Supporting Information

For

Copper Mediated C(sp²)-H Amination and Hydroxylation of

Phosphinamides

Shang-Zheng Sun,^{+b} Ming Shang,^{+ c} Hui Xu,^a Tai-Jin Cheng,^a Ming-Hong Li,^a Hui-Xiong Dai *, ^a

^{*a*}Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China. ^{*b*} Department of Chemistry, Innovative Drug Research Center, Shanghai University 99 Shangda Road, Shanghai, 200444 (China) ^{*c*}Department of Chemistry, The Scripps Research Institute, 10550N. Torrey Pines Road, La Jolla, California 92037, USA.

CONTENTS:

1.	Gen	eral Information	2
2. Experimental Section		erimental Section	2
	2.1	Preparation of Substrates	.2
	2.2	Procedures for Cu(II)-Mediated Intermolecular C-N bond formation	4
	2.3	Procedures for Cu(II)-Mediated Intermolecular C–O bond formation	4
	2.4	The Procedure for Directing Group Removal	5
	2.5	Comparation of Different Directing Group	. 5
3. Analytical Data		lytical Data	
	3.1	Characterization of Substrates 1a-1j	.5
	3.2	Characterization of products	.9
4.	Refe	eference	
5.	NMR Spectra for New Compounds		25

1. General Information

All commercial reagents were purchased from Alfa Aesar, TCI, Acros and Energy Chemical of the highest purity grade. They were used without further purification unless specified. ¹H and ¹³C NMR spectra were recorded on Agilent AV 400, Varian Inova 400 (400 MHz and 100 MHz, respectively) instruments. The peaks were internally referenced to TMS (0.00 ppm) or residual undeuterated solvent signal. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and br = broad. High resolution mass spectra were recorded at the Center for Mass Spectrometry, Shanghai Institute of Organic Chemistry.

2. Experimental Section

2.1 Preparation of Substrates 1a-11.

2.1.1 Preparation of Substrates 1a;

An diphenylphosphinyl chloride (10 mmol, 1.9 mL), 2-(4,5-dihydrooxazol-2-yl) aniline (12 mmol, 1.94 g) and DMAP (12 mmol, 1.46 g) were added to a 100 mL flask, then dissolved with pyridine (30 mL). The reaction mixture was stirred at 100 °C for 6 h. The solvent was removed in a rotary evaporator and the crude product was recrystallized from EtOAc/Hexane to give colorless crystals of the product.

2.1.2 Preparation of Substrates 1b-1j¹;

Aryl bromide (50 mmol) in THF (30 mL) was added slowly to a stirred THF (100 mL) solution of I_2 (cat.) containing magnesium turnings (1.2 g, 50 mmol), and heated under reflux for 1 hour. Then diethyl phosphate (1.93 ml, 15 mmol) in THF (20 mL) was added slowly under the cooling of an ice-water bath. The obtained mixture was heated under reflux for 1 hour. The resulting reaction mixture was cooled to 0 °C, and hydrochloric acid (50 mL, 6 N) was added slowly upon stirring. The solution was evaporated under reduced pressure at 40 °C. The residue was extracted with EtOAc (100 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo to give crude product **A** which was used directly without purification.

Hydrogen peroxide (30%, 8 mL) was added dropwise to a suspension of **A** in aqueous NaOH (5 N, 15 mL) at 90–100 °C, and the mixture was stirred for 1 hour at 100 °C. After the solution was cooled to 0 °C, hydrochloric acid (conc.) was added dropwise until no white solid was precipitated out. The precipitate was collected by filtration

and washed consecutively with water and Et_2O . Then be dried in vacuo to give the phosphinic acid **B** which was used directly without purification.

A suspension of **B** and thionyl chloride (10 mL) in toluene (30 mL) was heated to 80 $^{\circ}$ C for 3h. After thionyl chloride and toluene was removed under reduced pressure, the residue was re-dissolved in toluene (50 mL) and evaporated to give phosphinic chloride **C**. **C** (10 mmol), 2-(4,5-dihydrooxazol-2-yl)aniline (12 mmol, 1.94g) and DMAP (12 mmol, 1.46g) were added to a 100 mL flask, then dissolved with Pyridine (30 mL). The reaction mixture was stirred at 100 °C for 6 h. The solvent was removed in a rotary evaporator and the crude product was recrystallized from EtOAc/Hexane to give colorless crystals of the product.

2.2 Typical Procedures for Cu(II)-Mediated Intermolecular C-N bond formation

To a 15 mL sealed tube was added substrates **1** (0.1 mmol, 1 equiv), $Cu(OAc)_2$ (0.1 mmol), amine (0.2 mmol), Na_2CO_3 (0.25 mmol), DMSO (1 mL). The reaction mixture was stirred at 100 °C for 6 h under air. After the completion, the mixture was diluted with ethyl acetate, then washed with ammonia water and saturated brine. The organic fraction was dried over Na_2SO_4 , and concentrated in vacuo. The compounds were purified by flash column chromatography on silica gel with a gradient eluent of hexane and ethyl acetate to give the product.

2.3 Typical Procedures for Cu(II)-Mediated Intermolecular C–O bond formation

To a 25 mL Schlenk-type tube which has a Teflon high pressure valve and side arm was added substrates 1 (0.1 mmol, 1 equiv), $Cu(OAc)_2$ (0.1 mmol), Na_2CO_3 (0.1 mmol), DMSO (2 mL). The reaction tube was evacuated and back-filled with O_2 (6 times). Then the reaction mixture was stirred at 80 °C for 6 h. After the completion, the mixture was diluted with ethyl acetate, then washed with ammonia water and saturated brine. The organic fraction was dried over Na_2SO_4 , and concentrated in vacuo. The compounds were purified by flash column chromatography on silica gel with a gradient eluent of hexane and ethyl acetate to give the product.

2.4 The Procedure for Directing Group Removal.

To a 15 mL sealed tube was added 4a (0.1 mmol), KOH (224 mg, 4.0 mmol), EtOH (2 mL). The reaction mixture was stirred at 80 °C for 12 h under air. After the completion, the mixture was washed with H₂O and extracted with EtOAc (20 mL x 3). The organic phase was dried over Na_2SO_4 evaporated and purified by flash column chromatography on silica gel with a gradient eluent of hexane and ethyl acetate to give the directing group with a yield of 93% (15 mg). The water fraction was soured with 1N HCl to PH 3~4, and extracted with EtOAc (20 ml x 3). The organic fraction was dried over Na₂SO₄ evaporated and purified by flash column chromatography on silica gel to get product with a yield of 75% (28 mg). ¹H NMR (400 MHz, DMSO-*d6*) δ 7.83 (d, J = 7.8 Hz, 2H), 7.57 (t, J = 7.2 Hz, 1H), 7.48 (td, J = 18.5, 11.1 Hz, 5H), 7.34 (dd, J = 8.3, 3.6 Hz, 1H), 7.24 (t, J = 7.6 Hz, 3H), 7.12 (t, J = 7.6 Hz, 1H), 6.81 (t, J = 7.4 Hz, 1H); ¹³C NMR (101 MHz, DMSO-*d6*) δ 143.0 (d, J = 129.0 Hz), 140.9 (d, J = 4.8 Hz), 140.6, 134.3 (d, J = 6.9 Hz), 133.9, 133.1, 131.1 (d, J = 8.8 Hz), 130.0 (d, J = 125.8 Hz), 129.6, 128.2, 127.8 (d, J = 11.4 Hz), 127.2, 122.3 (d, J = 10.4 Hz), 116.2 (d, J = 7.7 Hz); ³¹P NMR (162 MHz, DMSO-*d6*) δ 19.7(s, 1P). HRMS (ESI-TOF) m/z Calcd for C₁₈H₁₇NO₄PS [M+H]⁺ 364.0610, found 364.0612.

2.5 Comparation of Different Directing Group

3. Analytical Data

3.1 Characterization of Substrates 1a-1j;

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-P,P-diphenylphosphinic

amide (1a): white solid. ¹H NMR (400 MHz, CDCl₃) δ 10.96 (d, J =

13.2 Hz, 1H), 7.91 (dd, J = 12.1, 7.6 Hz, 4H), 7.79 (d, J = 7.8 Hz, 1H), 7.57 – 7.40 (m, 6H), 7.35 (d, J = 8.3 Hz, 1H), 7.17 (t, J = 7.7 Hz, 1H), 6.86 (t, J = 7.5 Hz, 1H), 4.35 (t, J = 9.5 Hz, 2H), 4.04 (t, J = 9.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 143.0, 132.7 (d, J = 127.7 Hz), 132.2, 131.8 (d, J = 2.8 Hz), 131.6 (d, J = 10.2 Hz), 129.3, 128.6 (d, J = 12.9 Hz), 119.8, 118.2 (d, J = 5.1 Hz), 112.6 (d, J =7.8 Hz), 66.0, 54.5; ³¹P NMR (162 MHz, CDCl₃) δ 18.89 (d, J = 12.2 Hz). HRMS (ESI-TOF) m/z Calcd for C₂₁H₂₀N₂O₂P [M+H]⁺ 363.1257, found 363.1259.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-P,P-di-o-

tolylphosphinic amide (1b): white solid. ¹H NMR (400 MHz, CDCl₃) δ 10.80 (d, J = 13.6 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.73 (dd, J = 14.4, 7.6 Hz, 2H), 7.55 (d, J = 8.3 Hz, 1H), 7.40 (t, J = 7.5 Hz, 2H), 7.28 – 7.16 (m, 5H), 6.86 (t, J = 7.6 Hz, 1H), 4.30 (t, J = 9.5 Hz, 2H), 3.93 (t, J = 9.5 Hz, 2H), 2.52 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 143.5, 142.1 (d, J = 10.0 Hz), 133.1 (d, J = 11.5 Hz), 132.2, 131.9 (d, J = 2.7 Hz), 131.7 (d, J = 11.8 Hz), 130.6(d, J = 123.6 Hz), 129.3, 125.4 (d, J = 13.1 Hz), 119.5, 118.2 (d, J = 4.3 Hz), 112.1 (d, J = 7.8 Hz), 65.9, 54.3, 21.4 (d, J = 4.1 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 21.6 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₃H₂₄N₂O₂P [M+H]⁺ 391.1570, found 391.1571.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-P,P-di-m-

tolylphosphinic amide (1c): white solid. ¹H NMR (400 MHz, CDCl₃) δ 10.96 (d, J = 12.9 Hz, 1H), 7.79 (d, J = 12.9 Hz, 3H), 7.65 (dd, J = 12.3, 6.8 Hz, 2H), 7.35 (d, J = 8.3 Hz, 1H), 7.33 – 7.24 (m, 4H), 7.14 (t, J =7.3 Hz, 1H), 6.82 (t, J = 7.5 Hz, 1H), 4.30 (t, J = 9.4 Hz, 2H), 4.01 (t, J = 9.4 Hz, 2H), 2.34 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 143.0, 138.3 (d, J = 12.9 Hz), 132.5 (d, J = 2.9 Hz), 132. 48 (d, J = 127.1 Hz), 132.1, 132.0, 129.2, 128.4, 128.3 (d, J = 4.6 Hz), 119.6, 118.0 (d, J = 5.1 Hz), 112.4 (d, J = 7.8 Hz), 65.9, 54.3, 21.3; ³¹P

