Supporting Information

A Simple Cobalt–Based Catalyst System for the Controlled Dehydropolymerisation of H₃B·NMeH₂ on the Gram-Scale

Timothy Morgan Boyd,^a Kori A. Andrea,^{a,b} Katherine Baston,^a Alice Johnson,^a David E. Ryan,^a Andrew S. Weller^{*a}

^aDepartment of Chemistry, Chemistry Research Laboratories, University of Oxford, Oxford, OX1 3TA, UK. ^bDepartment of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada

Corresponding author email address: andrew.weller@chem.ox.ac.uk

Table of Contents

General experimental conditions:
Synthesis of 3, CoCl ₂ (ⁱ Pr ₂ PCH ₂ CH ₂) ₂ NMe
Catalytic Dehydropolymerization of H ₃ B·NMeH ₂ 3
Dehydropolymerization Under Open Conditions 3
Dehydropolymerization Under Hydrogen Evolution Measurement Conditions
Scale-up Dehydropolymerization and Metal-Removal Procedure
Ten Gram Scale Dehydropolymerization of $H_3B\cdot NMeH_2$ catalysed by 1
Table S1 . H_3B ·NMeH ₂ dehydropolymerization conditions and polymer characterisation datausing catalyst 2 in 1, 2-F ₂ C ₆ H ₄
Figure S1. Overlaid GPC traces of $(H_2BNMeH)_n$ obtained using 2 in $1,2$ - $F_2C_6H_4$ at 0.4 mol% under open (red) and H_2 evolution (blue) conditions. Red trace: $M_n = 51$, 100 gmol ⁻¹ ; $D = 1.7$. Blue trace: $M_n = 51$, 100 gmol ⁻¹ ; $D = 1.7$
Figure S2. Overlaid GPC traces of $(H_2BNMeH)_n$ (Table 1, entry 4) immediately after purification (blue) and after storage under air for 1 month (red). Red trace: $M_n = 98$, 250 gmol ⁻¹ ; $\mathcal{D} = 1.6$. Blue trace: $M_n = 98$, 800 gmol ⁻¹ ; $\mathcal{D} = 1.6$
Figure S3. Overlaid ¹¹ B NMR spectrum of isolated polyaminoboranes immediately after purification (blue) and after storage under air for 1 month (red)
Synthesis of Key Reaction intermediates7
In situ formation of complex 1 for the catalytic dehydropolymerization of H_3B ·NMeH ₂
In situ formation of colloidal cobalt nanoparticles for the dehydropolymerization of H_3B ·NMeH ₂ 7
Video 1 Explanation7
Video 2 Explanation7
References

General experimental conditions:

Unless otherwise stated all experimental manipulations were conducted under an argon atmosphere using standard Schlenk and glovebox techniques. Glassware was dried in an oven at 130 °C overnight and flame dried under vacuum prior to use. Pentane, toluene, benzene and tetrahydrofuran were dried using a Grubbs type solvent purification system (MBraun SPS-800) and degassed by three successive freeze-pumpthaw cycles. 1,2-F₂C₆H₄ (pretreated with alumina) was dried over CaH₂, vacuum distilled and stored over 3 Å molecular sieves. C₆D₆ was dried over Na, vacuum distilled and stored over 3 Å molecular sieves. H₃B·NMeH₂ was purchased from Boron Specialities and recrystallized from Et₂O at -18 °C, except in the case of scale-up experiments where it was used as received. PPh₃ was purchased from Sigma-Aldrich and used as received. (ⁱPr₂PCH₂CH₂)₂NH 10 wt. % in THF was purchased from Sigma Aldrich and freeze pump thaw degassed prior to use. (Cy₂PCH₂CH₂)₂NH was purchased from Sigma Aldrich and used as received. Methylamine (2 M in THF) was purchased from Sigma Aldrich and used as received. CoCl₂ was purchased from Sigma Aldrich and dried under vacuum at 160°C under dynamic vacuum for 48 hours. CoCl₂(ⁱPr₂PCH₂CH₂)₂NH,¹ $CoCl(Cy_2PCH_2CH_2)_2NH^2$ CoCl(ⁱPr₂PCH₂CH₂)₂N,¹ CoCl(ⁱPr₂PCH₂CH₂)₂NH³ and (ⁱPr₂PCH₂CH₂)₂NMe⁴ were prepared by literature methods.

