Electronic Supplementary Information

Experimental section

Materials: Hydrogen peroxide (H₂O₂, 30%), Sodium sulfate (Na₂SO₄), sulfuric acid (H₂SO₄, 98.0%), hydrochloric (HCl, 99.0%), ethanol $(C_2H_6O_1)$ 99.0%), acid **p**dimethylaminobenzaldehyde $(C_9H_{11}NO),$ sodium nitroferricyanide dihydrate $(C_5FeN_6Na_2O \cdot 2H_2O)$, sodium salicylate $(C_7H_5O_3Na)$, sodium hypochlorite solution (NaClO), Sodium hydroxide (NaOH) were purchased from Aladdin Ltd. (Shanghai, China). Nafion (5 wt%) solution was purchased from Sigma-Aldrich Chemical Reagent Co., Ltd. Hydrochloric acid, sulfuric acid, hydrogen peroxide, hydrazine monohydrate (N_2H_4 · H_2O) and ethyl alcohol (C₂H₅OH) were purchased from Beijing Chemical Corp. (China). chemical Ltd. in Chengdu. Ti mesh (TM) purchased from Hongshan District, Wuhan Instrument Surgical Instruments business. The water used throughout all experiments was purified through a Millipore system. All chemicals were used as received without further purification.

*Preparation of Ti*³⁺-*TiO*_{2-x} *NW/TM:* In a typical synthesis process, preparing H₂O₂ (10%) then Ti mesh was put into 10% H₂O₂ aqueous solution in a 50 ml beaker. The beaker was kept at 70°C for 24 h in oil bath. After the beaker was cooled down naturally to room temperature, the samples were removed, wash with DI water several times and dried under ambient condition. Finally, we obtained TM with black surface. Subsequently, the product was annealed at 300 °C for 3 h with a heating rate of 2 °C min⁻¹ in an electronic furnace to form TiO₂/TM. During the process of wet-chemical oxidation, Ti and H₂O₂ can react through a "surface oxide–interface diffusion–redox" reaction mechanism. The surface of Ti mesh was gradually converted to a cross-linked [–O–Ti–O–]_n–Ti–(OH)_x·mH₂O matrix. Finally, Ti³⁺-TiO_{2-x} NW/TM was obtained by the dehydration.^{1,2}

Characterizations: XRD patterns were obtained from a Shimazu XRD-6100 diffractometer with Cu K α radiation (40 kV, 30 mA) of wavelength 0.154 nm (Japan). SEM images were collected from the field-emission Apreo S scanning electron microscope at an accelerating voltage of 20 kV (FEI, America). The samples were sprayed with Au before SEM and EDX characterization to enhance conductivity. TEM images were obtained from a Zeiss Libra 200FE transmission electron microscope operated at 200 kV. XPS measurements were

performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source.

Electrochemical measurements: Electrochemical measurements were performed with a CS 350H electrochemical analyzer (CS Instruments, Inc., Wuhan) using a standard threeelectrode system using Ti^{3+} – TiO_{2-x} NW/TM as the working electrode (the Ti^{3+} – TiO_{2-x} /TM, TiO_2 /TM and TM were cutted into an area of 1 x 1 cm² as the working electrode), graphite rod as the counter electrode, and saturated Ag/AgCl electrode as the reference electrode in 0.1 M Na₂SO₄. In all measurements, saturated Ag/AgCl electrode was calibrated with respect to reversible hydrogen electrode as following: in 0.1 M Na₂SO₄ aqueous solution, $E(RHE) = E(Ag/AgCl) + 0.059 \times pH + 0.197$ V. All experiments were carried out at room temperature. Prior to entering the cell, gases were passed through a saturator filled with 0.05 M H₂SO₄(aq.) to remove any possible ammonia and nitrogen oxides contaminants. Then N₂ reduction experiments, the 0.1 M Na₂SO₄ electrolyte was purged with N₂ for 30 min before the measurement. Potentiostatic test was conducted in N₂-saturated 0.1 M Na₂SO₄ solution in a two-compartment cell, which was separated by Nafion 117 membrane.