6

NMR (162 MHz, CDCl₃) δ 19.5 (s, 1P). **HRMS** (ESI-TOF) m/z Calcd for C₂₃H₂₄N₂O₂P [M+H]⁺ 391.1570, found 391.1571.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-P,P-di-p-tolylphosphinic amide (1d): white solid. ¹**H NMR** (400 MHz, CDCl₃) ¹**H NMR** (400 MHz, CDCl₃) δ 10.85 (d, J = 12.6 Hz, 1H), 7.78 (dd, 12.0, 8.0 Hz, 4H), 7.76 (d, J = 8.0 Hz, 1H), 7.34 (d, J = 8.3 Hz, 1H), 7.24 (dd, J =

8.1, 2.8 Hz, 4H), 7.17 (t, J = 7.8 Hz, 1H), 6.85 (t, J = 7.6 Hz, 1H), 4.36 (t, J = 9.4 Hz, 2H), 4.05 (t, J = 9.5 Hz, 2H), 2.38 (d, J = 9.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 143.1, 142.1 (d, J = 2.9 Hz), 132.0, 131.5 (d, J = 10.6 Hz), 129.6 (d, J = 130.2 Hz), 129.2 (d, J = 13.3 Hz), 129.2, 119.5, 118.1 (d, J = 5.1 Hz), 112.4 (d, J = 7.6 Hz), 65.9, 54.4, 21.4; ³¹P NMR (162 MHz, CDCl₃) δ 19.3 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₃H₂₄N₂O₂P [M+H]⁺ 391.1570, found 391.1572.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-P,P-bis(3-

methoxyphenyl)phosphinic amide (1e): white solid. ¹H NMR (400 MHz, CDCl₃) δ 10.88 (d, J = 13.1 Hz, 1H), 7.67 (d, J = 7.5Hz, 1H), 7.47 – 7.28 (m, 5H), 7.21 (s, 2H), 7.05 (t, J = 7.4 Hz, 1H), 6.89 (d, J = 7.4 Hz, 2H), 6.72 (t, J = 7.4 Hz, 1H), 4.17 (t, J = 9.3

Hz, 2H), 3.88 (t, J = 9.3 Hz, 2H), 3.65 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 159.4 (d, J = 16.2 Hz), 142. 8, 133.7 (d, J = 127.1 Hz), 133.6, 131.9, 129.6 (d, J = 15.3 Hz), 129.2, 127.4, 123.4 (d, J = 10.0 Hz), 119.7, 117.9, 116.1 (d, J = 11.3 Hz), 112.4 (d, J = 7.8 Hz), 65.8, 55.1, 54.3; ³¹P NMR (162 MHz, CDCl₃) δ 18.9 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₃H₂₄N₂O₄P [M+H]⁺ 423.1468, found 423.1467.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-P,P-bis(4-

methoxyphenyl)phosphinic amide (1f): white solid. ¹H NMR (400 MHz, CDCl₃) δ 10.77 (d, J = 12.8 Hz, 1H), 7.93 – 7.71 (m, 5H), 7.34 (d, J = 8.2 Hz, 1H), 7.17 (t, J = 7.1 Hz, 1H), 6.94 (dd, J

= 8.7, 2.4 Hz, 4H), 6.85 (t, J = 7.6 Hz, 1H), 4.36 (t, J = 9.5 Hz, 2H), 4.04 (t, J = 9.5 Hz, 2H), 3.83 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 162.3 (d, J = 2.9 Hz),

143.2, 133.4 (d, J = 11.6 Hz), 132.1, 129.3, 124.2 (d, J = 135.4 Hz), 119.6, 118.1 (d, J= 5.4 Hz), 114.1 (d, J = 14.0 Hz), 112.4 (d, J = 7.9 Hz), 66.0, 55.2, 54.5; ³¹P NMR (162 MHz, CDCl₃) δ 19.2 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₃H₂₄N₂O₄P [M+H]⁺ 423.1468, found 423.1468.

P,P-bis(4-(tert-butyl)phenyl)-N-(2-(4,5-dihydrooxazol-2-

yl)phenyl)phosphinic amide (1g): white solid. ¹H NMR (400 MHz, CDCl₃) δ 10.86 (d, J = 12.1 Hz, 1H), 7.81 (d, J = 9.5 Hz, 5H), 7.44 (s, 5H), 7.17 (t, J = 6.0 Hz, 1H), 6.84 (t, J = 7.5 Hz, 1H),

4.34 (t, J = 8.5 Hz, 2H), 4.06 (t, J = 8.8 Hz, 2H), 1.29 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 155.1, 143.3, 132.2, 131.4 (d, J = 10.8 Hz), 129.7(d, J = 130.0 Hz), 129.3, 125.6 (d, J = 13.0 Hz), 119.6, 118.3, 112.5 (d, J = 7.7 Hz), 66.0, 54.6, 34.9, 31.1; ³¹P NMR (162 MHz, CDCl₃) δ 18.7 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₉H₃₆N₂O₂P [M+H]⁺ 475.2509, found 475.2510.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-P,P-bis(4-

fluorophenyl)phosphinic amide (1h): white solid. ¹H NMR (400 MHz, CDCl₃) δ 10.97 (d, J = 13.2 Hz, 1H), 7.89 (ddd, J = 12.0, 8.7, 5.6 Hz, 4H), 7.80 (d, J = 7.9 Hz, 1H), 7.29 (t, J = 8.6Hz, 1H), 7.19 (t, J = 8.4 Hz, 1H), 7.15 (td, J = 8.7, 2.3 Hz, 4H), 6.89 (t, J = 7.6 Hz, 1H), 4.38 (t, J = 9.5 Hz, 2H), 4.05 (t, J = 9.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2 (dd, J = 252.2, 3.4 Hz), 165.1 (d, J = 1.5 Hz), 142.7, 134.1 (dd, J = 11.7, 8.8 Hz), 132.3, 129.5, 128.5 (dd, J = 132.8, 3.2 Hz), 120.2, 118.1 (d, J = 5.0 Hz), 116.1 $(dd, J = 21.4, 14.3 \text{ Hz}), 112.6 (d, J = 7.9 \text{ Hz}), 66.1, 54.4; {}^{19}\text{F} \text{ NMR} (375 \text{ MHz}, \text{CDCl}_3)$ δ -69.01 – -136.05 (m, 2F); ³¹P NMR (162 MHz, CDCl₃)δ 16.4 (s, 1p). HRMS (ESI-TOF) m/z Calcd for $C_{21}H_{18}F_2N_2O_2P [M+H]^+$ 399.1068, found 399.1070.

P,P-bis(benzo[d][1,3]dioxol-5-yl)-N-(2-(4,5-dihydrooxazol-2yl)phenyl)phosphinic amide (1i): white solid. ¹H NMR (400 MHz, CDCl₃) δ 10.81 (d, J = 13.2 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.44 (dd, J = 12.6, 8.1 Hz, 2H), 7.36 (d, J = 8.1 Hz, 1H), 7.28 (d, J = 12 Hz, 2H), 7.19 (t, J = 7.4 Hz, 1H), 6.87 (d, J = 4.7 Hz, 3H), 5.99 (s, 4H), 4.36 (t, J = 9.3 Hz, 2H), 4.06 (t, J = 9.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 150.7, 147.9 (d, J = 19.7 Hz), 143.0, 132.1, 129.3, 127.0 (d, J = 11.2 Hz), 125.9 (d, J = 134.2 Hz), 119.8, 118.2 (d, J = 5.2 Hz), 112.5 (d, J = 7.7 Hz), 110.9 (d, J = 13.0 Hz), 108.7 (d, J = 16.3 Hz), 101.5, 66.0, 54.5; ³¹P NMR (162 MHz, CDCl₃) δ 18.7 (s, 1P). **HRMS** (ESI-TOF) m/z Calcd for C₂₃H₂₀N₂O₆P [M+H]⁺ 451.1053, found 451.1056.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-P,P-bis(3-

(trifluoromethyl)phenyl)phosphinic amide (1j): white solid. ¹H NMR (400 MHz, CDCl₃) δ 11.36 (d, J = 13.6 Hz, 1H),

1j 8.28 (d, J = 12.4 Hz, 2H), 8.07 (dd, J = 12.3, 7.8 Hz, 2H), 7.83 (d, J = 7.8 Hz, 1H), 7.79 (d, J = 7.9 Hz, 2H), 7.61 (td, J = 7.7, 2.9 Hz, 2H), 7.28 (d, J = 8.2 Hz, 1H), 7.21 (t, J = 7.7 Hz, 1H), 6.93 (t, J = 7.5 Hz, 1H), 4.43 (t, J = 9.5Hz, 2H), 4.11 (t, J = 9.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3 (d, J = 1.4Hz), 142.1, 134.9 (d, J = 10.1 Hz), 133.6 (d, J = 129.7 Hz), 132.4, 131.4 (dq, J = 32.7, 13.3 Hz), 129.6, 129.5 (d, J = 12.9 Hz), 129.0 – 128.9 (m), 128.5 (dq, J = 11.2, 3.7 Hz), 123.6 (dq, J = 270.7, 1.9 Hz), 120.7, 118.1 (d, J = 5.0 Hz), 112.9 (d, J = 7.9 Hz), 66.3, 54.2; ¹⁹F NMR (375 MHz, CDCl₃) δ -62.8 (s, 6F); ³¹P NMR (162 MHz, CDCl₃) δ 15.3 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₃H₁₈F₆N₂O₂P [M+H]⁺ 499.1005, found 499.1006.