NMR spectra were recorded on a Bruker AVIIIHD 400 nanobay spectrometer at room temperature unless otherwise stated. Residual protio solvent was used as a reference for ¹H NMR spectra in deuterated solvent samples. For NMR spectrometric samples in 1,2-F₂C₆H₄ or protio-THF solvent, ¹H NMR spectra were pre-locked to a sample of C₆D₆ and referenced to the centre of the downfield solvent multiplet, δ = 7.07. ¹¹B NMR spectra were referenced against BF₃·OEt₂ (external) respectively. Chemical shifts are quoted in ppm and coupling constants (*J*) in Hz. Magnetic susceptibility measurements were performed in CD₂Cl₂ according to the Evans NMR method.⁵ Elemental microanalyses were performed at the School of Life Sciences, University of Sussex.

Gel Permeation Chromatography (GPC) was performed on a Malvern Viscotek GPCmax chromatograph fitted with a reference index (RI) detector. The triple-column (plus guard column) setup was contained within an oven (35 °C) and consisted of a porous styrene divinylbenzene copolymer with a maximum pore size of 1,500 Å. THF containing 0.1% w/w (NⁿBu₄)Br was used as the eluent at a flow rate of 1.0 mL min⁻¹. Samples were dissolved in the eluent (2.0 mg mL⁻¹), filtered (0.2 µm pore size) and run immediately. The calibration was conducted using a series of monodisperse polystyrene standards ($M_n = 474-476,000 \text{ gmol}^{-1}$) obtained from Sigma Aldrich.

Synthesis of 3, CoCl₂(ⁱPr₂PCH₂CH₂)₂NMe

Prepared by analogous procedure used for **1** and **2.**^{1,2} The product was isolated as a dark blue powder (80 % yield). All attempts of crystallization were unsuccessful. ¹H NMR (400 MHz, CD₂Cl₂, 298 K): silent. δ ³¹P{¹H} (162 MHz, CD₂Cl₂, 298 K): silent. Magnetic measurement using Evans method of a CD₂Cl₂ sample: μ _{eff} (200 K) = 4.13 μ _B (μ _{SO} = 3.88 μ _B).

Catalytic Dehydropolymerization of H₃B·NMeH₂

Dehydropolymerization Under Open Conditions

In a typical experimental set-up (e.g. 0.223 M [H₃B·NMeH₂], 0.2 mol% catalyst loading), H₃B·NMeH₂ (25.0 mg, 0.557 mmol) was suspended in 2.0 mL of 1,2-F₂C₆H₄. Double the desired amount of catalyst was weighed into a separate flask and dissolved in 1.0 mL of 1,2-F₂C₆H₄. The H₃B·NMeH₂ containing flask was flushed with argon through an exit needle and 0.5 mL of the catalyst solution was added to the reaction mixture quickly followed by 2 equiv. of NMeH₂. The resultant solution was stirred for the desired reaction time at 400 rpm at room temperature. 0.5 mL of the reaction mixture was removed for NMR spectroscopy. The remaining reaction mixture was transferred to 40 mL of rapidly stirred pentane to give an off-white suspension which was isolated by filtration. The off-white solid (H₂BNMeH)_n was dried under vacuum overnight prior to GPC analysis.

