Total synthesis and biological evaluation of simplified aplyronine analogues as synthetically tractable anticancer agents

Talia R. Pettigrew[†], Rachel J. Porter[†], Stephen J. Walsh, Michael P. Housden, Nelson Y. S. Lam, Jason S. Carroll, Jeremy S. Parker, David R. Spring and Ian Paterson^{*}

Table of Contents

Detailed ra	ationale for the simplification of the aplyronines2
1.1.	Summary of SAR studies conducted to date2
1.2.	Analysis of the bound Aplyronine A-actin crystal structure2
Experime	ntal4
2. Gei	neral comments4
2.1.	General experimental procedures4
2.2.	General analytical procedures5
2.3.	Compound numbering nomenclature6
3. Exp	perimental Procedures for the Synthesis of Aplyrologues 7, <i>R-/S</i> -8 and 97
3.1.	Synthesis of the C15-C27 aldehyde 12 7
3.2.	Synthesis of the C28-C34 side chain <i>E</i> -1114
3.3.	Fragment assembly and synthesis of the macrocycle 25 19
3.4.	Completion of synthesis of the aplyologues
4. Exp	perimental Procedures for Cell Viability Studies
4.1.	Cell viability studies
4.2.	Cytotoxicity graphs40
Reference	s41
NMR Spec	ctra for All New Compounds41

Detailed rationale for the simplification of the aplyronines

1.1. Summary of SAR studies conducted to date

A summary of structural features important for the bioactivity of the aplyronines is given below.^{1–5}

Figure 1. Summary of SAR studies conducted for the aplyronines as overlayed onto aplyronine D

1.2. Analysis of the bound Aplyronine A-actin crystal structure

The bound structure of aplyronine A in actin was visualised using Pymol using the Protein Databank (PDB) code: 1WUA.³ The ATP binding site of actin is identified with the ATP ligand in **red**. Aplyronine A is denoted in **green**.

The aplyronine A bound crystal structure of actin verifies the importance of side chain in binding to a key binding pocket in actin. The C7 TMSer vital for the activity of aplyronines A/D points directly out into bulk solvent, presumably as a binding site to recruit tubulin. It is clear that the macrocycle is required to confer overall geometric control, with the northern hemisphere appearing to contribute to key contacts with actin. The southern hemisphere however did not appear to form relevant contacts as it projects *away* from both actin and where tubulin binds (TMSer) into bulk solvent. Alongside with the SAR study presented above, this observation forms the major rationale for our function-oriented simplification of the aplyronines (see below for annotated diagram).

Figure 2. Annotated figure of the aplyronine-bound actin crystal structure, highlighting the key binding areas of aplyronine to the relevant biomolecules, as well as the lack of apparent biological contacts of the southern hemisphere

Experimental

2. General comments

2.1. General experimental procedures

All experiments were performed under anhydrous conditions and under an inert atmosphere of argon, except where stated or when water or aqueous solutions were used, using oven-dried apparatus and employing standard techniques for handling air-sensitive materials.

Purification of reagents and solvents was carried out according to standard procedures. Acetonitrile (MeCN), benzene, dichloromethane (CH₂Cl₂), and dimethyl sulfoxide (DMSO) were distilled from calcium hydride (CaH₂) and stored under an argon atmosphere. Tetrahydrofuran (THF) and diethyl ether (Et₂O) were distilled from benzophenone ketyl radical and sodium or potassium wire, respectively, under an argon atmosphere. Solvents used in workup, extraction, recrystallisation and column chromatography were distilled prior to use.

Triethylamine (Et₃N), pyridine (py), diethyl ethylphosphonate and hexamethyldisilazane (HMDS) were distilled from and stored over CaH₂. 2,6-lutidine was distilled from CaH₂ and stored neat under argon. Diisopropylethylamine (*i*Pr₂NEt) was first distilled from ninhydrin, then distilled from and stored over CaH₂. Titanium tetrachloride (TiCl₄), titanium tetraisopropoxide (Ti(O*i*Pr)₄) and oxalyl chloride ((COCl)₂) were distilled and stored at -20 °C under an argon atmosphere. Acetaldehyde and propionaldehyde were distilled from calcium chloride (CaCl₂) immediately prior to use. Proton Sponge was recrystallised from methanol. DDQ was recrystallised from chloroform. Barium hydroxide (Ba(OH)₂) was dried under high vacuum at 130 °C and stored under argon. All other chemicals were used as received, except where noted other- wise.

Sodium bicarbonate (NaHCO₃), ammonium chloride (NH₄Cl), sodium/potassium (Na⁺/K⁺) tartrate, brine (NaCl) and sodium thiosulfate (Na₂S₂O₃) were used as saturated aqueous solutions, unless otherwise stated in the text. Buffer solutions were prepared as directed from stock tablets with deionised water.

Flash column chromatography was carried out on Merck Kieselgel 60 (230–400 mesh) silica gel under a positive pressure of regulated compressed air. Merck Kieselgel F254 plates were used for preparative thin layer chromatography. All solvent mixtures are reported as volume ratios. Solvents were subsequently evaporated *in vacuo*.

2.2. General analytical procedures

Analytical thin layer chromatography (TLC) was carried out using Merck Kieselgel 60 F_{254} plates which were visualised using UV light (254 nm) and stained with potassium permanganate, vanillin, anisaldehyde or phosphomolybdic acid / cerium (III) sulfate Ce₂(SO₄)₃ dips.

Proton nuclear magnetic resonance (NMR) spectra were recorded using an internal deuterium lock at ambient probe temperature (298 K) on the following instruments: Bruker Avance BB, or Bruker Avance TCI (500 MHz and Bruker DPX400 (400 MHz). An internal reference of δ_H = 7.26 ppm was used for residual solvent protons in CDCl₃ and δ_H = 7.26 2.50 ppm for DMSO. All ¹H NMR data are represented as: chemical shift (in ppm on the δ scale relative to δ_{TMS} = 0 ppm), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, obs = obscured, app = apparent), coupling constant (*J* in Hz), and assignment. Assignments were determined on the basis of unambiguous chemical shift or coupling pattern, ¹H-¹H COSY, HSQC and HMBC experiments, or by analogy to fully interpreted data for related compounds.

Proton-decoupled ¹³C NMR spectra were recorded using an internal deuterium lock at ambient probe temperature (298K) on the following instruments: Bruker Avance BB and Bruker Avance TCI (125 MHz). An internal reference of $\delta_C = 77.0$ ppm was used for carbons in CDCl₃ and $\delta_C = 79.5$ ppm for DMSO. All chemical shift values are reported in ppm on the δ scale relative to $\delta_{\text{TMS}} = 0$ ppm.