3.2 Characterization of products

N-(2-(((2-(4,5-dihydrooxazol-2-

trifluoroacetamide (3a): white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 12.89 (s, 1H), 11.34 (d, *J* = 13.7 Hz, 1H), 8.59 (dd, *J* = 8.3, 5.1 Hz, 1H), 7.91(dd, *J* = 12.8, 6.8 Hz, 2H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.62 –

7.54 (m, 2H), 7.53 – 7.46 (m, 3H), 7.30 (d, *J* = 8.3 Hz, 1H), 7.19 (td, *J* = 7.6, 1.2 Hz,

yl)phenyl)amino)(phenyl)phosphoryl)phenyl)-2,2,2-

1H), 7.14 (td, J = 7.5, 1.6 Hz, 1H), 6.93 (t, J = 7.6 Hz, 1H), 4.39 (t, J = 9.4 Hz, 2H), 4.06 (td, J = 9.4, 3.6 Hz, 2H); ¹³C **NMR** (100 MHz, CDCl₃) δ 165.1, 155.4 (q, J =37.3 Hz), 141.9, 141.6 (d, J = 5.3 Hz), 133.6 (d, J = 2.3 Hz), 132.7 (d, J = 2.8 Hz), 132.4, 132.3, 131.3(d, J = 131.0 Hz), 131.1 (d, J = 10.5 Hz), 129.6, 129.0 (d, J = 13.3Hz), 125.1 (d, J = 12.5 Hz), 121.6 (d, J = 8.7 Hz), 120.8, 119.3, 118.2 (d, J = 5.2 Hz), 115.8 (q, J = 287.2 Hz), 112.9 (d, J = 8.1 Hz), 66.2, 54.3; ¹⁹F **NMR** (375 MHz, CDCl₃) δ -75.9 (s, 3F); ³¹P **NMR** (162 MHz, CDCl₃) δ 23.7 (s, 1P). **HRMS** (ESI-TOF) m/z Calcd for C₂₃H₂₀F₃N₃O₃P [M+H]⁺ 474.1189, found 474.1190.

N-(2-(((2-(4,5-dihydrooxazol-2-yl)phenyl)amino)(o-Me tolyl)phosphoryl)-3-methylphenyl)-2,2,2-trifluoroacetamide (3b): ×0 white solid. ¹H NMR (400 MHz, CDCl₃) δ 14.17 (s, 1H), 11.40 (d, J NHCOCF₃ = 14.3 Hz, 1H), 8.66 (dd, J = 8.4, 4.3 Hz, 1H), 7.83 (d, J = 7.9 Hz, 3b 1H), 7.63 (dd, J = 15.1, 7.2 Hz, 1H), 7.53 – 7.40 (m, 3H), 7.35 – 7.17 (m, 3H), 6.95 (dd, J = 13.9, 6.1 Hz, 2H), 4.48 - 4.22 (m, 2H), 4.19 - 3.86 (m, 2H), 2.55 (s, 3H),2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 155.6 (g, J = 36.9 Hz), 143.9 (d, J = 5.3 Hz), 142.3, 142.2, 141.7 (d, J = 8.6 Hz), 133.4 (d, J = 2.0 Hz), 132.6 (d, J = 2.8Hz), 132.6, 132.4 (d, J = 12.4 Hz), 131.4 (d, J = 12.4 Hz), 130.9, 129.6, 128.7 (d, J = 11.1 Hz), 125.6 (d, J = 13.8 Hz), 120.5, 119.6 (d, J = 8.5 Hz), 117.6 (d, J = 4.6 Hz), 116.0(q, J = 287.0 Hz), 115.9 (d, J = 115.7 Hz), 112.4 (d, J = 8.2 Hz), 66.2, 54.3, 22.7(d, J = 5.2 Hz), 21.0 (d, J = 5.1 Hz); ¹⁹F NMR (375 MHz, CDCl₃) δ -75.8 (s, 3F);

³¹P NMR (162 MHz, CDCl₃) δ 28.3 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₅H₂₄F₃N₃O₃P [M+H]⁺ 502.1502, found 502.1504.

N-(2-(((2-(4,5-dihydrooxazol-2-yl)phenyl)amino)(m-

tolyl)phosphoryl)-4-methylphenyl)-2,2,2-trifluoroacetamide (3c): white solid. ¹H NMR (400 MHz, CDCl₃) δ 12.82 (s, 1H), 11.30 (d, *J* = 13.3 Hz, 1H), 8.47 (dd, *J* = 8.5, 5.3 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.76 (d, *J* = 13.1 Hz, 1H), 7.64 (dt, *J* = 9.0, 4.0

Hz, 1H), 7.36 (ddd, J = 11.0, 6.0, 2.2 Hz, 3H), 7.29 – 7.18 (m, 2H), 6.93 (ddd, J = 8.2,

6.9, 1.6 Hz, 1H), 4.41 (t, J = 9.5 Hz, 2H), 4.17 – 4.02 (m, 2H), 2.40 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1 (d, J = 1.4 Hz), 155.2 (q, J = 37.4 Hz), 142.0, 139.1 (d, J = 5.4 Hz), 138.9 (d, J = 13.2 Hz), 134.8 (d, J = 12.3 Hz), 134.3 (d, J = 2.4 Hz), 133.5 (d, J = 3.0 Hz), 132.4, 132.3, 131.3 (d, J = 130.3 Hz), 131.7 (d, J = 10.4 Hz), 129.5, 128.9 (d, J = 14.1 Hz), 128.1 (d, J = 10.5 Hz), 121.5 (d, J = 9.3 Hz), 120.6, 119.3, 118.1 (d, J = 5.3 Hz), 115.9 (q, J = 288.5 Hz), 112.9 (d, J = 8.0 Hz), 66.2, 54.3, 21.5, 21.0; ¹⁹F NMR (375 MHz, CDCl₃) δ -75.9 (s, 3F); ³¹P NMR (162 MHz, CDCl₃) δ 24.9 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₅H₂₄F₃N₃O₃P [M+H]⁺ 502.1502, found 502.1503.

N-(2-(((2-(4,5-dihydrooxazol-2-yl)phenyl)amino)(ptolyl)phosphoryl)-5-methylphenyl)-2,2,2-trifluoroacetamide

(3d): white solid. ¹H NMR (400 MHz, CDCl₃) δ 12.86 (s, 1H), ¹H_e ³d 11.20 (d, J = 13.4 Hz, 1H), 8.42 (d, J = 4.6 Hz, 1H), 7.81(d, 10.0 Hz, 1H), 7.78 (dd, 12.4, 8.0 Hz, 2H), 7.42 (dd, J = 14.1, 7.9 Hz, 1H), 7.30 – 7.26(m, 3H), 7.21 (t, J = 7.8 Hz, 1H), 6.98 – 6.88 (m, 2H), 4.38 (t, J = 9.4 Hz, 2H), 4.19 – 3.93 (m, 2H), 2.37 (d, J = 12.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 155.3 (q, J = 37.3 Hz), 144.5 (d, J = 2.4 Hz), 143.3 (d, J = 2.9 Hz), 142.1, 141.5 (d, J = 5.7Hz), 132.3, 132.2 (d, J = 8.8 Hz), 131.1 (d, J = 10.8 Hz), 129.7 (d, J = 13.7 Hz), 129.5, 128.4 (d, J = 134.5 Hz), 125.9 (d, J = 12.8 Hz), 122.1 (d, J = 9.1 Hz), 120.6, 118.2 (d, J = 5.3 Hz), 115.9 (q, J = 287.1 Hz), 115.8 (d, J = 124.2 Hz), 112.9 (d, J = 8.0 Hz), 66.2, 54.4, 21.9, 21.6; ¹⁹F NMR (375 MHz, CDCl₃) δ -76.0 (s, 3F); ³¹P NMR (162 MHz, CDCl₃) δ 25.0 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₅H₂₄F₃N₃O₃P [M+H]⁺ 502.1502, found 502.1503.

N-(2-(((2-(4,5-dihydrooxazol-2-yl)phenyl)amino)(3methoxyphenyl)phosphoryl)-4-methoxyphenyl)-2,2,2-

trifluoroacetamide (3e): white solid. ¹H NMR (400 MHz,

 $CDCl_3$) δ 13.05 (s, 1H), 11.11 (d, J = 13.2 Hz, 1H), 8.25 (dd, J =

4.2, 2.4 Hz, 1H), 7.81 (ddd, *J* = 12.2, 6.2, 2.0 Hz, 3H), 7.43 (dd, *J* = 13.7, 8.7 Hz, 1H),

7.28 (d, J = 8.4 Hz, 1H), 7.22 (dt, J = 7.8, 1.6 Hz, 1H), 6.98 (dd, J = 8.8, 2.7 Hz, 2H), 6.92 (dt, 7.9, 1.2 Hz, 1H), 6.66 (dt, J = 8.7, 2.1 Hz, 1H), 4.39 (t, J = 9.5 Hz, 2H), 4.06 (dd, J = 14.0, 6.0 Hz, 2H), 3.84 (d, J = 3.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0 (d, J = 1.5 Hz), 163.4 (d, J = 2.6 Hz), 162.9 (d, J = 3.0 Hz), 155.5 (q, J = 37.9Hz), 143.4 (d, J = 6.7 Hz), 142.2, 133.6 (d, J = 9.8 Hz), 133.1, 133.0, 132.4, 129.5, 123.1 (d, J = 139.6 Hz), 120.5, 118.2 (d, J = 5.4 Hz), 115.8 (q, J = 287.1 Hz), 114.5 (d, J = 14.3 Hz), 112.8 (d, J = 8.0 Hz), 112.0 (d, J = 13.2 Hz), 110.7 (d, J = 91.5 Hz), 110.0(d, J = 128.6 Hz), 106.1 (d, J = 9.8 Hz), 66.2, 55.5, 55.4, 54.4; ¹⁹F NMR (375 MHz, CDCl₃) δ -76.0 (s, 3F); ³¹P NMR (162 MHz, CDCl₃) δ 24.7 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₅H₂₄F₃N₃O₅P [M+H]⁺ 534.1400, found 534.1402.