Dehydropolymerization Under Hydrogen Evolution Measurement Conditions

In a typical experimental set-up (e.g. 0.223 M [H₃B·NMeH₂], 0.4 mol% catalyst loading), H₃B·NMeH₂ (25.0 mg, 0.557 mmol) was suspended in 4.0 mL of 1,2-F₂C₆H₄ in a jacketed two-neck Schlenk flask connected to a recirculating cooler and the temperature set at 25 °C. Double the desired amount of catalyst was weighed into a separate flask and dissolved in 2.0 mL of 1,2-F₂C₆H₄. The H₃B·NMeH₂-containing flask was sealed off from the Ar supply and connected to a water-filled gas burette. The pre-catalyst solution was added to the reaction mixture followed by 2 equiv. of NMeH₂ and the resultant solution was decanted into 40 mL of rapidly stirred pentane to give an off-white suspension which was isolated by filtration. The off-white solid (H₂BNMeH)_n was dried under vacuum overnight prior to GPC analysis.

Scale-up Dehydropolymerization and Metal-Removal Procedure

In a typical experimental set-up H_3B ·NMeH₂ (e.g. 5 M [H₃B·NMeH₂] in THF) was dissolved in THF. Double the desired amount of catalyst was weighed into a separate flask and dissolved in 1.0 mL of THF. The H_3B ·NMeH₂ containing flask was flushed with argon through an exit needle and 0.5 mL of the catalyst solution was added to the reaction mixture followed by 2 equiv. of NMeH₂. The resultant solution was stirred for the desired reaction time at 400 rpm. 0.5 mL of the reaction mixture was removed for analysis by NMR spectroscopy. The remaining reaction mixture was transferred to 40 mL of rapidly stirred pentane to give an off-white suspension which was isolated by filtration. The off-white solid (H₂BNMeH)_n was dried under vacuum overnight prior to GPC analysis. To remove residual metal catalyst from the isolated polymer, a sample of polymer (500 mg) was dissolved in THF (50 mL) and flash filtered through a silica plug. The solution of polymer was reduced to 5 mL and transferred to rapidly stirring pentane to give an off-white solid (H₂BNMeH)_n was dried under vacuum overnight prior to GPC analysis.

In THF at lower absolute concentration of catalyst (e.g. 0.223 M [$H_3B\cdot NMeH_2$], 0.4 mol% catalyst loading) results in no reaction. This is explained by impurities in the THF (~10 ppm H₂O) titrating out the active catalyst, resulting in reaction only at higher absolute catalysts concentrations.

Ten Gram Scale Dehydropolymerization of H₃B·NMeH₂ catalysed by 1

 H_3B ·NMeH₂ (10 g, 0.22 mol) was dissolved in THF (40 ml) under nitrogen. **1** (20 mg, 46 mmol) was separately dissolved in 5 mL of THF and transferred to the flask containing H_3B ·NMeH₂, followed by the addition of 2 equiv. of NMeH₂ (50 µL). The resultant solution was stirred for 2 h under a high nitrogen flow to remove the large volume of hydrogen produced (5 L). The remaining reaction mixture was transferred to 500 mL of rapidly stirred pentane to give an off-white suspension which was isolated by filtration. The off-white solid (H_2BNMeH)_n was dried under vacuum overnight prior to GPC analysis.

Table S1. H_3B ·NMeH₂ dehydropolymerization conditions and polymer characterisation data using catalyst **2** in 1, 2-F₂C₆H₄

Entry ^a	mol%	M _n /gmol ^{-1 b}	$oldsymbol{D}^b$	Yield/mg (%) ^c
1	0.2	71, 000	1.5	30 (60)
2	0.4	51, 100	1.7	30 (60)
3	0.8	22, 400	1.5	30 (60)

^aGeneral reaction conditions: 0.05 g H₃B·NMeH₂ in 1,2-F₂C₆H₄ (0.224 M), 5 min. ^bRelative to polystyrene standards. ^cApproximate due to transfer losses from reaction flask