Infrared spectra were recorded on a Perkin-Elmer Spectrum One FT-IR spectrometer. Absorbance frequencies (v_{max}) are reported in cm⁻¹.

Optical rotations were measured on an Anton Parr MCP100 polarimeter at 589 nm and are reported as follows: $[\alpha]_{p}^{20}$ at 20 °C (unless otherwise noted), concentration (*c* in g dL⁻¹) and solvent.

High resolution mass spectra (HRMS) were recorded at the EPSRC Mass Spectrometry Service (Swansea, UK) or at the departmental mass spectrometry service (University Chemical Laboratories, Cambridge) using electron impact (EI) and electrospray ionization (ESI) techniques. The parent ion is quoted with the indicated cation: [M+H]⁺, [M+Na]⁺ or [M+NH₄]⁺

2.3. Compound numbering nomenclature

The numbering system used for aplyronine intermediates and analogues follows that proposed by Yamada and co-workers in their original publication covering the isolation and characterisation of the aplyronines as shown below:

Figure 3. Structure of aplyronine C, highlighting the compound numbering as proposed by Yamada et al.

3. Experimental Procedures for the Synthesis of Aplyrologues 7, *R-/S-8* and 9

3.1. Synthesis of the C15-C27 aldehyde 12

TBS ether 14a

To a solution of 1,9-nonanediol (12.0 g, 74.9 mmol) and imidazole (2.04 g, 68.1 mmol) in THF (80 mL) at 0 °C was added a solution of TBSCl (3.77 g, 25.0 mmol) in THF (70 mL) dropwise over 40 min. The mixture was slowly warmed to rt and allowed to stir for 65 h, then quenched by addition of H₂O. The phases were separated and the aqueous layer extracted with EtOAc (3 × 100 mL). The combined organics were washed with H₂O (50 mL), dried over Na₂SO₄ and concentrated *in vacuo*. Purification by flash chromatography (1:3 \rightarrow 1:2 EtOAc/PE) gave alcohol **14a** as a colourless oil (5.69 g, 83%).

R_f 0.27 (1:6 EtOAc/PE); ¹**H** NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 3.64 (2H, t, *J* = 6.6 Hz, H₂₃), 3.59 (2H, t, *J* = 6.6 Hz, H₁₅), 1.61–1.45 (4H, m, H₁₆,H₂₂), 1.39–1.24 (10H, m, H_{17–21}), 0.89 (9H, s, SiC(CH₃)₃), 0.04 (6H, s, Si(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 63.3, 63.0, 32.8, 32.8, 29.6, 29.3, 29.3, 26.0, 25.8, 25.7, 18.4, –5.3; **HRMS** calc. for C₁₅H₃₅O₂Si [M+H]⁺ 275.2401, found 275.2402.

These data are in agreement with those reported by Diab et al.⁶

Aldehyde 14

To a solution of oxalyl chloride (2.39 mL, 28.2 mmol) in CH_2Cl_2 (50 mL) at -78 °C was added DMSO (2.67 mL, 37.6 mmol). The mixture was stirred for 30 min, then a solution of alcohol **14a** (5.16 g, 18.8 mmol) in CH_2Cl_2 (25 mL) was added *via* cannula and stirred for a further 1 h. Addition of Et_3N (7.86 mL, 56.4 mmol) dropwise at -78 °C caused the reaction mixture to seize. After warming to rt with stirring and addition of CH_2Cl_2 (20 mL), the resulting yellow solution was allowed to stir for 16 h. The reaction was quenched carefully with NH₄Cl (40 mL). The phases were separated and the aqueous layer extracted with CH_2Cl_2 (2 × 80 mL).

The combined organics were washed with NaHCO₃ (50 mL), dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by flash chromatography (1:15 EtOAc/PE) to give aldehyde **14** as a colourless oil (4.68 g, 91%).

R_f 0.50 (1:8 EtOAc/PE); ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 9.76 (1H, t, *J* = 1.9 Hz, H₂₃), 3.59 (2H, t, *J* = 6.6 Hz, H₁₅), 2.41 (2H, td, *J* = 7.4, 1.9 Hz, H₂₂), 1.68–1.57 (2H, m, H₁₆), 1.55–1.43 (2H, m, H₂₁), 1.37–1.24 (8H, m, H_{17–20}), 0.89 (9H, s, SiC(CH₃)₃), 0.04 (6H, s, Si(CH₃)₂); **HRMS** calc. for C₁₅H₃₃O₂Si [M+H]⁺ 273.2244, found 273.2248.

These data are in agreement with those reported by Cryle et al.⁷

Aldol adduct 15

To a solution of TiCl₄ (1.37 mL, 12.5 mmol) in CH₂Cl₂ (50 mL) at 0 °C was added Ti(Oi-Pr)₄ (1.23 mL, 4.17 mmol). The mixture was stirred at 0 °C for 10 min, then at rt for 30 min. The resulting colourless solution was added dropwise to a solution of ketone S-13 (3.52 g, 14.9 mmol, stirred over CaH₂ immediately before use) in CH₂Cl₂ (150 mL) at -78 °C, during which the solution gradually turned through yellow to light orange. Dropwise addition of *i*-Pr₂NEt (2.85 mL, 16.4 mmol) caused a further colour change to dark red. The reaction mixture was stirred at -78 °C for 30 min to allow full enolisation. Aldehyde 14 (4.46 g, 16.4 mmol, stirred over CaH₂ immediately before use) in CH₂Cl₂ (100 mL) was then added via cannula down the side of the reaction flask over 10 min. Shortly thereafter the solution was observed to return to a light orange colour. The mixture was stirred at -78 °C for a further 40 min. Upon completion the reaction was quenched with NaHCO₃/Na⁺/K⁺ tartrate (1:1, 90 mL) and warmed to rt. The biphasic mixture was stirred vigorously for 2 h and then left to stand overnight. The layers were separated and the organic phase washed with brine (100 mL). The combined aqueous fractions were then extracted with EtOAc ($2 \times 100 \text{ mL}$). The organics were dried over Na₂SO₄ and concentrated *in vacuo*. Purification by flash chromatography (1:10 \rightarrow 1:5 EtOAc/PE) afforded aldol adduct 15 as a colourless oil (6.42 g, 85%, 18:1 dr).