N-(2-(((2-(4,5-dihydrooxazol-2-yl)phenyl)amino)(4-

methoxyphenyl)phosphoryl)-5-methoxyphenyl)-2,2,2-

trifluoroacetamide (3f): white solid. ¹H NMR (400 MHz, CDCl₃) δ 13.05 (s, 1H), 11.12 (d, J = 13.3 Hz, 1H), 8.25 (s, 1H), 7.85 - 7.76 (m, 3H), 7.43 (dd, J = 13.7, 8.7 Hz, 1H), 7.28 (t, J =

6.8 Hz, 1H), 7.21 (t, J = 7.7 Hz, 1H), 6.98 (dd, J = 8.3, 1.9 Hz, 2H), 6.91 (t, J = 7.6 Hz, 1H), 6.66 (d, J = 8.6 Hz, 1H), 4.37 (t, J = 9.5 Hz, 2H), 4.05 (t, J = 9.8 Hz, 2H), 3.83 (d, J = 3.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0 , 163.3 (d, J = 2.6 Hz), 162.9 (d, J = 3.0 Hz), 155.5 (q, J = 3.0 Hz), 143 (d, J = 6.7 Hz), 142.1, 133.6 (d, J = 9.8 Hz), 133.0 (d, J = 11.9 Hz), 132.3, 129.5, 1232.0 (d, J = 139.6 Hz), 120.5, 118.1 (d, J = 5.4 Hz), 115.8 (q, J = 286.9 Hz), 114.5 (d, J = 14.4 Hz), 112.8 (d, J = 8.0 Hz), 111.9 (d, J = 13.2 Hz), 110.0(d, J = 129.2 Hz), 106.2 (d, J = 9.7 Hz), 66.2, 55.5, 55.3, 54.4; ¹⁹F NMR (375 MHz, CDCl₃) δ -24.7 (s, 3F); ³¹P NMR (162 MHz, CDCl₃) δ 25.15 – 24.30 (m, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₅H₂₄F₃N₃O₅P [M+H]⁺ 534.1400, found 534.1401.

CDCl₃) δ 12.89 (s, 1H), 11.21 (d, J = 13.6 Hz, 1H), 8.68 (dd, J = 4.7, 1.5 Hz, 1H), 7.84 (t, J = 8.4 Hz, 2H), 7.82 (d, J = 8.4 Hz, 1H), 7.51 (dd, J = 8.4, 3.2 Hz, 2H), 7.47 (d, J = 8.2 Hz, 1H), 7.35 (d, J = 8.3 Hz, 1H), 7.23 (td, J = 7.8, 1.6 Hz, 1H), 7.15 (td, J = 2.0, 8.4 Hz, 1H), 6.92 (t, J = 7.6 Hz, 1H), 4.40 (t, J = 9.3 Hz, 2H), 4.12 – 4.07 (m, 2H), 1.31 (d, J = 9.5 Hz, 18H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.1 (d, J = 1.5 Hz), 157.5 (d, J = 2.4 Hz), 156.2 (d, J = 2.9 Hz), 155.4 (q, J = 37.4 Hz), 142.2, 141.5 (d, J = 5.7 Hz), 132.4, 132.0 (d, J = 8.8 Hz), 131.0 (d, J = 10.8 Hz), 129.5, 128.5 (d, J = 134.3 Hz), 126.0 (d, J = 13.5 Hz), 122.2 (d, J = 12.6 Hz), 120.6, 118.9 (d, J = 8.9 Hz), 118.3 (d, J = 5.2 Hz), 115.9 (q, J = 287.2 Hz), 115.9 (d, J = 123.9 Hz), 112.9 (d, J = 8.0 Hz), 66.2, 54.5, 35.3, 35.1 (d, J = 0.9 Hz), 31.0, 30.9; ³¹P **NMR** (162 MHz, CDCl₃) δ 24.0 (s, 1P). **HRMS** (ESI-TOF) m/z Calcd for C₃₁H₃₆F₃N₃O₃P [M+H]⁺ 586.2441, found 586.2442.

N-(2-(((2-(4,5-dihydrooxazol-2-yl)phenyl)amino)(4fluorophenyl)phosphoryl)-5-fluorophenyl)-2,2,2-

trifluoroacetamide (3h): white solid. ¹**H** NMR (400 MHz, NHCOCF₃ CDCl₃) δ 13.04 (s, 1H), 11.37 (d, J = 13.9 Hz, 1H), 8.43 (ddd, J = 11.3, 4.0, 2.5 Hz, 1H), 7.91 (ddd, J = 12.2, 8.7, 5.4 Hz, 1H),

7.84 (d, J = 7.9 Hz, 1H), 7.61 – 7.50 (m, 1H), 7.29 – 7.14 (m, 4H), 6.96 (ddd, J = 8.2, 6.0, 2.5 Hz, 1H), 6.91 – 6.83 (m, 1H), 4.41 (t, J = 9.5 Hz, 2H), 4.16 – 3.99 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5 (dd, J = 253.9, 3.5 Hz), 165.4 (dd, J = 252.4, 3.0 Hz), 165.1 (d, J = 1.5 Hz), 155.5 (q, J = 38.3 Hz), 143.6 (dd, J = 12.4, 6.9 Hz), 141.5, 134.3 (d, J = 20.0 Hz), 134.3, 133.8 (d, J = 8.9 Hz), 133.7 (d, J = 9.0 Hz), 132.5, 129.7, 127.2 (dd, J = 136.6, 3.4 Hz), 121.1, 118.1 (d, J = 5.3 Hz), 116.6 (dd, J = 21.4, 14.6 Hz), 115.6 (q, J = 287.0 Hz), 114.1 (dd, J = 125.3, 3.4 Hz), 113.0 (d, J = 8.3 Hz), 112.5 (dd, J = 21.9, 13.5 Hz), 109.4 (dd, J = 27.8, 9.9 Hz), 66.3, 54.3; ¹⁹F NMR (375 MHz, CDCl₃) δ -76.00 (s, 3F), -101.35 – -101.87 (m, 1F), -104.81 (ddd, J = 7.0, 3.2, 1.5 Hz, 1F); ³¹P NMR (162 MHz, CDCl₃) δ 23.0 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₃H₁₈F₅N₃O₃P [M+H]⁺ 510.1000, found 510.1003.

N-(6-(benzo[d][1,3]dioxol-5-yl((2-(4,5-dihydrooxazol-2yl)phenyl)amino)phosphoryl)benzo[d][1,3]dioxol-5-yl)-

2,2,2-trifluoroacetamide (3i): white solid. ¹H NMR (400
CF₃ MHz, CDCl₃) δ 12.91 (s, 1H), 11.16 (d, J = 13.6 Hz, 1H), 8.18 (d, J = 4.4 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.43 (dd, J = 13.5,

8.0 Hz, 1H), 7.27 (m, 3H), 7.02 – 6.86 (m, 3H), 6.03 (s, 2H), 5.98 (d, J = 5.6 Hz, 2H), 4.40 (t, J = 9.4 Hz, 2H), 4.19 – 3.99 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 155.1 (q, J = 38.4 Hz), 151.6 (d, J = 2.7 Hz), 151.5 (d, J = 3.1 Hz), 148.4 (d, J =20.4 Hz), 144.8 (d, J = 18.5 Hz), 141.9, 137.8 (d, J = 5.8 Hz), 132.5, 129.6, 126.9 (d, J = 11.5 Hz), 124.4 (d, J = 138.4 Hz), 120.8, 118.2 (d, J = 5.2 Hz), 115.9(q, J = 288.0Hz), 113.0 (d, J = 8.1 Hz), 111.1 (d, J = 127.1 Hz), 110.3 (d, J = 13.3 Hz), 110.3 (d, J =10.9 Hz), 109.1 (d, J = 16.7 Hz), 103.4 (d, J = 11.5 Hz), 102.2, 101.8, 66.3, 54.4; ¹⁹F NMR (375 MHz, CDCl₃) δ -75.9 (s, 3F); ³¹P NMR (162 MHz, CDCl₃) δ 23.7 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₅H₂₀F₃N₃O₇P [M+H]⁺ 562.0985, found 562.0987.

N-(6-(benzo[d][1,3]dioxol-5-yl((2-(4,5-dihydrooxazol-2yl)phenyl)amino)phosphoryl)benzo[d][1,3]dioxol-5-yl)-2,2,2-trifluoroacetamide (3i'): white solid. ¹H NMR (400

MHz, CDCl₃) δ 11.0 (s, 1H), 11.0 (d, *J* = 13.6 Hz, 1H), 7.83

(d, J = 7.9 Hz, 1H), 7.40 (ddd, J = 13.7, 8.0, 1.3 Hz, 1H), 7.33 (d, J = 8.3 Hz, 1H), 7.28 – 7.19 (m, 2H), 7.08 (dd, J = 14.3, 8.0 Hz, 1H), 6.94 (t, J = 7.3 Hz, 1H), 6.90 (dd, J = 8.0, 2.9 Hz, 1H), 6.70 (dd, J = 8.0, 2.1 Hz, 1H), 6.11 (dd, J = 11.0, 0.9 Hz, 2H), 6.03 (dd, J = 4.3, 1.0 Hz, 2H), 4.38 (t, J = 9.5 Hz, 2H), 4.14 – 3.95 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 165.1, 154.1 (q, J = 37.9 Hz), 152.7 (d, J = 2.7 Hz), 151.5 (d, J = 3.1 Hz), 148.3 (d, J = 20.3 Hz), 142.2, 142.0 (d, J = 15.3 Hz), 132.3, 129.6, 127.1 (d, J = 9.5 Hz), 127.0 (d, J = 11.8 Hz), 124.1 (d, J = 137.1 Hz), 120.7 (d, J = 8.3 Hz), 120.6, 118.4 (d, J = 4.9 Hz), 117.6 (d, J = 129.2 Hz), 115.8 (q, J = 288.4 Hz), 112.8 (d, J = 8.1 Hz), 110.5 (d, J = 13.6 Hz), 109.0 (d, J = 129.2 Hz), 16.8 Hz), 106.6 (d, J = 15.4 Hz), 102.5, 101.8, 66.3, 54.4; ¹⁹F NMR (375 MHz, CDCl₃) δ -75.4 (s, 3F); ³¹P NMR (162 MHz, CDCl₃) δ 22.4 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₅H₂₀F₃N₃O₇P [M+H]⁺ 562.0985, found 562.0988.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(2nitrophenylsulfonamido)benzamide (4a): white solid. ¹H NMR (400 MHz, CDCl₃) δ 11.45 (s, 1H), 11.07 (d, *J* = 13.6 Hz, 1H), 7.89 (d, *J* = 8.2 Hz, 2H), 7.84 (dd, *J* = 8.3, 5.2 Hz, 1H), 7.78 (d, *J* = 7.9 Hz, 1H), 7.70 (dd, *J* = 12.7,