Determination of NH_3 : Concentration of produced NH₃ was determined by spectrophotometry measurement with indophenol blue method³. In detail, 4 mL electrolyte was obatined from the cathodic chamber and mixed with 50 µL oxidizing solution containing NaClO (4.5%) and NaOH (0.75 M), 500 µL coloring solution containing C₇H₅O₃Na (0.4 M) and NaOH (0.32 M), and 50 µL catalyst solution Na₂Fe(CN)₅NO·2H₂O (1 wt%) for 1 h. The concentrationabsorbance curve was calibrated using the standard NH₄Cl solution with NH₃ concentrations of 0.0, 0.05, 0.10, 0.15, 0.20 and 0.25 µg mL⁻¹ in 0.1 M Na₂SO₄. These solutions were identified via UV-Vis spectroscopy at the wavelength of 655 nm. The concentrationabsorbance curve was calibrated using standard NH₄⁺ solution with a serious of concentrations. The fitting curve (y = 0.466x + 0.026, R² = 0.999) shows good linear relation of absorbance value with NH₄⁺ concentration.

Determination of N_2H_4 : The N₂H₄ presented in the electrolyte was estimated by the method of Watt and Chrisp⁴. Typically, 2 mg mL⁻¹ N₂H₄ solution was prepared and diluted to 2 µg mL⁻¹.

Then, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 5 mL N₂H₄ solution (2 μ g mL⁻¹) were poured into 10 mL plastic tubes and separately diluted to 5 mL with 0.1 M Na₂SO₄ and the resulting concentrations of N₂H₄ in the solutions are 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0 μ g mL⁻¹. A mixed solution of C₉H₁₁NO (5.99 g), HCl (concentrated, 30 mL) and ethanol (300 mL) was used as a color reagent. In detail, 2 mL electrolyte was removed from the electrrochemical reaction vessel, and added into 2 mL above prepared color reagent and stirring 15 min at room temperature. Moreover, the absorbance of the resulting solution was measured at a wavelength of 455 nm. The concentration absorbance curves were calibrated using standard N₂H₄ solution with a series of concentrations. The fitting curve (y = 0.696x + 0.062, R² = 0.999) shows good linear relation of absorbance value with N₂H₄ concentration.

*Determination of FE and NH*₃ *yield:* The FE for N₂ reduction was defined as the amount of electric charge used for synthesizing NH₃ divided the total charge passed through the electrodes during the electrolysis. Assuming three electrons were needed to produce one NH₃ molecule, the FE could be calculated as follows:

FE (NH₃) =
$$3 \times F \times [NH_3] \times V / (17 \times Q) \times 100\%$$

The total amount of NH₃ produced was measured using colorimetric methods. The rate of NH₃ formation was calculated using the following equation:

NH₃ yield = [NH₃]
$$\times$$
 V / (17 \times t \times A)

The amount of NH₃ was calculated as follows:

$$m_{NH3} = [NH3] \times V$$

Where $[NH_3]$ is the measured NH_3 concentration; V is the volume of the cathodic reaction electrolyte; t is the potential applied time; A is the loaded area of catalyst; F is the Faraday constant; and Q is the quantity of applied electricity.

Theoretical section

Computational details: During the density functional theory (DFT) calculations, the projector augmented wave and generalized gradient approximation in the form of the Perdew-Burke-Ernzerh of exchange-correlation functional^{5,6}, is adopted through Vienna Ab Initio Simulation Package (VASP)⁷⁻⁹. The empirical correction scheme of Grimme is used to describe the van der Waals interaction is described. The energy cutoffs of plane wave for carbon, hydrogen, oxygen, and nitrogen are selected as 520 eV. A vacuum layer of 18 Å is added to avoid the

interaction between nearby supercells. The convergence criterions of structures' optimizations are set to 10^{-4} eV for atomic energy and -0.02 eV Å⁻¹ for atomic force. The anode reaction i.e. $H^2 \leftrightarrow 2(H^+ + e^-)$ of NRR processes is taken as a convenient reference, which works as the source of proton and electrons. Six net proton coupled electron transfer steps (N₂ + 6H⁺ + 6e⁻ \rightarrow NH₃) are involved. There are several steps in dissociate and associative mechanisms where the nitrogen molecular are hydrogenated by protons.

Fig. S1. EDX spectrum for Ti^{3+} - TiO_{2-x}/TM .

Fig. S2. SEM image and the EDX elemental mapping images of Ti and O.

Fig. S3. XPS survey spectrum for $Ti^{3+}-TiO_{2-x}/TM$.