R_f 0.26 (1:5 EtOAc/PE); ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.18 (2H, d, *J* = 8.7 Hz, ArH), 6.85 (2H, d, *J* = 8.7 Hz, ArH), 4.39 (1H, d, *J* = 11.4 Hz, ArCH_aH_bO), 4.36 (1H, d, *J* = 11.5 Hz, ArCH_aH_bO), 4.00–3.95 (1H, m, H₂₃), 3.79 (3H, s, ArOMe), 3.61 (1H, app t, *J* = 8.7 Hz, H_{27a}), 3.59 (2H, t, *J* = 6.7 Hz, H₁₅ ×2), 3.42 (1H, dd, *J* = 8.7, 4.7 Hz, H_{27b}), 3.15 (1H, dqd, *J* = 9.3,

6.9, 4.9 Hz, H₂₆), 2.88 (1H, d, J = 3.9 Hz, C₂₃OH), 2.72 (1H, qd, J = 7.1, 2.7 Hz, H₂₄), 1.50 (2H, app quint, J = 6.8 Hz, H₁₆ × 2), 1.47–1.34 (2H, m, H₂₂ × 2), 1.34–1.18 (10H, m, H_{17–21}), 1.05 (3H, d, J = 7.1 Hz, Me₂₄), 1.00 (3H, d, J = 6.9 Hz, Me₂₆), 0.89 (9H, s, SiC(CH₃)₃), 0.04 (6H, s, Si(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 218.1, 159.3, 129.6, 129.3, 113.8, 73.1, 72.9, 70.6, 63.3, 55.2, 50.9, 44.8, 33.6, 32.9, 29.6, 29.6, 29.4, 26.2, 25.9, 25.8, 18.3, 13.6, 8.8, -5.3; $[\alpha]_D^{20}$ –2.0 (*c* 0.10, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 3500, 2929, 2853, 1709, 1615, 1514, 1461, 1360, 1302, 1249, 1173, 1037, 1005, 991, 834, 777; **HRMS** calc. for C₂₉H₅₆NO₅Si [M+NH₄]⁺ 526.3922, found 526.3909.

The configuration at C23 was confirmed by synthesising the diastereomeric Mosher esters (S/R-MTPA-15) for analysis:

To a solution of alcohol **15** (10.1 mg, 19.8 µmol) and (*S*)- α -methoxy- α trifluoromethylphenylacetic acid (13.9 mg, 59.4 µmol) in CH₂Cl₂ (1 mL) was added DCC (60 µL, 1.0 M in CH₂Cl₂, 60.0 µmol) followed by DMAP (8.4 mg, 68.8 µmol). The reaction was stirred at rt for 19 h, then filtered and concentrated. Flash chromatography (1:30 \rightarrow 1:20 EtOAc/PE) gave the (*S*)-MTPA ester *S*-MTPA-**15** as a colourless oil (10.6 mg, 74%). The analogous procedure gave the (*R*)-MTPA ester *R*-MTPA-**15** in 47% yield.

S-MTPA-15:

R_f 0.65 (1:4 EtOAc/PE); ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.58–7.53 (2H, m, PhH), 7.40–7.36 (3H, m, PhH), 7.19 (2H, d, *J* = 8.6 Hz, PMB ArH), 6.85 (2H, d, *J* = 8.7 Hz, PMB ArH), 5.44 (1H, app dt, *J* = 7.6, 5.2 Hz, H₂₃), 4.39 (1H, d, *J* = 11.6 Hz, ArCH_aH_bO), 4.33 (1H, d, *J* = 11.6 Hz, ArCH_aH_bO), 3.79 (3H, s, ArOMe), 3.59 (2H, t, *J* = 6.7 Hz, H₁₅ × 2), 3.56 (1H, dd, *J* = 8.9, 8.2 Hz, H_{27a}), 3.52 (3H, s, OMe), 3.39 (1H, dd, *J* = 9.0, 5.4 Hz, H_{27b}), 3.08–2.99 (1H, m, H₂₆), 2.93 (1H, dq, *J* = 7.1, 6.7 Hz, H₂₄), 1.60–1.53 (1H, m, H_{22a}), 1.53–1.43 (3H, m, H₁₆ × 2,H_{22b}), 1.31–1.10 (10H, m, H_{17–21}), 1.09 (3H, d, *J* = 7.2 Hz, Me₂₄), 1.03 (3H, d, *J* = 7.0 Hz, Me₂₆), 0.89 (9H, s, SiC(CH₃)₃), 0.05 (6H, s, Si(CH₃)₂).

R_f 0.65 (1:4 EtOAc/PE); ¹**H** NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.59–7.52 (2H, m, PhH), 7.41–7.35 (3H, m, PhH), 7.19 (2H, d, *J* = 8.7 Hz, PMB ArH), 6.85 (2H, d, *J* = 8.7 Hz, PMB ArH), 5.42 (1H, app q, *J* = 6.1 Hz, H₂₃), 4.38 (1H, d, *J* = 11.5 Hz, ArCH_aH_bO), 4.34 (1H, d, *J* = 11.6 Hz, ArCH_aH_bO), 3.79 (3H, s, ArOMe), 3.58 (2H, t, J = 6.7 Hz, H₁₅ × 2), 3.56–3.51 (4H, m, OMe, H_{27a}), 3.36 (1H, dd, *J* = 9.0, 5.4 Hz, H_{27b}), 3.00–2.92 (1H, m, H₂₆), 2.90 (1H, dq, J = 7.3, 6.9 Hz, H₂₄), 1.62–1.52 (2H, m, H₂₂ × 2), 1.48 (2H, app quint, *J* = 7.1 Hz, H₁₆ × 2), 1.31–1.12 (10H, m, H_{17–21}), 1.02 (3H, d, J = 7.2 Hz, Me₂₄), 0.97 (3H, d, *J* = 7.0 Hz, Me₂₆), 0.89 (9H, s, SiC(CH₃)₃), 0.04 (6H, s, Si(CH₃)₂).