8.0 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.46 – 7.27 (m, 7H), 7.16 – 7.07 (m, 2H), 6.91 (ddd, J = 12.0, 11.0, 4.9 Hz, 2H), 4.36 (t, J = 9.4 Hz, 2H), 4.00 (t, J = 9.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 143.4 (d, J = 5.7 Hz), 142.0, 139.6, 133.6 (d, J = 2.2 Hz), 132.7 (d, J = 9.2 Hz), 132.6, 132.4 (d, J = 11.5 Hz), 132.4 (d, J = 2.7 Hz), 132.2, 131.1, 131.0 (d, J = 10.6 Hz), 129.4, 129.0, 128.9 (d, J = 14.2 Hz), 128.7, 127.3, 126.3, 123.4 (d, J = 12.7 Hz), 120.5, 119.8 (d, J = 8.9 Hz), 118.0 (d, J = 5.3 Hz), 117.0 (d, J = 123.0 Hz), 112.8 (d, J = 8.0 Hz), 66.2, 54.3; ³¹P NMR (162 MHz, CDCl₃) δ 24.3 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₇H₂₅N₃O₄PS [M+H]⁺ 518.1298, found 518.1298.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(4-

nitrophenylsulfonamido)benzamide (4b): white solid. ¹**H NMR** (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 11.39 (s, 1H), 10.99 (d, *J* = 13.3 Hz, 1H), 7.87 (dd, *J* = 8.2, 5.3 Hz, 1H), 7.79 (d, *J* = 7.8 Hz, 1H),

7.74 (d, J = 8.7 Hz, 2H), 7.62 (dd, J = 12.7, 7.2 Hz, 2H), 7.56 (t, J = 7.0 Hz, 1H), 7.48 – 7.38 (m, 3H), 7.34 (dd, J = 14.3, 7.7 Hz, 1H), 7.20 – 7.10 (m, 4H), 7.00 (t, J = 7.5 Hz, 1H), 6.91 (dd, J = 10.3, 4.1 Hz, 1H), 4.36 (t, J = 9.1 Hz, 2H), 3.97 (t, J = 9.5 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 165.0, 143.2 (d, J = 5.7 Hz), 142.1, 139.0, 138.2, 133.7, 132.8 (d, J = 9.1 Hz), 132.5 (d, J = 2.8 Hz), 132.3, 131.6 (d, J = 131.3 Hz), 131.0 (d, J = 10.5 Hz), 129.5, 129.0, 128.8 (d, J = 13.4 Hz), 128.7, 123.9 (d, J = 12.5 Hz), 129.0 (d, J = 9.0 Hz), 120.6, 118.0 (d, J = 5.2 Hz), 117.8 (d, J = 122.7 Hz), 112.8 (d, J = 8.1 Hz), 66.2, 54.3; ³¹P NMR (162 MHz, CDCl₃) δ 24.7 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₇H₂₄ClN₃O₄PS [M+H]+552.0908, found 552.0908.

2-(4-bromophenylsulfonamido)-N-(2-(4,5dihydrooxazol-2-yl)phenyl)benzamide (4c): white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 11.39 (s, 1H), 10.99 (d, *J* = 13.8 Hz, 1H), 7.87 (dd, *J* = 8.1, 4.9 Hz, 1H), 7.80 (d, *J* = 7.8 Hz, 1H), 7.70 – 7.53 (m, 5H), 7.47

-7.38 (m, 3H), 7.38 -7.30 (m, 3H), 7.19 -7.10 (m, 2H), 7.04 -6.96 (m, 1H), 6.91 (ddd, J = 8.3, 6.3, 2.1 Hz, 1H), 4.50 -4.19 (m, 2H), 3.97 (t, J = 9.5 Hz, 2H); ¹³C **NMR** (151 MHz, CDCl₃) δ 165.0, 143.1 (d, J = 5.6 Hz), 142.0, 138.7, 133.6, 132.8 (d, J = 9.0 Hz), 132.5 (d, J = 2.8 Hz), 132.3, 132.0, 131.9, 131.0 (d, J = 10.6 Hz), 129.5, 128.9, 128.8, 127.6, 123.9 (d, J = 12.5 Hz), 121.0 (d, J = 8.8 Hz), 120.6, 118.2, 118.0 (d, J = 5.2 Hz), 104.1, 66.2, 54.3; ³¹P NMR (162 MHz, CDCl₃) δ 25.3 (s, 1P). **HRMS** (ESI-TOF) m/z Calcd for C₂₇H₂₄BrN₃O₄PS [M+H]⁺ 596.0403, found 596.0402.

2-(3-(1-benzyl-1H-pyrazol-4-

yl)phenylsulfonamido)-N-(2-(4,5-dihydrooxazol-2yl)phenyl)benzamide (4d): white solid. ¹H NMR (400 MHz, CDCl₃) δ 11.57 (s, 1H), 11.05 (d, *J* = 12.5 Hz, 1H), 7.95 (d, *J* = 8.2 Hz, 2H), 7.89 (dd, *J* = 8.2,

5.2 Hz, 1H), 7.79 (d, J = 7.9 Hz, 1H), 7.62 (dd, J = 12.8, 7.7 Hz, 2H), 7.55 – 7.32 (m, 7H), 7.13 (q, J = 8.4 Hz, 2H), 7.01 (t, J = 7.5 Hz, 1H), 6.90 (t, J = 7.2 Hz, 1H), 4.35 (t, J = 9.5 Hz, 2H), 3.96 (t, J = 9.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 143.2, 142.8 (d, J = 5.6 Hz), 141.9, 134.0 (d, J = 33.0 Hz), 133.7 (d, J = 2.2 Hz), 132.8 (d, J = 9.0 Hz), 132.6 (d, J = 2.8 Hz), 132.2, 132.1, 130.9 (d, J = 10.6 Hz), 129.5, 128.7 (d, J = 13.3 Hz), 127.7, 125.8 (q, J = 3.5 Hz), 124.0 (d, J = 12.5 Hz), 123.1 (q, J = 271.6 Hz), 120.7, 120.6 (d, J = 9.1 Hz), 117. 9 (d, J = 5.2 Hz), 117.7 (d, J = 121.8 Hz), 112.8 (d, J = 8.2 Hz), 66.2, 54.3; ¹⁹F NMR (375 MHz, CDCl₃) δ -63.1 (s, 3F); ³¹P

NMR (162 MHz, CDCl₃) δ 25.1 (s, 1P). **HRMS** (ESI-TOF) m/z Calcd for C₂₈H₂₄F₃N₃O₄PS [M+H]⁺ 586.1172, found 586.1174.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(2,2,2-

trifluoroacetamido)benzamide (4e): white solid. ¹**H NMR** (400 MHz, CDCl₃)δ 11.23 (d, *J* = 13.8 Hz, 1H), 10.93 (s, 1H), 7.91 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.82 (d, *J* = 7.9 Hz, 1H), 7.75 (dd, *J* = 8.3, 5.2 Hz, 1H), 7.60 – 7.42 (m, 5H), 7.33 (d, *J* = 8.2

Hz, 1H), 7.25 – 7.18 (td, J = 7.8, 1.6 Hz, 1H), 7.06 (td, J = 7.6, 2.4 Hz, 1H), 6.93 (t, J = 7.6 Hz, 1H), 4.38 (t, J = 9.4 Hz, 2H), 4.04 (td, J = 9.4, 2.9 Hz, 2H), 2.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 143.3 (d, J = 5.8 Hz), 142.0, 133.8 (d, J = 2.2 Hz), 132.8 (d, J = 8.9 Hz), 132.6 (d, J = 2.9 Hz), 132.3, 131.6 (d, J = 130.3 Hz), 131.2 (d, J = 10.4 Hz), 129.5, 128.9 (d, J = 13.3 Hz), 123.5 (d, J = 12.5 Hz), 120.7, 119.7 (d, J = 8.9 Hz), 118.2 (d, J = 5.2 Hz), 117.8 (d, J = 122.5 Hz), 112.8 (d, J = 8.0 Hz), 66.2, 54.3, 39.7; ³¹P NMR (162 MHz, CDCl₃) δ 24.3 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₂H₂₃N₃O₄PS [M+H]⁺ 456.1141, found 456.1142.

N-(2-((2-(4,5-dihydrooxazol-2-

yl)phenyl)carbamoyl)phenyl)-2,3,4,5,6-

pentafluorobenzamide (4f): white solid. ¹H NMR (400 MHz, CDCl₃) δ 11.54 (brs, 2H), 7.89 (dd, J = 12.7, 7.6 Hz, 2H), 7.81 (d, J = 7.9 Hz, 1H), 7.78 (dd, J = 8.4, 5.2 Hz, 1H),

7.57 (dd, J = 10.5, 4.3 Hz, 1H), 7.46 (dt, J = 20.5, 7.9 Hz, 4H), 7.26 (t, J = 4.1 Hz, 1H), 7.18 (t, J = 7.6 Hz, 1H), 7.05 (t, J = 6.8 Hz, 1H), 6.91 (t, J = 7.6 Hz, 1H), 4.57 – 4.27 (m, 2H), 4.11 – 3.97 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.0, 141.9, 133.8 (d, J = 2.2 Hz), 132.8, 132.7 (d, J = 4.8 Hz), 132.4 , 131.2 (d, J = 10.6 Hz), 131.0 (d, J = 131.7 Hz), 129.6, 128.9 (d, J = 13.4 Hz), 124.0 (q, J = 15.2 Hz), 124.0 (d, J = 8.2 Hz), 120.7, 120.0 (d, J = 321.8 Hz), 119.8 (d, J = 8.2 Hz), 118.0 (d, J = 5.3 Hz), 117.9, 112.9 (d, J = 8.2 Hz), 66.3, 54.3; ¹⁹**F NMR** (375 MHz, CDCl₃) δ -76.4 (s,

3F); ³¹**P** NMR (162 MHz, CDCl₃) δ 26.0 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₂H₂₀F₃N₃O₄PS [M+H]⁺ 510.0859, found 510.0860.

N-(2-((2-(4,5-dihydrooxazol-2-

yl)phenyl)carbamoyl)phenyl)-3,5-dinitrobenzamide (4g): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 11.20 (d, J = 13.6 Hz, 1H), 9.74 (s, 1H), 8.30-8.11 (m, 1H), 8.07 (dd, J = 8.4, 1.6 Hz, 1H), 7.92 – 7.78 (m, 2H), 7.67 (dt, J = 8.0, 1.6

Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.48-7.43 (m, 2H), 7.42 – 7.30 (m, 4H), 7.19 (td, J = 8.0, 1.6 Hz, 1H), 7.02 (ddd, J = 8.0, 7.2, 1.6 Hz, 1H), 6.86 (td, J = 8.0, 1.2 Hz, 1H), 6.68 (ddd, J = 8.0, 7.2, 1.6 Hz, 1H), 6.55 (dd, J = 8.8, 1.2 Hz, 1H), 4.38-4.25 (m, 2H), 4.05-3.88 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 164.9, 142.3 (d, J = 109.8 Hz), 142.2 (d, J = 5.5 Hz), 135.2 (d, J = 8.0 Hz), 134.7, 134.3, 133.2 (d, J = 2.0 Hz), 132.0 (d, J = 130.5 Hz), 132.1, 132.0 (d, J = 2.8 Hz), 131.0 (d, J = 10.8 Hz), 129.4, 128.7 (d, J = 13.3 Hz), 126.6 (d, J = 121.9 Hz), 125.9, 125.4 (d, J = 8.5 Hz), 125.2 (d, J = 12.1 Hz), 119.9, 117.88 (d, J = 4.9 Hz), 117.4 (d, J = 129.2 Hz), 112.5 (d, J = 8.0 Hz), 66.0, 54.3; ³¹**P NMR** (162 MHz, CDCl₃) δ 18.1 (s, 1P). **HRMS** (ESI-TOF) m/z Calcd for C₂₇H₂₄N₄O₄P [M+H]⁺ 499.1530, found 499.1531.

