 138.46, 135.28, 132.02, 128.47, 127.69, 123.84, 48.70, 33.37, 25.72, 25.01, 21.43.

Anal. Cal. For C₁₄H₁₉NO (217.31): C, 77.38; H, 8.81; N, 6.45; Found: C, 77.30; H, 8.75; N, 6.38.

2.4. 3-methyl-N-pentylbenzamide (3d)

¹ A. Correa and R. Martin, *J. Am. Chem. Soc.* 2014, **136**, 7253–7256.

² R. N. Lima, V. R. Silva, L. de S. Santos, D. P. Bezerra, M. B. P. Soares, A. L. M. Porto , *RSC Adv.* , 2017 , **7** , 56566.

³ C. Chen, Y. Miao, K. D. Winter, H.-J. Wang, P. Demeyere, Y. Yuan, and F. Verpoort, *Molecules* 2018, 23, 2413.

Yield: 85% (104 mg)

¹**H NMR (400 MHz, CDCl₃)** δ 7.58 (td, J = 2.0, 1.2 Hz, 1H), 7.54 – 7.50 (m, 1H), 7.26 – 7.24 (m, 2H), 6.43 (s, 1H), 3.40 (td, J = 7.2, 5.8 Hz, 2H), 2.34 (d, J = 0.5 Hz, 3H), 1.63 – 1.54 (m, 2H), 1.32 (ddt, J = 7.2, 5.5, 1.7 Hz, 4H), 0.91 – 0.85 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.83, 138.30, 134.86, 131.97, 128.34, 127.70, 123.87, 40.11, 29.38, 29.17, 22.39, 21.30, 13.97.

Anal. Cal. For C₁₃H₁₉NO (205.30): C, 76.06; H, 9.33; N, 6.82; Found: C, 75.98; H, 9.25; N, 6.76.

2.5. N-benzyl-3-methylbenzamide (3e)⁴

Yield: 88% (119 mg)

¹**H NMR (400 MHz, CDCl₃)** δ 7.62 (dq, *J* = 1.5, 1.0 Hz, 1H), 7.59 – 7.55 (m, 1H), 7.37 – 7.35 (m, 4H), 7.31 – 7.29 (m, 3H), 6.46 (s, 1H), 4.64 (d, *J* = 5.6 Hz, 2H), 2.39

(t, J = 0.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.66, 138.53, 138.35, 134.47, 132.34, 130.72, 128.85, 128.53, 128.00, 127.81, 127.67, 127.35, 124.00, 44.21, 21.39.

Anal. Cal. For C₁₅H₁₅NO (225.29): C, 79.97; H, 6.71; N, 6.22; Found: C, 79.90; H, 6.62; N, 6.16.

2.6. N-cyclohexyl-2-naphthamide (3f)

Yield: 84% (127 mg)

¹**H NMR (400 MHz, CDCl₃)** δ 8.35 – 8.19 (m, 1H), 7.99 – 7.77 (m, 4H), 7.53 (m, 2H), 6.16 (d, *J* = 7.4 Hz, 1H), 4.14 – 3.96 (m, 1H), 2.13 – 2.02 (m, 2H), 1.78 (ddd, *J* = 13.7, 7.4, 3.4 Hz, 2H), 1.72 – 1.61 (m, 1H), 1.52 – 1.37 (m, 2H), 1.35 – 1.10 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.77, 134.74, 132.75, 132.43, 128.93, 128.45, 127.81, 127.56, 127.24, 126.76, 123.72, 48.93, 33.38, 25.70, 25.03.

Anal. Cal. For C₁₇H₁₉NO (253.35): C, 80.60; H, 7.56; N, 5.53; Found: C, 80.52; H, 7.50; N, 5.45.