Proton	δΗ (S)-MTPA (ppm)	δΗ (<i>R</i>)-ΜΤΡΑ (ppm)	$\Delta \delta_{S\text{-R}}$
Troton			(ppm)
H22a	1.57	1.60	-0.03
H22b	1.51	1.60	-0.09
H23	5.44	5.42	+0.02
H24	2.93	2.90	+0.03
Me24	1.09	1.02	+0.07
H26	3.04	2.96	+0.08
Me26	1.03	0.97	+0.06

Table 1. Diagnostic ¹H NMR signals for the configurational assignment of 23S

Alcohol 16

Freshly prepared SmI₂ (18.7 mL, *ca*. 0.1 M in THF, 1.87 mmol) was added dropwise to a solution of propionaldehyde (8.1 mL, 112 mmol, distilled from CaCl₂ immediately prior to use) in THF (120 mL) at 0 °C. The blue-green colour of SmI₂ faded upon addition to give a golden yellow solution, which was stirred at 0 °C for 15 min then cooled to -20 °C. Ketone **15** (9.34 g, 18.3 mmol) was dissolved in THF (70 mL) and added to the reaction mixture *via* cannula. The reaction was kept at -20 °C for 1 h, then quenched with NaHCO₃ (100 mL) and warmed

to rt. The aqueous fraction was extracted with Et_2O (3 × 100 mL). The combined organics were dried over Na₂SO₄, concentrated *in vacuo*, and purified by flash chromatography (1:15 EtOAc/PE) to give alcohol **16** as a pale yellow oil (9.91 g, 95%, >20:1 *dr*).

R_f 0.48 (1:5 EtOAc/PE); ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.23 (2H, d, *J* = 8.6 Hz, ArH), 6.87 (2H, d, *J* = 8.6 Hz, ArH), 5.27 (1H, ddd, *J* = 8.7, 5.0, 1.5 Hz, H₂₃), 4.43 (1H, d, *J* = 11.6 Hz, ArCH_{*a*}H_{*b*}O), 4.39 (1H, d, *J* = 11.6 Hz, ArCH_{*a*}H_{*b*}O), 3.80 (3H, s, ArOMe), 3.59 (2H, t, *J* = 6.6 Hz, H₁₅ × 2), 3.55 (1H, dd, *J* = 9.2, 5.1 Hz, H_{27*a*}), 3.43 (1H, dd, *J* = 9.2, 5.8 Hz, H_{27*b*}), 3.35 (1H, d, *J*=5.7Hz,C₂₅OH),3.10(1H,ddd,*J*=8.9,5.7,3.5Hz,H₂₅),2.33(2H,q,*J*=7.6Hz,H₂ × 2), 2.05–1.98 (1H, m, H₂₆), 1.76 (1H, dqd, *J* = 8.5, 6.9, 1.3 Hz, H₂₄), 1.72–1.63 (1H, m, H_{22*a*}), 1.50 (2H, app quint, *J* = 6.9 Hz, H₁₆ × 2), 1.45–1.36 (1H, m, H_{22*b*}), 1.34–1.20 (10H, m, H_{17–21}), 1.14 (3H, t, *J* = 7.6 Hz, H₃ × 3), 1.06 (3H, d, *J* = 7.0 Hz, Me₂₆), 0.89 (9H, s, SiC(CH₃)₃), 0.87 (3H, d, *J* = 6.9 Hz, Me₂₄), 0.04 (6H, s, Si(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 175.3, 159.1, 130.4, 129.1, 113.7, 76.3, 73.7, 72.9, 71.7, 63.3, 55.2, 40.2, 34.7, 32.8, 32.6, 29.5, 29.4, 29.3, 27.8, 26.0, 26.0, 25.7, 18.3, 16.3, 10.1, 9.3, -5.3; [*α*]_{*D*}²⁰ –3.5 (*c* 1.00, CHCl₃); **IR** (thin film) ν_{max} (cm⁻¹) 3504, 2929, 2849, 1728, 1711, 1617, 1514, 1463, 1364, 1247, 1203, 1096, 1039, 1001, 832, 777; **HRMS** calc. for C₃₂H₆₂NO₆Si [M+NH₄]⁺ 584.4341, found 584.4325.

Methyl ether 16a

Proton Sponge (9.30 g, 43.4 mmol) and Me₃O·BF₄ (4.28 g, 28.9 mmol) were charged to a flask in an argon-filled glove box, then a solution of alcohol **16** (8.17 g, 14.4 mmol) in CH₂Cl₂ (300 mL) was added at rt. The reaction was stirred for 3 h, during which time it gradually turned yellow, then bright orange. The mixture was then quenched by addition of NH₄Cl (150 mL) and stirred overnight. The aqueous layer was extracted with CH₂Cl₂ (3 × 100 mL), then the combined organics were washed with citric acid (2 × 200 mL, 10% w/v aq.), dried over MgSO₄, and concentrated *in vacuo*. Purification by flash chromatography (1:20 EtOAc/PE) provided the methyl ether **16a** as a colourless oil (7.42 g, 89%, 99% brsm).

R_f 0.48 (1:8 EtOAc/PE); ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.24 (2H, d, *J* = 8.7 Hz, ArH), 6.86 (2H, d, *J* = 8.7 Hz, ArH), 5.18 (1H, app td, *J* = 7.4, 2.0 Hz, H₂₃), 4.43 (1H, d, *J* = 11.5 Hz, ArCH_aH_bO), 4.39 (1H, d, *J* = 11.6 Hz, ArCH_aH_bO), 3.80 (3H, s, ArOMe), 3.59 (2H, t, *J* = 6.7 Hz, H₁₅ × 2), 3.53 (1H, dd, *J* = 9.2, 4.9 Hz, H_{27a}), 3.38 (3H, s, C₂₅OMe), 3.32 (1H, dd, *J* = 9.1,

7.3 Hz, H_{27b}), 2.87 (1H, dd, J = 8.5, 3.6 Hz, H₂₅), 2.31 (2H, q, J = 7.6 Hz, H₂'× 2), 2.12–2.04 (1H, m, H₂₆), 1.78 (1H, dqd, J = 8.9, 7.0, 2.0 Hz, H₂₄), 1.66–1.58 (1H, m, H_{22a}), 1.49 (2H, app quint, J = 7.0 Hz, H₁₆× 2), 1.46–1.39 (1H, m, H_{22b}), 1.33–1.19 (10H, m, H_{17–21}), 1.14 (3H, t, J = 7.6 Hz, H₃'× 3), 1.06 (3H, d, J = 7.1 Hz, Me₂₆), 0.92–0.88 (12H, m, Me₂₄, SiC(CH₃)₃), 0.04 (6H, s, Si(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 174.1, 159.0, 130.8, 129.0, 113.7, 85.9, 73.2, 72.7, 71.6, 63.3, 61.3, 55.2, 38.8, 35.9, 32.9, 32.7, 29.5, 29.5, 29.4, 28.0, 26.0, 25.8, 25.7, 18.4, 16.3, 10.6, 9.4, -5.3; $[\alpha]_D^{20}$ –4.4 (*c* 0.79, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 2932, 2858, D 1732, 1614, 1513, 1463, 1247, 1193, 1090, 1038, 834, 776; **HRMS** calc. for C₃₃H₆₄NO₆Si [M+NH₄]⁺ 598.4497, found 598.4482.