2-chloro-N-(2-((2-(4,5-dihydrooxazol-2-

yl)phenyl)carbamoyl)phenyl)-6-nitrobenzamide (4h): yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 11.14 (d, J = 13.4 Hz, 1H), 9.75 (s, 1H), 8.09 (d, J = 9.1 Hz, 2H), 7.88 – 7.81 (m, 3H), 7.58 – 7.48 (m, 3H), 7.48 – 7.40 (m,

3H), 7.38 (d, J = 8.3 Hz, 1H), 7.22 (dd, J = 11.4, 4.3 Hz, 1H), 7.09 (d, J = 9.2 Hz, 2H), 6.98 (td, J = 7.2, 1.6 Hz, 1H), 6.92 (td, J = 7.6, 0.8 Hz, 1H), 4.37 (t, J = 9.5 Hz, 2H), 4.03 (t, J = 9.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 148.7, 145.6 (d, J = 6.2 Hz), 142.4, 140.3, 133.3 (d, J = 9.1 Hz), 133.3 (d, J = 2.2 Hz), 132.4(d, J = 2.8 Hz), 132.3, 131.7 (d, J = 129.3 Hz), 131.1 (d, J = 10.5 Hz), 129.6, 128.8 (d, J = 13.2 Hz), 125.9, 122.1 (d, J = 12.6 Hz), 120.4, 119.5 (d, J = 123.9 Hz), 119.2 (d, J = 9.2 Hz Hz), 118.2 (d, J = 5.1 Hz), 115.6, 112.8, 66.2, 54.4; ³¹**P** NMR (162 MHz, CDCl₃) δ 24.4 (s, 1P). **HRMS** (ESI-TOF) m/z Calcd for C₂₇H₂₄N₄O₄P [M+H]⁺ 499.1530, found 499.1530.

4-chloro-N-(2-((2-(4,5-dihydrooxazol-2-

yl)phenyl)carbamoyl)phenyl)picolinamide (4i): red solid. ¹H NMR (400 MHz, CDCl₃) δ 11.16 (d, *J* = 13.4 Hz, 1H), 9.63 (s, 1H), 7.90 (dd, *J* = 12.8, 7.2 Hz, 2H), 7.82 (d, *J* = 7.9 Hz, 1H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.53 –

7.42 (m, 3H), 7.39 (d, J = 8.1 Hz, 2H), 7.24 (dd, J = 13.2, 5.9 Hz, 1H), 6.94 (dd, J = 7.6, 2.4 Hz, 2H), 6.83 (dd, J = 8.3, 4.3 Hz, 1H), 4.37 (t, J = 9.4 Hz, 2H), 4.03 (t, J = 9.5 Hz, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.0, 145.7 (d, J = 5.7 Hz), 142.5, 133.1 (d, J = 1.9 Hz), 132.7(d, J = 9.1 Hz), 132.4 (d, J = 2.7 Hz), 132.3, 131.6 (d, J = 13.1 Hz), 131.3 (d, J = 10.6 Hz), 129.5, 128.8 (d, J = 13.3 Hz), 121.5 (d, J = 12.8 Hz), 120.3, 118.2 (d, J = 5.2 Hz), 117.0 (d, J = 124.7 Hz), 116.9 (d, J = 9.2 Hz), 112.7 (d, J = 8.0 Hz), 66.2, 54.4; ¹⁹F NMR (375 MHz, CDCl₃) δ -55.39 (t, J = 21.2 Hz, 3F), -138.59 - -144.28 (m, 2F), -146.60 (d, J = 15.9 Hz, 2F); ³¹P NMR (162 MHz, CDCl₃) δ 25.2 (s, 1P). **HRMS** (ESI-TOF) m/z Calcd for C₂₈H₂₀F₇N₃O₂P [M+H]⁺ 594.1176, found 594.1178.

N-(2-((2-(4,5-dihydrooxazol-2-

yl)phenyl)carbamoyl)phenyl)isonicotinamide (4j): white solid. ¹H NMR (400 MHz, CDCl₃) δ 11.18 (d, J = 13.3 Hz, 1H), 10.85 (s, 1H), 8.94 (dd, J = 8.2, 5.9 Hz, 1H), 8.70 (d, J = 4.2 Hz, 1H), 7.89 (dd, J = 6.8, 1.2 Hz, 2H), 7.82 (d, J = 7.9

Hz, 1H), 7.56 – 7.41 (m, 5H), 7.39 (d, J = 8.3 Hz, 1H), 7.24 (ddd, J = 15.4, 6.4, 1.7 Hz, 2H), 7.02 (d, J = 9.0 Hz, 1H), 6.96 – 6.87 (m, 2H), 4.37 (t, J = 9.4 Hz, 2H), 4.03 (t, J = 9.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 157.0, 145.8 (d, J = 5.7 Hz), 145.3, 142.4, 133.7 (d, J = 2.2 Hz), 132.6 (d, J = 9.4 Hz), 132.3, 132.3 (d, J = 129.7Hz), 132.3 (d, J = 2.8 Hz), 131.1 (d, J = 10.5 Hz), 129.5, 128.8 (d, J = 13.1 Hz), 127.4, 19

121.1 (d, J = 13.0 Hz), 120.4 (d, J = 8.5 Hz), 120.3, 118.1 (d, J = 5.2 Hz), 117.9, 115.3 (d, J = 124.2 Hz), 112.8 (d, J = 7.9 Hz), 66.2, 54.4; ³¹P NMR (162 MHz, CDCl₃) δ 26.3 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₅H₂₃N₅O₂P [M+H]⁺ 456.1584, found 456.1585.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-((4-

nitrophenyl)amino)benzamide (4k): white solid. ¹H NMR (400 MHz, CDCl₃) δ 11.45 (s, 1H), 11.18 (d, J = 13.6 Hz, 1H), 8.72 (s, 2H), 8.61 (dd, J = 8.1, 5.5 Hz, 1H), 7.92 (dd, J= 8.4, 1.2 Hz, 2H), 7.82 (d, J = 7.9 Hz, 1H), 7.58 (ddd, J =

14.5, 7.7, 1.4 Hz, 1H), 7.51 (d, J = 7.5 Hz, 2H), 7.47 – 7.40 (m, 3H), 7.22 (td, J = 7.8, 1.6 Hz, 1H), 7.05 (td, J = 7.5, 1.4 Hz, 1H), 6.92 (td, J = 7.8, 1.2 Hz, 1H), 4.38 (t, J =9.5 Hz, 2H), 4.18 – 3.85 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 165.1, 163.1, 143.2 (d, J = 5.3 Hz), 142.4, 133.2 (d, J = 2.2 Hz), 132.6 (d, J = 8.6 Hz), 132.4, 132.0 (d, J = 129.9 Hz), 131.8 (d, J = 10.3 Hz), 131.2 (d, J = 10.5 Hz), 129.5, 129.1 (d, J = 10.5 Hz), 129.113.3 Hz), 128.8 (d, J = 13.2 Hz), 123.1 (d, J = 12.5 Hz), 121.7 (d, J = 8.6 Hz), 120.5, 118.6 (d, J = 121.6 Hz), 118.4 (d, J = 5.0 Hz), 112.8 (d, J = 7.9 Hz), 66.2, 54.4; ³¹P NMR (162 MHz, CDCl₃) δ 23.8 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₄H₂₂N₆O₂P [M+H]⁺ 457.1536, found 457.1537.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-((2-

nitrophenyl)amino)benzamide (5a): white solid. ¹H NMR (400 MHz, CDCl₃) δ 11.33 (s, 1H), 11.28 (d, J = 13.5 Hz, 1H), 7.97 (dd, J = 12.7, 7.0 Hz, 2H), 7.81 (d, J = 7.9 Hz, 1H), 7.55 (dd, J = 10.3, 5a 4.3 Hz, 1H), 7.50 (td, J = 7.3, 3.4 Hz, 2H), 7.38 – 7.27 (m, 3H), 7.22 (t, J = 7.8 Hz, 1H), 6.96 (dd, J = 8.2, 5.5 Hz, 1H), 6.91 (t, J = 7.3 Hz, 1H), 6.78 (td, J = 7.3, 2.4 Hz, 1H), 4.38 (t, J = 9.5 Hz, 2H), 4.06 (dd, J = 13.9, 6.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 163.4 (d, J = 5.2 Hz), 142.1, 134.5 (d, J = 2.2 Hz), 132.4 (d, J = 2.8Hz), 132.4, 132.0 (d, J = 131.0 Hz), 131.5 (d, J = 9.0 Hz), 131.1 (d, J = 10.5 Hz), 129.4, 128.8 (d, J = 13.2 Hz), 120.5, 119.5 (d, J = 12.8 Hz), 118.1 (d, J = 5.3 Hz), 20 118.0 (d, J = 1.4 Hz), 112.9 (d, J = 8.0 Hz), 111.6 (d, J = 126.9 Hz), 66.2, 54.4; ³¹P NMR (162 MHz, CDCl₃) δ 26.7 (s, 1P). HRMS (ESI-TOF) m/z Calcd for $C_{21}H_{20}N_2O_3P$ [M+H]⁺ 379.1206, found 379.1207.