2.7. N-pentyl-2-naphthamide (3g)

⁴ S. L. Yedage, D. S. D'silvaa and B. M. Bhanage, RSC Adv., 2015, 5, 80441-80449

Yield: 80% (116 mg)

¹**H NMR (400 MHz, CDCl₃)** δ 8.27 (d, J = 1.5 Hz, 1H), 7.94 – 7.79 (m, 5H), 7.58 – 7.50 (m, 2H), 6.30 (s, 1H), 3.51 (td, J = 7.2, 5.7 Hz, 2H), 1.67 (tdd, J = 7.2, 6.0, 3.8 Hz, 2H), 1.45 – 1.32 (m, 5H), 0.99 – 0.88 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 167.64, 134.78, 132.78, 132.22, 128.97, 128.51, 127.83, 127.63, 127.30, 126.80, 123.68, 40.33, 29.53, 29.29, 22.50, 14.07.

Anal. Cal. For C₁₆H₁₉NO (241.15): C, 79.63; H, 7.94; N, 5.80; Found: C, 79.55; H, 7.88; N, 5.73.

2.8. N-pentyl-2-naphthamide (3h)

Yield: 83% (130 mg)

¹**H NMR (400 MHz, CDCl₃)** δ 8.31 (s, 1H), 7.88 (m, 2H), 7.59 – 7.50 (m, 1H), 7.43 – 7.28 (m, 2H), 6.62 (s, 1H), 4.71 (d, *J* = 5.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 167.51, 138.33, 134.88, 132.89, 132.74, 131.70, 129.00, 128.91, 128.58, 128.08, 127.83, 127.75, 127.54, 126.85, 123.68, 44.39.

Anal. Cal. For C₁₈H₁₅NO (261.32): C, 82.73; H, 5.79; N, 5.36; Found: C, 82.66; H, 5.71; N, 5.27.

2.9. 4-chloro-N-cyclohexylbenzamide (3i)⁵

Yield: 89% (127 mg)

¹**H NMR (400 MHz, CDCl₃)** δ 7.71 – 7.65 (m, 1H), 7.40 – 7.36 (m, 1H), 5.94 (d, *J* = 5.3 Hz, 1H), 4.01 – 3.91 (m, 1H), 2.07 – 1.97 (m, 1H), 1.81 – 1.70 (m, 1H), 1.69 – 1.60 (m, 1H), 1.46 – 1.37 (m, 1H), 1.30 – 1.17 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 165.63, 137.54, 133.58, 128.83, 128.38, 48.95,

33.30, 25.64, 24.98.

Anal. Cal. For C₁₃H₁₆CINO (237.73): C, 65.68; H, 6.78; N, 5.89; Found: C, 65.60; H, 6.72; N, 5.81.

2.10. 4-chloro-N-pentylbenzamide (3j)

0

J. Kraïen and T. Ollevier, Green Chem., 2017, 19, 1263-1267

\$IG1 Pagej

Yield: 88% (120 mg)

¹**H NMR (400 MHz, CDCl₃)** δ 7.73 – 7.63 (m, 1H), 7.43 – 7.31 (m, 1H), 6.28 (s, 1H), 3.41 (dd, *J* = 12.6, 6.7 Hz, 1H), 1.70 – 1.51 (m, 1H), 1.44 – 1.27 (m, 2H), 0.90 (td, *J* = 6.8, 3.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 166.56, 137.59, 133.31, 128.82, 128.39, 40.28, 29.39, 29.21, 22.43, 14.02.

Anal. Cal. For C₁₂H₁₆CINO (225.72): C, 63.86; H, 7.15; N, 6.21; Found: C, 63.78; H, 7.06; N, 6.15.

2.11. N-benzyl-4-chlorobenzamide (3k)⁶

128.91, 128.86, 128.51, 128.00, 127.80, 44.32.

Anal. Cal. For C₁₄H₁₂CINO (245.71): C, 68.44; H, 4.92; N, 5.70; Found: C, 68.37; H, 4.86; N, 5.63.