Alcohol 16b

Methyl ether **16a** (2.03 g, 3.49 mmol) was dissolved in THF (50 mL) and cooled to 0 °C. HCl (30 mL, 1.0 M aq.) was added, then the reaction was stirred at rt. After 1 h the reaction was quenched by careful addition of NaHCO₃ (80 mL) with cooling in an ice bath. The resulting mixture was then diluted with H₂O (100 mL) and Et₂O (50 mL) and extracted with Et₂O (3×100 mL). The combined organics were dried over Na₂SO₄, concentrated *in vacuo*, and purified by flash chromatography (1:3 EtOAc/PE) to give alcohol **16b** as a colourless oil (1.62 g, 99%).

R_f 0.15 (1:3 EtOAc/PE); ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.24 (2H, d, *J* = 8.5 Hz, ArH), 6.86 (2H, d, *J* = 8.5 Hz, ArH), 5.18 (1H, app td, *J* = 7.0, 1.6 Hz, H₂₃), 4.42 (1H, d, *J* = 11.6 Hz, ArCH_aH_bO), 4.39 (1H, d, *J* = 11.5 Hz, ArCH_aH_bO), 3.80 (3H, s, ArOMe), 3.62 (2H, t, *J* = 6.6 Hz, H₁₅ × 2), 3.53 (1H, dd, *J* = 9.2, 4.8 Hz, H_{27a}), 3.37 (3H, s, C₂₅OMe), 3.32 (1H, dd, *J* = 9.0, 7.4 Hz, H_{27b}), 2.86 (1H, dd, *J* = 8.5, 3.5 Hz, H₂₅), 2.31 (2H, q, *J* = 7.6 Hz, H₂ × 2), 2.12–2.04 (1H, m, H₂₆), 1.78 (1H, dqd, *J* = 8.6, 7.1, 1.6 Hz, H₂₄), 1.69–1.59 (1H, m, H_{22a}), 1.55 (2H, app quint, *J* = 6.9 Hz, H₁₆ × 2), 1.47–1.39 (1H, m, H_{22b}), 1.39–1.19 (10H, m, H_{17–21}), 1.14 (3H, t, *J* = 7.6Hz, H₃ × 3),1.05(3H, d, *J* = 7.0 Hz, Me₂₆),0.90 (3H, d, *J* = 7.0 Hz, Me₂₄);¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 174.1, 159.0, 130.8, 129.0, 113.7, 85.9, 73.1, 72.7, 71.6, 63.0, 61.4, 55.2, 38.8, 35.9, 32.7, 32.7, 29.4, 29.3, 29.2, 28.0, 25.6, 25.6, 16.3, 10.6, 9.4; [*α*]²⁰_{*D*} -8.0 (*c* 0.10, D CHCl₃); **IR** (thin film) *v*_{max} (cm⁻¹) 3452, 2972, 2933, 2857, 1730, 1613, 1588, 1514, 1463, 1423, 1364, 1300, 1247, 1195, 1086, 1037, 1003, 820; **HRMS** calc. for C₂₇H₄₇O₆ [M+H]⁺ 467.3367, found 467.3359.

Aldehyde 12

Oxalyl chloride (381 µL, 4.50 mmol) and CH₂Cl₂ (40 mL) were charged to a flask and cooled to -78 °C. DMSO (426 µL, 6.00 mmol) was added dropwise, and the mixture was stirred for 30 min. A solution of alcohol **16b** (1.41 g, 3.03 mmol) in CH₂Cl₂ (20 mL) was added and stirring continued for 20 min. After addition of Et₃N (1.25 mL, 9.00 mmol), the reaction was warmed to rt and stirred for 1.5 h. Addition of NH₄Cl (60 mL) to quench was followed by extraction with Et₂O (3 × 50 mL). The combined organics were washed with HCl (100 mL, 0.5 M aq.), brine (100 mL), and NaHCO₃(100 mL), then dried over MgSO₄ and concentrated *in vacuo*. The product could be used crude or purified by flash chromatography (1:8 EtOAc/PE) to yield the aldehyde **12** as a colourless oil (1.32 g, 94%).

R_f 0.45 (1:3 EtOAc/PE); ¹**H NMR** (500 MHz, CDCl₃) **δ**_H 9.75 (1H, t, *J* = 1.8 Hz, H₁5), 7.24 (2H, d, *J* = 8.6 Hz, ArH), 6.86 (2H, d, *J* = 8.7 Hz, ArH), 5.17 (1H, app td, *J* = 7.0, 1.9 Hz, H₂₃), 4.43 (1H, d, *J* = 11.5 Hz, ArCH₂O), 4.39 (1H, d, *J* = 11.6 Hz, ArCH₂O), 3.80 (3H, s, ArOMe), 3.53 (1H, dd, *J* = 9.2, 4.9 Hz, H_{27a}), 3.38 (3H, s, C₂₅OMe), 3.32 (1H, dd, *J* = 9.1, 7.4 Hz, H_{27b}), 2.86 (1H, dd, *J* = 8.5, 3.5 Hz, H₂₅), 2.40 (2H, td, *J* = 7.4, 1.8 Hz, H₁₆ × 2), 2.31 (2H, q, *J* = 7.6 Hz, H₂[·] × 2), 2.12–2.04 (1H, m, H₂₆), 1.78 (1H, dqd, *J* = 8.9, 7.0, 1.9 Hz, H₂₄), 1.66–1.58 (3H, m, H₁₇ × 2, H_{22a}), 1.47–1.38 (1H, m, H_{22b}), 1.33–1.20 (8H, m, H₁₈₋₂₁), 1.14 (3H, t, *J* = 7.6 Hz, H₃[·] × 3), 1.05 (3H, d, *J* = 7.0 Hz, Me₂₆), 0.90 (3H, d, *J* = 7.0 Hz, Me₂₄); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 202.9, 174.1, 159.0, 130.8, 129.0, 113.7, 85.9, 73.1, 72.7, 71.6, 61.4, 55.3, 43.9, 38.8, 35.9, 32.7, 29.3, 29.2, 29.0, 28.0, 25.6, 22.0, 16.3, 10.6, 9.4; [*α*]²⁰_{*D*} -5.6 (*c* 0.65, CHCl₃); **IR** (thin film) ν_{max} (cm⁻¹) 2936, 2858, 1726, 1614, 1511, 1461, 1364, 1247, 1195, 1088, 1038, 822; **HRMS** calc. for C₂₇H₄₈O₆N [M+NH₄]⁺ 482.3476, found 482.3471.