Fig. S4. (a) UV-Vis absorption spectra of indophenol assays with NH_3 after incubation for 2 h at room temperature in 0.1 M Na_2SO_4 (b) Calibration curve used for calculation of NH_3 concentrations.

Fig. S5. (a) UV-Vis absorption spectra of N₂H₄ concentrations after incubated for 15 min at room temperature. (b) Calibration curve used for calculation of N₂H₄.

Fig. S6. (a) Ion chromatogram for the NH₃ ions. (b) Calibration curve used for estimation of NH₃. (c) Ion chromatogram for the electrolytes at a series of potentials after electrolysis for 2 h. (d) Amount of NH₃ generated with Ti^{3+} - TiO_{2-x}/TM at corresponding potentials.

Fig. S7. UV–Vis spectra of the electrolyte estimated by the method of Watt and Chrisp before and after 2 h electrolysis in N_2 atmosphere at the best potential under ambient conditions.

Fig. S8. The UV-Vis absorption spectra of indophenol assays with electrolyte of $Ti^{3+}-TiO_{2-x}/TM$, TiO_2/TM and TM after 2-h electrolysis.

Fig. S9. Amount of NH₃ generated with Ti^{3+} - TiO_{2-x}/TM under different conditions.

Fig. S10. Time-dependent current density curve of Ti^{3+} - TiO_{2-x}/TM at a potential of -0.55 V.

Fig. S11. The photographs of pH test papers of the Na2SO4 aqueous solution before and afterelectrolysisfor Ti^{3+} -TiO2-x/TM.

Fig. S12. SEM image of Ti^{3+} - TiO_{2-x}/TM after stability test.

Fig. S13. Topview (a) and sideview (c) of TiO_2 (101) surface structures without oxygen vacancies; and topview (b) and sideview (d) of TiO_2 (101) surface structures with oxygen vacancies at O_2c sites.

Fig. S14. Gibbs free energy changes for associative alternating (a) and associative distal (b) mechanisms of N2-to-NH3 occurring at Ti5c site on TiO2 (101) surface without oxygen vacancy. Asterisk (*) denotes the adsorbed sites. The intermediated configurations during reaction paths are also demonstrated as insert figures. The cases of applied a potential at different values, U=0V and U=-0.55V, are labelled by blue and red, respectively.

Fig. S15. Gibbs free energy changes for dissociate (a) and associate mechanisms of N_2 -to-NH₃ occurring at Ti_{5c} site on TiO₂ (101) surface with oxygen vacancy. Asterisk (*) denotes the adsorbed sites. The intermediated configurations during reaction paths are also demonstrated as insert figures. The cases of applied a potential at different values, U=0V and U=-0.55V, are labelled by blue and red, respectively.

Catalyst	Electrolyte	NH ₃ yield	FE%	Ref.
Ti ³⁺ -TiO _{2-x} /TM	0.1 M Na ₂ SO ₄	3.51 x 10 ⁻¹¹ mol s ⁻¹ cm ⁻²	14.62	This work
TiO ₂ /Ti	0.1 M Na ₂ SO ₄	9.16 x 10 ⁻¹¹ mol s ⁻¹ cm ⁻²	2.5	10
TiC/C	0.1 M HCl	14.1 $\mu g h^{-1} m g^{-1}{}_{cat.}$	5.8	11
C-doped TiO ₂	0.1 M Na ₂ SO ₄	$16.22 \ \mu g \ h^{-1} \ m g^{-1}_{cat.}$	1.84	12
d-TiO ₂ /TM	0.1 M HCl	$1.24 \text{ x } 10^{-10} \text{ mol s}^{-1} \text{ cm}^{-2}$	9.17	13
Zr- TiO ₂	0.1 M KOH	$8.90 \ \mu g \ h^{-1} \ cm^{-2}$	17.3	14
C-doped TiO ₂ /C	0.1 M LiClO ₄	14.8 $\mu g h^{-1} m g^{-1}{}_{cat.}$	17.8	15
Fe-doped TiO ₂	0.5 M LiClO ₄	$25.47 \ \mu g \ h^{-1} \ mg^{-1}{}_{cat.}$	25.6	16
MXene $(Ti_3C_2T_x)$	1 M HCl and 0.5 M Li ₂ SO ₄ (PH=2)	$4.72 \ \mu g \ h^{-1} \ cm^{-2}$	5.78	17
TiO ₂ /Ti ₃ C ₂ T _x	0.1 M HCl	$26.32 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	8.42	18
$Ti_3C_2T_x(T = F, OH)$ MXene	0.1 M HCl	$20 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	9.3	19
MnO ₂ -Ti ₃ C ₂ T _x	0.1 M HCl	34.12 μ g h ⁻¹ cm ⁻²	11.39	20
$TiO_2/Ti_3C_2T_x$	0.1 M HCl	$32.17 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	16.07	21