2.12. N-cyclohexyl-4-nitrobenzamide (3I)⁷

Yield: 90% (134 mg)

¹**H NMR (400 MHz, CDCl₃)** δ 8.29 – 8.23 (m, 2H), 7.94 – 7.85 (m, 2H), 6.04 (d, J = 7.1 Hz, 1H), 4.06 – 3.87 (m, 1H), 2.05 (dq, J = 11.7, 3.8 Hz, 2H), 1.77 (ddd, J = 13.5, 7.1, 3.4 Hz, 2H), 1.72 – 1.60 (m, 1H), 1.51 – 1.34 (m, 2H), 1.35 – 1.14 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.66, 149.59, 140.80, 128.13, 123.84, 49.33, 33.20, 25.57, 24.94.

Anal. Cal. For C₁₃H₁₆N₂O₃ (248.28): C, 62.89; H, 6.50; N, 11.28; Found: C, 62.81; H, 6.63; N, 11.22.

2.13. 4-nitro-N-pentylbenzamide (3m)

⁶ J. Luo and W. Huang, *Mol Divers*, 2003, **6**, 33-41

⁷ D. C. Lenstra, F. P. J. T. Rutjes and J. Mecinović, Chem. Commun., 2014, 50, 5763-5766

Yield: 83% (118 mg)

¹**H NMR (400 MHz, CDCl₃)** δ 8.25 (d, *J* = 9.0 Hz, 1H), 7.92 (d, *J* = 9.0 Hz, 1H), 6.39 (s, 1H), 3.60 – 3.35 (m, 1H), 1.63 (dd, *J* = 8.7, 5.8 Hz, 1H), 1.43 – 1.30 (m, 2H), 1.00 – 0.82 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 165.57, 149.60, 140.55, 128.64, 128.15, 126.85, 123.83, 40.53, 29.29, 29.18, 22.41, 14.00.

Anal. Cal. For C₁₂H₁₆N₂O₃ (236.27): C, 61.00; H, 6.83; N, 11.86; Found: C, 60.93; H, 6.77; N, 11.78.

2.14. N-cyclohexyl-4-nitrobenzamide (3n)⁸

Yield: 87% (134 mg)

¹**H NMR (400 MHz, CDCl₃)** δ 8.25 (d, *J* = 9.0 Hz, 1H), 7.94 (d, *J* = 9.0 Hz, 1H), 7.41 – 7.29 (m, 2H), 6.64 (s, 1H), 4.65 (d, *J* = 5.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 165.47, 149.75, 140.00, 137.54, 131.79, 131.26, 129.01, 128.28, 128.05, 128.02, 124.23, 123.90, 123.65, 44.56.

Anal. Cal. For C₁₄H₁₂N₂O₃ (256.26): C, 65.62; H, 4.72; N, 10.93; Found: C, 65.55; H, 4.65; N, 10.86.

2.15. N-cyclohexyl-2-fluorobenzamide (3o)⁹

Yield: 81% (107 mg)

 $\begin{array}{c} \mathbf{1H} \ \mathbf{NMR} \ (400 \ \mathbf{MHz}, \mathbf{CDCl_3}) \ \delta \ 8.08 \ (td, J = 7.9, \ 1.9 \ \mathrm{Hz}, \ 1\mathrm{H}), \ 7.44 \ (dddd, J = 8.3, \ 7.2, \ 5.2, \ 1.9 \ \mathrm{Hz}, \ 1\mathrm{H}), \ 7.27 - 7.21 \ (m, \ 1\mathrm{H}), \ 7.09 \ (ddd, J = 12.1, \ 8.3, \ 1.1 \ \mathrm{Hz}, \ 1\mathrm{H}), \ 6.60 \ (s, \ 1\mathrm{H}), \ 4.08 - 3.96 \ \mathrm{Hz}, \ 1\mathrm{H}), \ 7.27 - 7.21 \ (m, \ 1\mathrm{H}), \ 7.09 \ (ddd, J = 12.1, \ 8.3, \ 1.1 \ \mathrm{Hz}, \ 1\mathrm{H}), \ 6.60 \ (s, \ 1\mathrm{H}), \ 4.08 - 3.96 \ \mathrm{Hz}, \ 1\mathrm{H}), \ 7.14 \ (dddd, J = 12.1, \ 8.3, \ 1.1 \ \mathrm{Hz}, \ 1\mathrm{H}), \ 6.60 \ (s, \ 1\mathrm{H}), \ 4.08 - 3.96 \ \mathrm{Hz}, \ 1\mathrm{Hz}, \ 1\mathrm{Hz},$