3.2. Synthesis of the C28-C34 side chain *E*-11

Aldol adduct 17

To a solution of TiCl₄ (175 µL, 1.78 mmol) in CH₂Cl₂ (8.4 mL) at 0 °C was added Ti(O-*i*Pr)₄ (175 µL, 0.59 mmol). The mixture was stirred at 0 °C for 10 min, then at rt for 20 min. The resulting colourless solution was added dropwise to a solution of ketone *R*-13 (500 mg, 2.12 mmol, dried under vacuum for 2 h and stirred over CaH₂ immediately prior to use) in CH₂Cl₂ (13 mL) at -78 °C. To the yellow solution was added *i*-PrNEt₂ (0.41 mL) dropwise and the reaction mixture was allowed to enolise at -78 °C for 30 min. Acetaldehyde (1.12 mL, 21.2 mmol, distilled from CaCl₂ immediately prior to use) was dissolved in CH₂Cl₂ (10 mL) and added to the reaction mixture dropwise, causing the deep red solution to gradually turn pale orange. The mixture was stirred at -78 °C for 30 min before MeOH (8 mL) was added. After warming to rt Na⁺/K⁺ tartrate was added (20 mL) and the biphasic mixture was vigorously stirred overnight. The layers were separated, and the organic phase washed with brine (20 mL) and the combined aqueous layers were extracted with CH₂Cl₂ (3 × 20 mL). The combined organics were dried (Na₂SO₄) and concentrated *in vacuo* and purified by flash column chromatography (1:3 EtOAc/PE) to give aldol adduct **17** as a colourless oil (456 mg, 77%, 17:1 *dr*).

R_f 0.24 (3:1EtOAc/PE); ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.18 (2H, d, J = 8.6 Hz, ArH), 6.87 (2H, d, J = 8.9 Hz, ArH), 4.39 (2H, ABq, J = 8.6 Hz, OCH₂Ar), 4.19 (1H, qdd, J = 6.6, 4.1, 3.2 Hz, H₂₉), 3.80 (3H, s, OMe), 3.61 (1H, t, J = 9.1 Hz, H_{33a}), 3.42 (1H, dd, J = 8.7, 4.6 Hz, H_{33b}), 3.15 (1H, dqd, J = 9.4, 7.0, 4.7 Hz, H₃₂), 2.94 (1H, d, J = 4.2 Hz, OH), 2.73 (1H, qd, J = 7.1, 3.0 Hz, H₃₀), 1.12 (3H, d, J = 6.7 Hz, Me₂₈), 1.08 (3H, d, J = 7.1 Hz, Me₃₀), 1.00 (3H, d, J = 6.7 Hz, Me₃₂).

These data are in agreement with those reported by Fink et al.8

Alcohol 18

To a solution of propionaldehyde (freshly distilled from CaCl₂, 1.54 mL, 21.4 mmol) in THF (20 mL) at 0 °C was added freshly prepared SmI₂ (2.56 mL, 0.1 M in THF, 0.256 mmol). The solution was stirred for 5 min until the deep blue colouration had subsided. A solution of aldol adduct **17** (1.00 g, 3.57 mmol) in THF (10 mL) was then added *via* cannula. The reaction was stirred at 0 °C for 1 h, before being quenched with NaHCO₃ (10 mL) and extracted with Et₂O (3×10 mL). The combined organic layers were dried (MgSO₄), concentrated *in vacuo* and purified by flash column chromatography (1:4 EtOAc/PE) to give alcohol **18** as a colourless oil (1.17 g, 97%, >95:5 *dr*).

R_f 0.31 (1:4 EtOAc/PE); ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.23 (2H, d, J = 8.4 Hz, ArH), 6.87 (2H, d, J = 8.7 Hz, ArH), 5.40 (1H, qd, J = 6.6, 2.1 Hz, H₂₉), 4.41 (2H, ABq, J = 11.6 Hz, OCH₂Ar), 3.80 (3H, s, OMe), 3.54-3.48 (2H, m, H₃₃ × 2), 3.21-3.15 (2H, m, H₃₁, OH), 2.30 (2H, q, J = 7.7 Hz, H_{2³} × 2), 2.03-1.94 (1H, m, H₃₂), 1.70-1.59 (1H, m, H₃₀), 1.22 (3H, d, J = 6.7 Hz, Me₂₈), 1.12 (3H, t, J = 7.5 Hz, H_{3³} × 3), 1.08 (3H, d, J = 7.0 Hz, Me₃₂), 0.89 (3H, t, J = 6.9 Hz, Me₃₀).

These data are in agreement with those reported by Fink et al.8

Methyl ether 18a

To a solution of Meerwein salt (Me₃OBF₄, 874 mg, 5.92 mmol) and Proton Sponge® (1.90 g, 8.88 mmol) in CH₂Cl₂ (50 mL) was added alcohol **18** (1.00 g, 2.96 mmol). The reaction was stirred for 4 h before being quenched with NH₄Cl (100 mL). The layers were separated, and the aqueous phase extracted with CH₂Cl₂ (3×50 mL). The combined organic layers were dried (MgSO₄), concentrated *in vacuo* and purified by flash column chromatography (1:4 EtOAc/PE) to give methyl ether **18a** as a colourless oil (0.939 g, 90%).

R_f 0.29 (1:3 EtOAc/PE); ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.24 (2H, d, J = 8.6 Hz, ArH), 6.87 (2H, d, J = 8.6 Hz, ArH), 5.27-5.20 (1H, m, H₂₉), 4.41 (2H, ABq, J = 11.7 Hz, OCH₂Ar), 3.80 (3H, s, OMe), 3.54 (1H, dd, J = 9.1, 4.9 Hz, H_{33a}), 3.36 (3H, s, OMeAr), 3.31 (1H, dd, J = 8.7,

2.3 Hz, H_{33b}), 2.89 (1H, dd, J = 8.8, 3.2 Hz, H₃₁), 2.30 (2H, q, *J* = 7.8 Hz, H₂· × 2), 2.12-2.03 (1H, m, H₃₂), 1.74-1.66 (1H, m, H₃₀), 1.21 (3H, d, *J* = 6.0 Hz, Me₂₈), 1.21 (3H, t, *J* = 7.6 Hz, H₃· × 3), 1.10 (3H, d, *J* = 6.7 Hz, Me₃₂), 0.94 (3H, t, *J* = 7.4 Hz, Me₃₀). ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 173.8, 158.9, 130.7, 128.9, 113.6, 85.9, 72.6, 71.3, 69.6, 61.3, 55.1, 40.8, 35.8, 27.9, 18.2, 16.2, 10.3, 9.2; $[\alpha]_D^{20}$ +2.3 (c 0.98, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 2974, 2937, 1731, 1613, D 1513, 1462, 1367, 1302, 1246, 1195, 1172, 1083, 1036, 1011, 819; **HRMS** calc. for C₂₀H₃₆O₅N [M+NH₄]⁺ 370.2588, found 370.2589.