7.8, 4.5 Hz, 1H), 7.34 (d, J = 8.3 Hz, 1H), 7.23 (td, J = 8.0, 1.6 Hz, 1H), 7.08 (dd, J = 7.8, 2.4 Hz, 1H), 6.98 – 6.86 (m, 3H), 6.81 (dd, J = 15.1, 2.9 Hz, 1H), 4.38 (t, J = 9.4 Hz, 2H), 4.22 – 4.01 (m, 2H), 3.84 (s, 3H), 3.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 159.7 (d, J = 16.5 Hz), 157.4 (d, J = 4.7 Hz), 152.2 (d, J = 15.8 Hz), 142.0, 133.2 (d, J = 131.0 Hz), 132.4, 130.1 (d, J = 15.6 Hz), 129.5, 123.2 (d, J = 10.2 Hz), 121.2 (d, J = 2.4 Hz), 120.6, 118.9 (d, J = 11.2 Hz), 118.7 (d, J = 3.0 Hz), 118.1 (d, J = 5.5 Hz), 115.8 (d, J = 11.6 Hz), 115.1 (d, J = 10.2 Hz), 112.9 (d, J = 8.0 Hz), 111.6 (d, J = 126.6 Hz), 66.2, 55.7, 55.4, 54.5; ³¹P NMR (162 MHz, CDCl₃) δ 25.7 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₃H₂₄N₂O₅P [M+H]⁺ 439.1417, found 439.1418.

2-((3,5-bis(trifluoromethyl)phenyl)amino)-N-(2-(4,5dihydrooxazol-2-yl)phenyl)benzamide (5c): white solid. ¹H **NMR** (400 MHz, CDCl₃) δ 11.46 (s, 1H), 11.06 (d, *J* = 13.0 Hz, 1H), 7.86 (dd, *J* = 12.1, 8.7 Hz, 2H), 7.79 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 7.8 Hz, 1H), 7.16 (dd,

J = 13.5, 8.6 Hz, 1H), 6.98 (dd, J = 8.7, 2.5 Hz, 2H), 6.90 (t, J = 7.5 Hz, 1H), 6.46 (dd, J = 4.2, 2.3 Hz, 1H), 6.39 – 6.31 (m, 1H), 4.37 (t, J = 9.5 Hz, 2H), 4.07 (t, J = 9.5 Hz, 2H), 3.84 (s, 3H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2 (d, J = 6.4 Hz), 165.0, 164.5 (d, J = 2.2 Hz), 162.7 (d, J = 3.1 Hz), 142.3, 132.9 (d, J = 11.8 Hz), 132.6 (d, J = 10.3 Hz), 132.3, 129.4, 123.8 (d, J = 138.9 Hz), 120.3, 118.0 (d, J = 5.8Hz), 114.3 (d, J = 14.4 Hz), 112.8 (d, J = 7.5 Hz), 107.9 (d, J = 13.6 Hz), 103.6 (d, J = 134.4 Hz), 101.5 (d, J = 10.0 Hz), 66.1, 55.3, 55.2, 54.5; ³¹P NMR (162 MHz, CDCl₃) δ 27.3 (s, 1P). **HRMS** (ESI-TOF) m/z Calcd for C₂₃H₂₄N₂O₅P [M+H]⁺ 439.1417, found 439.1419.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-((2,3,5,6tetrafluoro-4-(trifluoromethyl)phenyl)amino)benzamide (5d): white solid. ¹H NMR (400 MHz, CDCl₃) δ 11.25 (s, 1H), 11.14 (d, *J* = 13.3 Hz, 1H), 7.89 (dd, *J* = 12.3, 8.4 Hz, 2H), 7.80 (d, *J* = 7.9 Hz, 1H), 7.50 (dd, *J* = 8.4, 3.1 Hz, 2H), 7.36

(d, J = 8.3 Hz, 1H), 7.21 (dd, J = 13.8, 8.2 Hz, 2H), 6.97 (dd, J = 5.0, 1.7 Hz, 1H), 6.90 (t, J = 7.6 Hz, 1H), 6.80 (dt, J = 8.2, 2.1 Hz, 1H), 4.39 (t, J = 9.5 Hz, 2H), 4.22 – 3.89 (m, 2H), 1.32 (s, 9H), 1.25 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0 (d, J =1.4 Hz), 163.1 (d, J = 5.5 Hz), 158.4 (d, J = 2.5 Hz), 155.8 (d, J = 2.9 Hz), 142.4, 132.4, 131.1 (d, J = 9.4 Hz), 130.9 (d, J = 10.8 Hz), 129.4 (d, J = 0.5 Hz), 129.2 (d, J =133.4 Hz), 125.8 (d, J = 13.4 Hz), 120.3, 118.2 (d, J = 5.5 Hz), 117.1 (d, J = 13.0Hz), 114.9 (d, J = 9.4 Hz), 112.8 (d, J = 7.9 Hz), 108.8 (d, J = 129.4 Hz), 66.2, 54.5, 35.0 (d, J = 1.0 Hz), 35.0 (d, J = 0.7 Hz), 31.1, 30.9; ³¹P NMR (162 MHz, CDCl₃) δ 26.4 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₉H₃₆N₂O₃P [M+H]⁺ 491.2458, found 491.2459.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(pyridin-3-

ylamino)benzamide (5e): white solid. ¹H NMR (400 MHz, CDCl₃) δ 11.30 (s, 1H), 11.07 (d, J = 13.3 Hz, 1H), 7.81 (d, J = 7.9 Hz, 1H), 7.49 (dd, J = 13.3, 8.0 Hz, 1H), 7.35 (t, J = 6.8 Hz, 2H), 7.25 (dd, J = 9.4, 6.2 Hz, 1H), 6.92 (td, J = 7.8, 3.0 Hz, 1H), 7.25 (dd, J = 9.4, 6.2 Hz, 1H), 6.92 (td, J = 7.8, 3.0 Hz, 1H), 7.25 (dd, J = 9.4, 6.2 Hz, 1H), 6.92 (td, J = 7.8, 3.0 Hz, 1H), 7.25 (dd, J = 9.4, 6.2 Hz, 1H), 6.92 (td, J = 7.8, 3.0 Hz, 1H), 7.25 (dd, J = 9.4, 6.2 Hz, 1H), 7.95 (td, J = 7.8, 3.0 Hz, 1H), 7.95 (td, J = 7.8

2H), 6.61 (d, J = 13.4 Hz, 1H), 6.46 (d, J = 4.6 Hz, 1H), 6.03 (s, 2H), 5.86 (d, J = 5.0 Hz, 2H), 4.39 (t, J = 9.4 Hz, 2H), 4.09 (dd, J = 14.0, 5.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 160.7 (d, J = 6.1 Hz), 152.8 (d, J = 2.7 Hz), 151.2 (d, J = 3.1 Hz), 148.2 (d, J = 20.1 Hz), 142.1, 141.0 (d, J = 19.1 Hz), 132.4, 129.5, 126.7 (d, J = 11.5 Hz), 125.4 (d, J = 138.0 Hz), 120.5, 118.1 (d, J = 5.5 Hz), 112.9 (d, J = 8.0 Hz), 110.4 (d, J = 13.3 Hz), 109.0 (d, J = 16.6 Hz), 108.1 (d, J = 11.6 Hz), 102.3, 101.6 (d, J = 12.5 Hz), 125.4 (d, J = 13.3 Hz), 109.0 (d, J = 16.6 Hz), 108.1 (d, J = 11.6 Hz), 102.3, 101.6 (d, J = 12.5 Hz), 125.4 (d, J = 13.3 Hz), 109.0 (d, J = 16.6 Hz), 108.1 (d, J = 11.6 Hz), 102.3, 101.6 (d, J = 12.5 Hz), 108.1 (d, J = 11.6 Hz), 102.3, 101.6 (d, J = 12.5 Hz), 108.1 (d, J = 11.6 Hz), 102.3, 101.6 (d, J = 12.5 Hz), 108.1 (d, J = 11.6 Hz), 102.3, 101.6 (d, J = 12.5 Hz), 108.1 (d, J = 11.6 Hz), 102.3, 101.6 (d, J = 12.5 Hz), 108.1 (d, J = 12.5 Hz), 102.3, 101.6 (d, Jz) = 10.5 Hz), 108.1 (d, J = 12.5 Hz), 102.3, 101.6 (d, Jz) = 10.5 Hz), 108.1 (d, J = 12.5 Hz), 102.3, 101.6 (d, Jz) = 10.5 Hz), 108.1 (d, J = 12.5 Hz), 102.3, 101.6 (d, Jz) = 10.5 Hz), 108.1 (d, J = 12.5 Hz), 102.3, 101.6 (d, Jz) = 10.5 Hz), 108.1 (d, J = 12.5 Hz), 102.3, 101.6 (d, Jz) = 10.5 Hz), 108.1 (d, J = 12.5 Hz), 102.3, 101.6 (d, Jz) = 10.5 Hz), 108.1 (d, J = 12.5 Hz), 102.3, 101.6 (d, Jz) = 10.5 Hz), 108.1 (d, J = 12.5 Hz), 102.3, 101.6 (d, Jz) = 10.5 Hz), 108.1 (d, J = 12.5 Hz), 102.3, 101.6 (d, Jz) = 10.5 Hz), 108.1 (d, J = 12.5 Hz), 102.3, 101.6 (d, Jz) = 10.5 Hz), 108.1 (d, J = 12.5 Hz), 108.1 (d, J

J = 29.6 Hz), 100.9, 99.5 (d, J = 11.9 Hz), 66.5, 54.5; ³¹P NMR (162 MHz, CDCl₃) δ 26.3 (s, 1P). **HRMS** (ESI-TOF) m/z Calcd for C₂₃H₂₀N₂O₇P [M+H]⁺ 467.1003, found 467.1003.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-((5-

(**trifluoromethyl**)**pyridin-2-yl**)**amino**)**benzamide** (5e'): white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 11.38 (s, 1H), 11.15 (s, 1H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.50 (dd, *J* = 12.8, 7.4 Hz, 1H), 7.34 (dd, *J* = 16.6, 10.4 Hz, 2H), 7.25 (dd, *J* = 11.0, 5.1 Hz,