¹³C NMR (101 MHz, CDCl₃) δ 162.35 (d, J = 3.2 Hz), 160.66 (d, J = 246.6 Hz), 133.03 (d, J = 9.3 Hz), 132.98, 124.82 (d, J = 3.2 Hz), 121.66 (d, J = 11.5 Hz), 115.98 (d, J = 24.9 Hz), 48.73, 33.07, 25.69, 24.82.

Anal. Cal. For C₁₃H₁₆FNO (221.28): C, 70.57; H, 7.29; N, 6.33; Found: C, 70.49; H, 7.21; N, 6.26.

2.16. 2-fluoro-N-pentylbenzamide (3p)

⁸ D. C. Lenstra, F. P. J. T. Rutjes and J. Mecinović, Chem. Commun., 2014, 50, 5763-5766

⁹ P. Sureshbabu, S. Azeez, P. Chaudhary and J. Kandasamy, Org. Biomol. Chem., 2019, 17, 845-850

Yield: 83% (104 mg)

¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.98 (m, 1H), 7.43 – 7.36 (m, 1H), 7.23 – 7.16 (m, 1H), 7.09 – 7.02 (m, 1H), 6.74 (s, 1H), 3.46 – 3.39 (m, 1H), 1.63 – 1.54 (m, 1H), 1.36 – 1.29 (m, 1H), 0.91 – 0.84 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 163.21 (d, J = 3.2 Hz), 160.54 (d, J = 246.8 Hz), 132.95 (d, J = 9.3 Hz), 131.94 (d, J = 2.3 Hz), 124.68 (d, J = 3.3 Hz), 121.41 (d, J = 11.7 Hz), 115.87 (d, J = 24.9 Hz), 40.03, 29.15, 29.10, 22.32, 13.91.

Anal. Cal. For C₁₂H₁₆FNO (209.26): C, 68.88; H, 7.71; N, 6.69; Found: C, 68.80; H, 7.65; N, 6.62.

2.17. N-cyclohexyl-3-fluorobenzamide (3q)

Yield: 85% (113 mg)

¹**H NMR (500 MHz, CDCl₃)** δ 7.47 (ddd, J = 9.4, 8.0, 4.8 Hz, 2H), 7.36 (td, J = 8.0, 5.6 Hz, 1H), 7.15 (td, J = 8.2, 2.5 Hz, 1H), 6.13 (s, 1H), 3.94 (tdt, J = 11.7, 8.0, 4.0 Hz, 1H), 2.06 – 1.95 (m, 2H), 1.73 (ddd, J = 10.6, 7.2, 3.4 Hz, 2H), 1.67 – 1.58 (m, 1H), 1.45 – 1.32 (m, 2H), 1.28 – 1.10 (m, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 165.48 (d, J = 2.5 Hz), 162.78 (d, J = 247.5 Hz), 137.42 (d, J = 6.8 Hz), 130.17 (d, J = 7.9 Hz), 122.38 (d, J = 3.0 Hz), 118.24 (d, J = 21.3 Hz), 114.38 (d, J = 22.8 Hz), 48.98, 33.17, 25.56, 24.95.

Anal. Cal. For C₁₃H₁₆FNO (221.28): C, 70.57; H, 7.29; N, 6.33; Found: C, 70.49; H, 7.22; N, 6.25.

2.18. N-benzyl-3-fluorobenzamide (3r)¹⁰

Yield: 81% (111 mg)

¹**H NMR (500 MHz, CDCl₃)** δ 7.56 – 7.47 (m, 1H), 7.39 – 7.26 (m, 3H), 7.21 – 7.14 (m, 1H), 6.76 (s, 1H), 4.59 (d, *J* = 5.7 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 166.27 (d, *J* = 2.6 Hz), 162.77 (d, *J* = 248.2 Hz), 137.97, 136.67 (d, *J* = 6.7 Hz), 130.25 (d, *J* = 8.8 Hz), 128.83, 127.91, 127.70, 122.53 (d, *J* = 3.1 Hz), 118.56 (d, *J* = 21.3 Hz), 114.50 (d, *J* = 22.9 Hz), 44.22.