Alcohol 18b

To a solution of PMB ether **18a** (380 mg, 1.08 mmol) in CH_2Cl_2 (12 mL) was added pH 7.0 buffer (6 mL) and DDQ (490 mg, 2.16 mmol) at 0 °C. The reaction was warmed to rt and stirred for 1 h before being quenched with NaHCO₃ (15 mL). The layers were separated, and the aqueous phase was extracted with EtOAc (3 × 15 mL). The combined organics were dried (Na₂SO₄) and concentrated *in vacuo*. The crude material was purified by flash column chromatography (1:3 EtOAc/PE) to yield alcohol **18b** as a colourless oil (245 mg, 93%).

R_f 0.21 (1:3 EtOAc/PE); ¹**H** NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 5.24 (1H, dq, J = 6.5, 2.5 Hz, H₂₉), 3.84-3.78 (1H, m, H_{33a}), 3.58-3.52 (1H, m, H_{33b}), 3.47 (3H, s, OMe), 2.98 (1H, dd, J = 8.8, 3.2 Hz, H₃₁), 2.78 (1H, br s, OH), 2.32 (2H, q, J = 7.8 Hz, H₂· × 2), 1.92-1.85 (1H, m, H₃₂), 1.82-1.75 (1H, m, H₃₀), 1.24 (3H, d, J = 6.5 Hz, Me₂₈), 1.15 (3H, d, J = 7.2 Hz, Me₃₂), 1.14 (3H, t, J = 7.5 Hz, H₃· × 3), 0.92 (3H, d, J = 7.0 Hz, Me₃₀). ¹³**C** NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 173.9, 88.6, 69.6, 64.5, 61.7, 41.3, 36.0, 28.0, 18.3, 16.0, 10.3, 9.2;; [α]²⁰ 8.8 (c 1.00, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 3425, 2977, 2938, 2881, 2829, 1731, 1462, 1376, 1276, 1194, 1158, 1123, 1083, 1032, 966, 936, 870, 807; **HRMS** calc. for C₁₂H₂₅O₄ [M+H]⁺ 233.1747, found 233.1749.

Diol 19

To a solution of ester **18b** (233 mg, 1.00 mmol) in CH_2Cl_2 (10 mL) was added DIBAL (4 mL, 4.00 mmol, 1.0 M in CH_2Cl_2) at -78 °C. Upon completion, the reaction was quenched with

 Na^+/K^+ tartrate (20 mL) and allowed to warm to rt. The layers were separated and the aqueous was extracted with CH_2Cl_2 (4 × 30 mL) and the combined organics were dried (Na_2SO_4) and concentrated *in vacuo*. The crude was purified by flash column chromatography (1:1 EtOAc/PE) to afford diol **19** as a colourless oil (153 mg, 87%).

R_f 0.20 (1:1 EtOAc/PE); ¹**H** NMR (500 MHz, CDCl₃) **δ**_H 4.19 (1H, q, J = 6.7 Hz, H₂₉), 3.76-3.64 (2H, m, H₃₃ × 2), 3.56 (3H, s, OMe), 3.18 (1H, dd, J = 7.7, 4.5 Hz, H₃₁), 2.95 (1H, br s, OH), 2.27 (1H, br s, OH), 2.02-1.95 (1H, m, H₃₂), 1.71-1.64 (1H, m, H₃₀), 1.56 (3H, d, J = 6.4Hz, Me₂₈), 1.03 (3H, d, J = 7.2 Hz, Me₃₂), 0.96 (3H, d, J = 6.7 Hz, Me₃₀); ¹³C NMR (125 MHz, CDCl₃) **δ**_C 90.6, 66.6, 65.3, 61.8, 39.7, 37.6, 20.7, 14.9, 11.0; [**α**]²⁰_D +8.5 (*c* 1.00, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 3217, 2972, 2930, 1456, 1370, 1076, 1032, 1010, 998, 937, 900; **HRMS** calc. for C₉H₂₀O₃Na [M+Na]⁺ 199.1305, found 199.1299.

Enamide *E*/*Z*-11

To a solution of DMSO (0.52 mL, 7.38 mmol) in CH₂Cl₂ (10 mL) at -78 °C was added oxalyl chloride (0.31 mL, 3.69 mmol). After stirring for 30 min, a solution of diol **19** (216 mg, 1.23 mmol) in CH₂Cl₂ (10 mL) was added. The mixture was stirred for 30 min and then triethylamine (2.06 mL, 14.7 mmol) was added. The reaction mixture was stirred at -78 °C for 30 min, then warmed to rt for 1 h before being quenched with NH₄Cl solution (15 mL). The layers were separated, and the aqueous phase was extracted with Et₂O (3 × 15 mL). The combined organics were dried over MgSO₄ and concentrated *in vacuo* to afford aldehyde **20** (180 mg, 85%) which was used immediately crude in the subsequent Wittig reaction.

To a suspension of phosphonium salt **21** (4.48 g, 11.3 mmol) in THF (25 mL) at -78 °C was added freshly prepared LiHMDS (12.5 mL, 1.0 M in THF, 12.5 mmol). The ylide solution was stirred at -78 °C for 30 min, warmed to -40 °C and stirred for 30 min, warmed to -20 °C and stirred for 30 min and finally warmed to 0 °C for 20 min after which the yellow suspension was cooled back down to -78 °C. A solution of ketoaldehyde **20** (976 mg, 5.67 mmol, predried over CaH₂ for 1 h) in THF (25 mL) was added slowly. The reaction mixture was stirred at -78 °C for 2 h before being quenched with pH 7.0 buffer (50 mL) and diluted with Et₂O (10 mL). The layers were separated and the aqueous layer extracted with EtOAc (3 × 50 mL). The combined organics were dried over MgSO₄ and concentrated *in vacuo*. The crude material was purified by flash column chromatography (1:1 EtOAc/PE) to afford enamide *E*/*Z*-**11** as a pale

yellow oil as an inseparable mixture of geometric isomers (800 mg, 62% over 2 steps, 3:1 Z/E).

While a full characterisation has been carried out for enamide E/Z-11, an analytically pure sample for spectroscopic characterisation was obtained, and a spectroscopically pure sample was only obtained for E-11 after the I₂-mediated isomerisation, described below.