Figure S1. Overlaid GPC traces of $(H_2BNMeH)_n$ obtained using **2** in 1,2-F₂C₆H₄ at 0.4 mol% under open (red) and H₂ evolution (blue) conditions. Red trace: $M_n = 51$, 100 gmol⁻¹; $\mathcal{D} = 1.7$. Blue trace: $M_n = 51$, 100 gmol⁻¹; $\mathcal{D} = 1.7$

Figure S2. Overlaid GPC traces of $(H_2BNMeH)_n$ (Table 1, entry 4) immediately after purification (blue) and after storage under air for 1 month (red). Red trace: $M_n = 98$, 250 gmol⁻¹; D = 1.6. Blue trace: $M_n = 98$, 800 gmol⁻¹; D = 1.6

Figure S3. Overlaid ¹¹B NMR spectrum of isolated polyaminoboranes immediately after purification (blue) and after storage under air for 1 month (red).

Figure S4. Overlaid ¹¹B NMR spectrum of isolated polyaminoboranes immediately after purification (blue) and after passing through silica to remove residual cobalt (red).

Synthesis of Key Reaction intermediates

In situ formation of complex 1 for the catalytic dehydropolymerization of $H_3B\cdot NMeH_2$

CoCl₂ (3 mg) was dissolved in THF (1 ml) to which (ⁱPrPCH₂CH₂)₂NH (10 wt% in THF , 7 mg, 62 μ L) was added and left to stir at room temperature for 1 hour. In the catalytic flask H₃B·NMeH₂ was dissolved in THF (4 ml) the flask was flushed with argon through an exit needle and the catalyst solution was added to the reaction mixture followed by 2 equiv. of NMeH₂ (2 M, 25 μ L). The reaction mixture was left to stir for 90 minutes. Following this the remaining reaction mixture was transferred to 40 mL of rapidly stirring pentane to give an off-white suspension which was isolated by filtration. The off-white solid (H₂BNMeH)_n was dried under vacuum overnight prior to GPC analysis

In situ formation of colloidal cobalt nanoparticles for the dehydropolymerization of H₃B·NMeH₂

1.12 g of H₃B·NMeH₂ in 4 mL of THF and 3 mg of CoCl₂ in 1 mL of THF were combined in a flask resulting in a light blue solution. 2 equiv. of NMeH₂ (2 M, 25 μ L) was then added to the flask resulting in an immediate colour change and black precipitate. No significant turnover was observed after 1 h. After the allotted time, (ⁱPrPCH₂CH₂)₂NH (10 wt% in THF, 7 mg, 62 μ L) was added to the reaction mixture and allowed to react for a further 2 hours upon which no further turnover was observed.

Video 1 Explanation

Hydrogen eudiometer measurement from Figure 1 using pre-catalyst **2** (0.223 M $[H_3B\cdot NMeH_2]$, 0.4 mol% catalyst loading, 1,2– $F_2C_6H_4$).

Video 2 Explanation

 $CoCl_2 + 2 NMeH_2 + H_3B \cdot NMeH_2$ (5 M [H₃B·NMeH₂], 0.1 mol% catalyst, THF). Left: time = 0 Right: time = 5 mins.

Final scene: sample of reaction mixture after 1 hour showing magnetic behavior of nanaoparticles.

References

- 1 S. S. Rozenel, R. Padilla and J. Arnold, *Inorg. Chem.*, 2013, **52**, 11544–11550.
- 2 B. Spiegelberg, A. Dell'Acqua, T. Xia, A. Spannenberg, S. Tin, S. Hinze and J. G. de Vries, *Chem. A Eur. J.*, 2019, **25**, 7820–7825.
- 3 S. Werkmeister, K. Junge, B. Wendt, E. Alberico, H. Jiao, W. Baumann, H. Junge, F. Gallou and M. Beller, *Angew. Chemie Int. Ed.*, 2014, **53**, 8722–8726.
- 4 M. Tamizmani and C. Sivasankar, J. Organomet. Chem., 2017, 845, 82–89.
- 5 C. Piguet, J. Chem. Educ., 1997, **74**, 815.