¹⁹F NMR (471 MHz, CDCl₃) δ -111.45 - -112.60 (m).

Anal. Cal. For C₁₄H₁₂FNO (229.25): C, 73.35; H, 5.28; N, 6.11; Found: C, 73.26; H, 5.22; N, 6.03.

2.19. N-cyclohexyl-4-(trifluoromethyl)benzamide (3s)¹¹

¹⁰ C. Chen, Y. Miao, K. D. Winter, H.-J. Wang, P. Demeyere, Y. Yuan, and F. Verpoort, *Molecules* 2018, 23, 2413.

¹¹ A. Mishra, S. Chauhan, P. Verma, S. Singh, V. Srivastava, Asian J. Org. Chem. 2019, 8, 853-857.

Yield: 88% (143 mg)

¹**H NMR (500 MHz, CDCl₃)** δ 7.85 (d, *J* = 8.2 Hz, 2H), 7.67 (d, *J* = 8.3 Hz, 2H), 6.09 (d, *J* = 6.7 Hz, 1H), 3.98 (tdt, *J* = 11.7, 8.0, 4.0 Hz, 1H), 2.08 – 2.00 (m, 2H), 1.76 (ddd, *J* = 10.6, 7.2, 3.4 Hz, 2H), 1.70 – 1.63 (m, 1H), 1.49 – 1.37 (m, 2H), 1.29 – 1.18 (m, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 165.55, 138.43 (d, *J* = 1.0 Hz), 133.11 (d, *J* = 32.7 Hz), 127.43, 125.63 (q, *J* = 3.8 Hz), 123.77 (d, *J* = 272.6 Hz), 49.13, 33.21, 25.58, 24.96.

Anal. Cal. For C₁₄H₁₆F₃NO (271.28): C, 61.98; H, 5.95; N, 5.16; Found: C, 61.89; H, 5.86; N, 5.08.

2.20. N-benzyl-4-(trifluoromethyl)benzamide (3t)¹²

Yield: 89% (149 mg)

¹**H NMR (500 MHz, CDCl₃)** δ 7.90 (d, *J* = 8.2 Hz, 1H), 7.69 (d, *J* = 8.3 Hz, 1H), 7.40 – 7.29 (m, 2H), 6.46 (s, 1H), 4.66 (d, *J* = 5.6 Hz, 1H).

'------' ¹³C NMR (126 MHz, CDCl₃) δ 166.16, 137.78, 137.73, 133.43 (q, *J* = 32.7 Hz), 131.05, 130.60, 129.01, 129.00, 128.99, 128.09, 128.08, 128.07, 127.96, 127.55, 127.54, 127.53, 125.77 (q, *J* = 3.8 Hz), 44.45.

¹⁹F NMR (471 MHz, CDCl₃) δ -62.98.

Anal. Cal. For C₁₅H₁₂F₃NO (279.26): C, 64.51; H, 4.33; N, 5.02; Found: C, 64.44; H, 4.26; N, 4.96.

2.21. N-cyclohexyl-4-(dimethylamino)benzamide (3u)¹³

Yield: 78% (115 mg)

¹**H NMR (400 MHz, CDCl₃)** δ 7.70 – 7.60 (m, 1H), 6.69 – 6.64 (m, 1H), 5.84 (d, *J* = 7.4 Hz, 1H), 3.97 (ttd, *J* = 11.8, 8.0, 3.9 Hz, 1H), 3.05 (s, 2H), 2.02 (dt, *J* = 8.1, 3.3 Hz, 1H), 1.79 – 1.69 (m, 1H), 1.68 – 1.59 (m, 1H), 1.49 – 1.35 (m, 1H), 1.28 – 1.15 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 166.64, 152.40, 128.33, 122.20, 110.79, 48.44, 40.11, 33.51, 25.77, 25.05.