1H), 6.92 (dd, J = 10.8, 5.6 Hz, 2H), 6.85 (ddd, J = 14.4, 8.2, 2.7 Hz, 1H), 6.37 (dt, J = 8.2, 2.6 Hz, 1H), 6.03 (d, J = 2.5 Hz, 2H), 6.01 (dd, J = 14.1, 1.9 Hz, 2H), 4.39 (dd, J = 9.5, 7.3 Hz, 2H), 4.10 (dd, J = 14.3, 5.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1 (d, J = 1.6 Hz), 152.5 (d, J = 2.8 Hz), 151.2 (d, J = 3.1 Hz), 148.2 (d, J = 20.1 Hz), 147.6 (d, J = 7.6 Hz), 142.1, 134.7 (d, J = 16.6 Hz), 132.4, 129.5, 126.8 (d, J = 11.6 Hz), 126.0 (d, J = 10.0 Hz), 125.4 (d, J = 137.4 Hz), 120.6, 118.2 (d, J = 5.4 Hz), 112.9 (d, J = 8.0 Hz), 110.5 (d, J = 13.4 Hz), 108.9 (d, J = 16.7 Hz), 107.5 (d, J = 132.2 Hz), 101.9, 101.7 (d, J = 12.8 Hz), 101.7, 66.2, 54.4; ³¹P NMR (162 MHz, CDCl₃) δ 26.4 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₃H₂₀N₂O₇P [M+H]⁺ 467.1003, found 467.1003.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(pyridazin-3-

ylamino)benzamide (5f): white solid. ¹H NMR (400 MHz, CDCl₃) δ 11.54 (s, 1H), 11.29 (d, J = 13.0 Hz, 1H), 8.03 - 7.91 (m, 2H), 7.82 (d, J = 7.9 Hz, 1H), 7.32 - 7.14 (m, 5H), 6.94 (ddd, J = 8.2, 6.8, 1.7 Hz, 1H), 6.66 (ddd, J = 10.7, 4.3, 2.4 Hz, 1H)

1H), 6.51 (tt, J = 8.4, 2.2 Hz, 1H), 4.39 (t, J = 9.5 Hz, 2H), 4.20 – 3.97 (m, 2H); ¹³C **NMR** (100 MHz, CDCl₃) δ 167.3 (dd, J = 133.0, 3.3 Hz), 165.6 (d, J = 6.8 Hz), 165.5, 165.1 (d, J = 1.5 Hz), 164.8 (dd, J = 130.8, 3.5 Hz), 141.7, 133.7 (dd, J = 12.0, 9.0 Hz), 133.3 (d, J = 21.2 Hz), 133.3, 132.4, 129.6 (d, J = 0.5 Hz), 127.9 (dd, J = 136.4, 3.4 Hz), 120.9, 117.9 (d, J = 5.5 Hz), 116.3 (dd, J = 21.5, 14.5 Hz), 112.9 (d, J = 8.1

Hz), 108.3 (dd, J = 130.9, 3.0 Hz), 107.8 (dd, J = 22.3, 13.9 Hz), 105.1 (dd, J = 23.6, 10.4 Hz), 66.2, 54.3; ¹⁹F NMR (375 MHz, CDCl₃) δ -103.38 (dd, J = 18.0, 7.5 Hz, 1F), -105.17 – -105.89 (m, 1F); ³¹P NMR (162 MHz, CDCl₃) δ 25.4 (s, 1P). HRMS (ESI-TOF) m/z Calcd for C₂₁H₁₈F₂N₂O₃P [M+H]⁺ 415.1018, found 415.1017.

2-((1,3,5-triazin-2-yl)amino)-N-(2-(4,5-dihydrooxazol-2yl)phenyl)benzamide (5g): white solid. ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 11.69 (s, 2H), 8.34 (d, J = 12.9 Hz, 1H), 8.08 (dd, J = 12.6, 7.5 Hz, 1H), 7.85 (d, J =

^{5g} 7.4 Hz, 2H), 7.67 (td, J = 7.6, 2.8 Hz, 1H), 7.59 (t, J = 10.9 Hz, 2H), 7.31 – 7.18 (m, 2H), 7.06 (dd, J = 8.8, 5.2 Hz, 1H), 6.99 (t, J = 7.3 Hz, 1H), 4.46 (t, J = 9.5 Hz, 2H), 4.21 – 3.98 (m, 2H); ¹³C **NMR** (151 MHz, CDCl₃) δ 165.6 (d, J =5.2 Hz), 164.8, 140.7, 134.1 (d, J = 11.0 Hz), 132.4 (d, J = 132.7 Hz), 132.1, 131.2 (d, J = 3.2 Hz), 129.3, 129.2 (d, J = 13.1 Hz), 129.0, 129.0 (d, J = 6.5 Hz), 128.3 (dq, J =10.1, 3.9 Hz), 127.52 (dq, J = 11.6, 3.5 Hz), 121.0, 118.5 (d, J = 9.1 Hz), 117.6 (d, J =5.2 Hz), 112.9 (d, J = 8.2 Hz), 111.2 (d, J = 128.3 Hz), 66.0, 53.6; ¹⁹F **NMR** (375 MHz, CDCl₃) δ -61.9 (s, 3F), -62.9 (s, 3F); ³¹P **NMR** (162 MHz, CDCl₃) δ 24.6 (s, 1P). **HRMS** (ESI-TOF) m/z Calcd for C₂₃H₁₈F₆N₂O₃P [M+H]⁺ 515.0954, found 515.0955.

4. Reference

1. Guan, J.; Wu, G.-J.; Han, F.-S. Chem. Eur. J. 2014, 20, 3301.

5. NMR Spectra for New Compounds

¹H NMR for Compound 1a

¹³C NMR for Compound 1a

³¹P NMR for Compound 1a

¹H NMR for Compound 1b

¹³C NMR for Compound 1b

³¹P NMR for Compound 1b

¹H NMR for Compound 1c

¹³C NMR for Compound 1c

³¹P NMR for Compound 1c

¹H NMR for Compound 1d

¹³C NMR for Compound 1d

³¹P NMR for Compound 1d

¹H NMR for Compound 1e

¹³C NMR for Compound 1e

³¹P NMR for Compound 1e

¹H NMR for Compound 1f

¹³C NMR for Compound 1f

³¹P NMR for Compound 1f

¹H NMR for Compound 1g

¹³C NMR for Compound 1g

³¹P NMR for Compound 1g

¹H NMR for Compound 1h

¹³C NMR for Compound 1h

¹⁹F NMR for Compound 1h

³¹P NMR for Compound 1h

¹H NMR for Compound 1i

¹³C NMR for Compound 1i

³¹P NMR for Compound 1i

¹H NMR for Compound 1j

¹³C NMR for Compound 1j

³¹P NMR for Compound 1j

¹H NMR for Compound 3a

¹³C NMR for Compound 3a

¹⁹F NMR for Compound 3a

³¹P NMR for Compound 3a

¹H NMR for Compound 3b

¹³C NMR for Compound 3b

¹⁹F NMR for Compound 3b

³¹P NMR for Compound 3b

¹H NMR for Compound 3c

¹³C NMR for Compound 3c

¹⁹F NMR for Compound 3c

³¹P NMR for Compound 3c

¹H NMR for Compound 3d

¹³C NMR for Compound 3d

¹⁹F NMR for Compound 3d

³¹P NMR for Compound 3d

¹H NMR for Compound 3e

¹³C NMR for Compound 3e

¹⁹F NMR for Compound 3e

³¹P NMR for Compound 3e

¹H NMR for Compound 3f

¹³C NMR for Compound 3f

³¹P NMR for Compound 3f

¹H NMR for Compound 3g

¹³C NMR for Compound 3g

¹⁹F NMR for Compound 3g

³¹P NMR for Compound 3g

¹H NMR for Compound 3h

¹³C NMR for Compound 3h

³¹P NMR for Compound 3h

¹H NMR for Compound 3i

¹³C NMR for Compound 3i

¹⁹F NMR for Compound 3i

³¹P NMR for Compound 3i

¹H NMR for Compound 3i'

¹³C NMR for Compound 3i'

¹⁹F NMR for Compound 3i'

³¹P NMR for Compound 3i'

¹H NMR for Compound 4a

¹³C NMR for Compound 4a

³¹P NMR for Compound 4a

¹H NMR for Compound 4b

¹³C NMR for Compound 4b

³¹P NMR for Compound 4b

¹H NMR for Compound 4c

¹³C NMR for Compound 4c

SSZ-8-45-3-C600M

³¹P NMR for Compound 4c

¹H NMR for Compound 4d

¹³C NMR for Compound 4d

¹⁹F NMR for Compound 4d

³¹P NMR for Compound 4b

¹H NMR for Compound 4e

¹³C NMR for Compound 4e

³¹P NMR for Compound 4e

¹H NMR for Compound 4f

¹³C NMR for Compound 4f

¹⁹F NMR for Compound 4f

³¹P NMR for Compound 4f

¹H NMR for Compound 4g

¹³C NMR for Compound 4g

 $\begin{array}{c} 134.650\\ 133.231\\ 133.231\\ 133.2092\\ 132.092\\ 132.092\\ 132.092\\ 133.0911\\ 130.911\\ 130.803\\ 1130.805\\ 1128.873\\ 1128.726\\ 1128.873\\ 1128.726\\ 1128.873\\ 1128.726\\ 1128.873\\ 1128.726\\ 1228.726\\ 1228.72$ ssz-8-48-1-1-C new experiment -164.905-54.248.NO₂ NH Q N NH. 4g -100 230 220 210 200 190 180 170 160 150 140 130 120 110 100 fl (ppm) -10

³¹P NMR for Compound 4g

¹H NMR for Compound 4h

¹³C NMR for Compound 4h

³¹P NMR for Compound 4h

ssz-8-60-1-1-P

¹H NMR for Compound 4i

¹³C NMR for Compound 4i

ssz-8-59-3-C new experiment

¹⁹F NMR for Compound 4i

³¹P NMR for Compound 4i

¹H NMR for Compound 4j

¹³C NMR for Compound 4j

³¹P NMR for Compound 4j

¹H NMR for Compound 4k

¹³C NMR for Compound 4k

³¹P NMR for Compound 4k

¹H NMR for Compound 5a

¹³C NMR for Compound 5a

³¹P NMR for Compound 5a

¹H NMR for Compound 5b

¹³C NMR for Compound 5b

³¹P NMR for Compound 5b

¹H NMR for Compound 5c

¹³C NMR for Compound 5c

³¹P NMR for Compound 5c

¹H NMR for Compound 5d

ssz-8-104-2-1-H

¹³C NMR for Compound 5d

³¹P NMR for Compound 5d

¹H NMR for Compound 5e

¹³C NMR for Compound 5e

³¹P NMR for Compound 5e

¹H NMR for Compound 5e'

ssz-8-92-2-3-H

¹³C NMR for Compound 5e'

³¹P NMR for Compound 5e'

¹H NMR for Compound 5f

¹³C NMR for Compound 5f

¹⁹F NMR for Compound 5f

³¹P NMR for Compound 5f

¹H NMR for Compound 5g

¹³C NMR for Compound 5g

SSZ-8-67-2-C600M

¹⁹F NMR for Compound 5g

³¹P NMR for Compound 5g

¹H NMR for Compound 6

¹³C NMR for Compound 6

³¹P NMR for Compound 6