Table S1. Comparison of electrocatalytic N_2 reduction performance for $Ti^{3+}-TiO_{2-x}/TM$ with other Ti-based electrocatalysts at ambient conditions.

References

- 1 L. R. Grabstanowicz, S. Gao, T. Li, R. M. Rickard, T. Rajh, D. Liu and T. Xu, *Inorg. Chem.*, 2013, **52**, 3884–3890.
- 2 X. Liu, S. Gao, H. Xu, Z. Lou, W. Wang, B. Huang and Y. Dai, *Nanoscale*, 2013, 5, 1870–1875.
- 3 D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, Nat. Mater., 2013, 12, 836-841.
- 4 G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006–2008.
- 5 J. P. Perdew, K. Burke and Y. Wang, Phys. Rev. B, 1996, 54, 16533-16539.
- 6 G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
- 7 G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 558-561.
- 8 G. Kresse and J. Hafner, J. Phys. Condens. Matter, 1994, 6, 8245.
- 9 G. Kresse and J. Hafner, Phys. Rev. B, 1994, 49, 14251-14269.
- R. Zhang, X. Ren, X. Shi, F. Xie, B. Zheng, X. Guo and X. Sun, ACS Appl. Mater. Interfaces, 2018, 10, 28251–28255.
- G. Yu, H.Guo, W. Kong, T. Wang, Y. Luo, X. Shi, A. M. Asiri, T. Li and X. Sun, J. Mater. Chem. A, 2019, 7, 19657–19661.
- 12 K. Jia, Y. Wang, Q. Pan, B. Zhong, Y. Luo, G. Cui, X. Guo and X. Sun, *Nanoscale Adv.*, 2019, **1**, 961–964.
- 13 L. Yang, T. Wu, R. Zhang, H. Zhou, L. Xia, X. Shi, H. Zheng, Y. Zhang and X. Sun, *Nanoscale*, 2019, **11**, 1555–1562.
- 14 N. Cao, Z. Chen, K. Zang, J. Xu, J. Zhong, J. Luo, X. Xu and G. Zheng, *Nat. Commun.*, 2019, **10**, 2877–2888.

- Q. Qin, Y. Zhao, M. Schmallegger, T. Heil, J. Schmidt, R. Walczak, G. G. Demner,
 H. Jiao and M. Oschatz, *Angew. Chem., Int. Ed.*, 2019, 58, 13101–13106.
- 16 T. Wu, X. Zhu, Z. Xing, S. Mou, C. Li, Y. Qiao, Q. Liu, Y. Luo, X. Shi, Y. Zhang and X. Sun, *Angew. Chem., Int. Ed.*, 2019, DOI: 10.1002/anie.201911153.
- 17 Y. Luo, G. Chen, L. Ding, X. Chen, L. Ding and H. Wang, *Joule*, 2019, **3**, 279–289.
- J. Zhang, L. Yang, H. Wang, G. Zhu, H. Wen, H. Feng, X. Sun, X. Guan, J. Wen and
 Y. Yao, *Inorg. Chem.*, 2019, 58, 5414–5418.
- J. Zhao, L. Zhang, X. Xie, X. Li, Y. Ma, Q. Liu, W. Fang, X. Shi, G. Cui and X. Sun, J. Mater. Chem. A, 2018, 6, 24031–24035.
- W. Kong, F. Gong, Q. Zhou, G. Yu, L. Ji, X. Sun, A. M. Asiri, T. Wang, Y. Luo and
 Y. Xu, J. Mater. Chem. A, 2019, 7, 18823–18827.
- 21 Y. Fang, Z. Liu, J. Han, Z. Jin, Y. Han, F. Wang, Y. Niu, Y. Wu and Y. Xu, *Adv. Energy Mater.*, 2019, **9**, 1803406.