Anal. Cal. For $C_{15}H_{22}N_2O$ (246.35): C, 73.13; H, 9.00; N, 11.37; Found: C, 73.05; H, 5.91; N, 11.30. 2.22. N-cyclohexyl-2-nitrobenzamide (3v)¹⁴

¹² D. C. Lenstra, F. P. J. T. Rutjes and J. Mecinović, Chem. Commun., 2014, 50, 5763-5766

¹³ W. S. Bechara, G. Pelletier & A. B. Charette, *Nature Chemistry* 2012, 4, 228–234.

¹⁴ J. Kraïem and T. Ollevier, *Green Chem.*, 2017, **19**, 1263-1267

Yield: 80% (119 mg)

¹**H NMR (400 MHz, CDCl₃)** δ 8.05 – 8.02 (m, 1H), 7.65 (td, J = 7.5, 1.2 Hz, 1H), 7.52 (dddd, J = 7.8, 4.5, 1.9, 0.9 Hz, 2H), 5.70 (d, J = 6.6 Hz, 1H), 3.97 (tdt, J = 10.6, 8.1, 4.0 Hz, 1H), 2.08 (dq, J = 13.9, 3.8 Hz, 2H), 1.79 – 1.70 (m, 2H), 1.69 – 1.60 (m, 1H), 1.49 – 1.36 (m, 2H), 1.28 – 1.16 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.75, 146.53, 133.72, 133.45, 130.32, 128.89, 124.55, 49.16, 32.81, 25.58, 24.87.

Anal. Cal. For C₁₃H₁₆N₂O₃ (248.28): C, 62.89; H, 6.50; N, 11.28; Found: C, 62.81; H, 6.44; N, 11.21.

2.23. 2-nitro-N-pentylbenzamide (3w)

Yield: 82% (116 mg)

¹**H NMR (400 MHz, CDCl₃)** δ 8.01 (dd, J = 8.2, 1.2 Hz, 1H), 7.70 – 7.62 (m, 1H), 7.57 – 7.52 (m, 1H), 7.48 (dd, J = 7.5, 1.5 Hz, 1H), 5.98 (s, 1H), 3.42 (ddd, J = 13.1, 8.4, 4.8 Hz, 2H), 1.61 (tdd, J = 7.2, 6.0, 3.5 Hz, 2H), 1.41 – 1.32 (m, 5H), 0.94 – 0.88 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.50, 146.58, 133.67, 133.30, 130.36, 128.82, 124.53, 40.37, 29.09, 28.98, 22.38, 14.02.

Anal. Cal. For C₁₂H₁₆N₂O₃ (236.27): C, 61.00; H, 6.83; N, 11.86; Found: C, 60.53; H, 6.75; N, 11.80.

2.24. N-(tert-butyl)-2,4-dichlorobenzamide (3x)

Yield: 85% (125 mg)

¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.3 Hz, 1H), 7.38 – 7.38 (m, 1H), 7.27 (dd, *J* = 8.3, 2.0 Hz, 1H), 5.95 (s, 1H), 1.46 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 164.90, 136.30, 134.88, 131.36, 130.95, 129.92, 127.51, 52.47, 28.84.

Anal. Cal. For C₁₁H₁₃C₁₂NO (246.13): C, 53.68; H, 5.32; N, 5.69; Found: C, 53.59; H, 5.25; N, 5.60.

2.25. N-cyclohexylnicotinamide (3y)¹⁵

¹⁵ M. Largeron, N. Auzeil, E. Bacqué and M.-B. Fleury J. Chem. Soc., Perkin Trans. 2, 1997, 495-501.

Yield: 80% (98 mg)

¹**H NMR (500 MHz, CDCl₃)** δ 8.97 (d, J = 1.8 Hz, 1H), 8.72 (dd, J = 4.8, 1.4 Hz, 1H), 8.14 (dt, J = 7.9, 1.9 Hz, 1H), 7.40 (dd, J = 7.9, 4.9 Hz, 1H), 6.05 (s, 1H), 4.04 – 3.94 (m, 1H), 2.07 – 2.01 (m, 2H), 1.80 – 1.75 (m, 2H), 1.69 – 1.63 (m, 1H), 1.43 (dt, J = 22.2, 7.8 Hz, 2H), 1.32 – 1.17 (m, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 164.61, 151.79, 147.48, 135.62, 130.98, 123.73, 53.07, 49.11, 33.24, 25.59, 24.97.

Anal. Cal. For C₁₂H₁₆N₂O (204.27): C, 70.56; H, 7.90; N, 13.71; Found: C, 70.48; H, 7.83; N, 13.63.

2.26. N-benzylnicotinamide (3z)¹⁶

Yield: 78% (99 mg)

¹**H NMR (500 MHz, CDCl₃)** δ 8.98 (d, J = 2.0 Hz, 1H), 8.71 (dd, J = 4.8, 1.6 Hz, 1H), 8.15 (dt, J = 7.9, 2.0 Hz, 1H), 7.43 – 7.35 (m, 2H), 7.33 – 7.28 (m, 1H), 6.62 (s, 1H), 4.66 (d, J = 5.7 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 165.46, 152.21, 147.77, 137.77, 135.49, 130.26, 128.98, 128.08, 127.93, 123.71, 44.34.

Anal. Cal. For C₁₃H₁₂N₂O (212.25): C, 73.56; H, 5.70; N, 13.20; Found: C, 73.48; H, 5.65; N, 13.27.

2.27. N-(tert-butyl)thiophene-2-carboxamide (3ab)¹⁷

Yield: 75% (82 mg)

¹**H NMR (400 MHz, CDCl₃)** δ 7.49-7.47 (m, 1H), 7.44-7.42 (m, 1H), 6.99-6.96 (m, 1H), 6.24 (s, 1H), 1.50 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 161.21, 140.51, 129.31, 127.46, 127.31, 51.86, 28.88.

Anal. Cal. For C₉H₁₃NOS (183.27): C, 58.98; H, 7.15; N, 7.64; S, 17.49; Found: C, 58.91; H, 7.19; N, 7.69; S, 17.41.

2.28. (8R,9S,13S,14S)-N-(tert-butyl)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3-carboxamide (3ac)

¹⁶ E. Eidia and M. Z. Kassaee, *RSC Adv.*, 2016, **6**, 106873-106879.

¹⁷ T. Tang, L. Zhang, H. Dong, Z. Fang, W. Fu, Q. Yu and T. Tang, *RSC Adv.* 2017, **7**, 7711-7717.

Yield: 76% (161 mg)

¹**H NMR (250 MHz, DMSO-d₆)** δ 7.76 (d, J = 10.0 Hz, 1H), 7.22-7.13 (m, 3H), 3.43 (d, *J* = 5.0 Hz, 1H), 2.78-2.75 (m, 2H), 2.49-2.27 (m, 2H), 2.10-187 (m, 4H), 1.50 (s, 9H), 1.52-129 (m, 6H), 0.78 (s, 3H).

¹³C NMR (62.9 MHz, CDCl₃) δ 219.71, 165.37, 143.29, 136.09, 132.24, 119.13, 118.97, 60.38, 54.76, 52.51, 48.62, 40.55, 36.54, 34.24, 31.32, 30.74, 29.35, 26.32, 18.70.

Anal. Cal. For C₂₃H₃₁NO₂ (353.5060): C, 78.15; H, 8.84; N, 3.96; Found: C, 78.02; H, 8.75; N, 3.88.

2.29. 3-methyl-N-phenylbenzamide (3ad)¹⁸

Yield: 30% (38 mg) using isocyanatobenzene

Yield: 82% (104 mg) using diphenylmethanediimine

¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 0.8 Hz, 1H), 7.69 – 7.62 (m, 4H), 7.38 – 7.33 (m, 4H), 7.17 – 7.11 (m, 1H), 2.41 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 166.10, 138.73, 138.11, 135.09, 132.60, 129.11, 128.67, 127.89, 124.55, 124.06, 120.34, 21.41.

Anal. Cal. For C₁₄H₁₃NO (211.26): C, 79.59; H, 6.20; N, 6.63; Found: C, 79.67; H, 6.17; N, 6.55.

2.30. N-phenyl-2-naphthamide (3ae)

¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 0.6 Hz, 1H), 8.02 (s, 1H), 7.96 – 7.87 (m, 4H), 7.73 – 7.68 (m, 2H), 7.63 – 7.53 (m, 2H), 7.44 – 7.35 (m, 2H), 7.21 – 7.14 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 165.89, 138.13, 134.98, 132.74, 132.33, 129.22, 129.06, 128.84, 127.99, 127.91, 127.61, 127.03, 124.70, 123.64, 120.37.

Anal. Cal. For C₁₇H₁₃NO (247.30): C, 82.57; H, 5.30; N, 5.66; Found: C, 82.51; H, 5.23; N, 5.61.

2.31. 4-(dimethylamino)-N-(4-methoxyphenyl)benzamide (3af)

¹⁸ X. Guo, L. Tang, Y. Yang, Z. Zha and Z. Wang, *Green Chem.*, 2014, **16**, 2443-2447.

Yield: 89% (144 mg)

 ^1H NMR (500 MHz, CDCl₃) δ 7.79 – 7.75 (m, 1H), 7.72 (s, 1H), 7.55 – 7.50 (m, 1H), 6.90 – 6.85 (m, 1H), 6.69 – 6.67 (m, 1H), 3.80 (s, 1H), 3.03 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 165.64, 156.25, 152.64, 131.75, 128.62, 122.03, 114.21, 111.21, 55.56, 40.17.

Anal. Cal. For C₁₆H₁₈N₂O₂ (270.33): C, 71.09; H, 6.71; N, 10.36; Found: C, 71.00; H, 6.64; N, 10.31.

3. Copy of ¹HNMR and ¹³CNMR of synthesized compounds

3.1. N-cyclohexylbenzamide (3a)

3.3. N-cyclohexyl-3-methylbenzamide (3c)

3.4. 3-methyl-N-pentylbenzamide (3d)

3.5. N-benzyl-3-methylbenzamide (3e)

^{3.6.} N-cyclohexyl-2-naphthamide (3f)

3.7. N-pentyl-2-naphthamide (3g)

3.8. N-pentyl-2-naphthamide (3h)

3.10. 4-chloro-N-pentylbenzamide (3j)

3.11. N-benzyl-4-chlorobenzamide (3k)

3.12. N-cyclohexyl-4-nitrobenzamide (3I)

3.13. N-cyclohexyl-4-nitrobenzamide (3m)

3.14. N-cyclohexyl-4-nitrobenzamide (3n)

3.15. N-cyclohexyl-2-fluorobenzamide (3o)

3.17. N-cyclohexyl-3-fluorobenzamide (3q)

3.18. N-benzyl-3-fluorobenzamide (3r)

3.19. N-cyclohexyl-4-(trifluoromethyl)benzamide (3s)

3.20. N-benzyl-4-(trifluoromethyl)benzamide (3t)

3.21. N-cyclohexyl-4-(dimethylamino)benzamide (3u)

3.22. N-cyclohexyl-2-nitrobenzamide (3v)

3.24. N-(tert-butyl)-2,4-dichlorobenzamide (3x)

3.25. N-cyclohexylnicotinamide (3y)

3.26. N-benzylnicotinamide (3z)

3.27. N-(tert-butyl)thiophene-2-carboxamide (3ab)

2.28. (8R,9S,13S,14S)-N-(tert-butyl)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3-carboxamide (3ac)

3.29. 3-methyl-N-phenylbenzamide (3ad)

3.30. N-phenyl-2-naphthamide (3ae)

3.31. N-phenyl-2-naphthamide (3ae)