R_f 0.27 (1:1 EtOAc/PE); ¹**H NMR** (500 MHz, CDCl₃) **δ**_H 8.10 (0.85H, s, NCHO), [8.01] (0.1H, s, NCHO*), [6.19] (0.12H, d, J = 9.1 Hz, H₃₄*), 5.92 (0.81H, d, J = 8.7 Hz, H₃₄), 5.27 (0.84H, dd, J = 10.8, 8.7 Hz, H₃₃), [5.24-5.19] (0.13H, m, H₃₃*), 3.32 (3H, s, OMe), 3.20 (1H, dd, J =9.4, 3.1 Hz, H₃₁), [2.98] (0.15H, s, NMe*), 2.95 (2.45H, s, NMe), [2.74-2.68] (0.16H, m, H₃₂*), 2.67-2.57 (2H, m, H₃₂, H₃₀), 2.14 (3H, s, Me₂₈), 1.09 (3H, d, J = 7.0 Hz, Me₃₀), [0.88] (0.67H, d, J = 7.0 Hz, Me₃₂*), 0.84 (2.40H, d, J = 7.0 Hz, Me₃₂); ¹³C NMR (125 MHz, CDCl₃) **δ**_C [212.4], 211.8, 162.5, [162.4], 127.7, 125.1, [124.5], [124.1], [87.2], 86.9, [61.2], 61.3, [49.7], 49.8, 36.2, [34.9], 33.8, 31.5, [31.1], 30.9, 19.0, [18.3], [13.4], 13.2; [**α**]²⁰_D +11.0 (*c* 1.00, CHCl₃); **IR** (thin film) ν_{max} (cm⁻¹) 2972, 2929, 1682, 1653, 1457, 1355, 1088, 1054; **HRMS** calc. for C₁₂H₂₁NO₃Na [M+Na]⁺ 250.1414, found 250.1412.

Distinguishable resonances of the minor rotamer (3:1 ratio) are given in brackets and assignments denoted with an asterisk.

C28-C34 fragment E-11

Enamide E/Z-86 (810 mg, 3.56 mmol) was dissolved in CH₂Cl₂ (100 mL) and a solution of iodine (45 mg, 0.18 mmol) in CH₂Cl₂ (20 mL) was added. The reaction mixture was stirred in the dark at room temperature for 16 h before being quenched with sodium thiosulfate (100 mL, sat. aq.). The biphasic mixture was stirred rapidly for 2 h and the organic layer separated. The aqueous phase was extracted with CH₂Cl₂ (3 × 50 mL) and the combined organics dried (MgSO₄) and concentrated *in vacuo*. The crude was purified by flash column chromatography (1:1 EtOAc/PE) to afford (*E*)-enamide 11 as a pale-yellow oil (700 mg, 86%, >20:1 *E/Z*).

R_f 0.27 (1:1 EtOAc/PE); ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.25 (0.59H, s, NCHO), [8.04] (0.33H, s, NCHO*), [7.09] (0.32H, d, J = 14.5 Hz, H₃₄*), 6.44 (0.59H, d, J = 14.5 Hz, H₃₄), 5.09 (1H, dd, J = 14.5, 8.5 Hz, H₃₃), 3.34 (3H, s, OMe), 3.26 (1H, dd, J = 10.5, 2.7 Hz, H₃₁), [3.04] (1H, s, NMe*), 3.00 (2H, s, NMe), 2.72-2.61 (1H, m, H₃₂), 2.44-2.31 (1H, m, H₃₀), 2.16 (3H, s, Me₂₈), 1.12 (3H, d, J = 6.7 Hz, Me₃₂), 0.92 (3H, d, J = 7.1 Hz, Me₃₀); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ [212.4], 212.3, 162.1, 160.8, 128.7, 124.7, [113.1], 111.3, [87.4], 87.3, 61.2, 61.2, [49.7], 49.6, 37.6, 37.5, 33.0, [31.0], 30.9, 29.6, 27.5, 19.3, [13.4], 13.3; [α]²⁰_D -74.4 (*c*

0.84, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 2964, 2928, 1691, 1651, 1457, 1353, 1318, 1275, 1193, 1170, 1092, 1068, 956, 725; **HRMS** calc. for C₁₂H₂₁NO₃Na [M+Na]⁺ 250.1414, found 250.1412.

Distinguishable resonances of the minor rotamer (2:1 ratio) are given in brackets and assignments denoted with an asterisk.

3.3. Fragment assembly and synthesis of the macrocycle 25

Enone 22

To Ba(OH)₂ (592 mg, 3.46 mmol) was added a solution of phosphonate **13** (2.24 g, 2.88 mmol, 3:1 mixture with regioisomer **77**) in THF (40 mL) and the suspension was stirred for 1 h at rt. Aldehyde **12** (1.10 g, 2.37 mmol) in THF/H₂O (40:1, 25 mL) was added and the reaction was stirred for 72 h. The reaction was quenched by the addition of NH₄Cl (75 mL) and the layers separated. The aqueous phase was extracted with EtOAc (3×100 mL) and the combined organics were dried (MgSO₄) and concentrated *in vacuo*. The crude material was purified by flash column chromatography (1:5 \rightarrow 1:4 EtOAc/PE) to yield enone **22** (1.96 g, 85% >20:1) as a colourless oil.

R_f 0.76 (1:3 EtOAc/PE); ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.24 (2H, d, J = 8.5 Hz, ArH), 6.86 (2H, d, J = 8.5 Hz, ArH), 6.59 (1H, t, J = 7.1 Hz, H₁₅), 6.18 (1H, dd, J = 14.9, 10.5 Hz, H₃), 6.04 (1H, dd, J = 15.2, 10.5 Hz, H₄), 5.68 (1H, dt, J = 14.7, 7.5 Hz, H₅), 5.64 (1H, dt, J = 14.7, 5.7 Hz, H₂), 5.18 (1H, td, J = 6.7, 2.0 Hz, H₂₃), 4.41 (2H, ABq, J = 11.0 Hz, OCH₂Ar), 4.20 (2H, d, J = 5.1 Hz, H₁ × 2), 3.80 (3H, s, OMe), 3.66-3.60 (1H, m, H₇), 3.56-3.51 (2H, m, H₉, H_{27a}), 3.38 (3H, s, OMe), 3.32 (1H, dd, J = 8.9, 7.2 Hz, H_{27b}), 2.87 (1H, dd, J = 8.8, 3.8 Hz, H₂₅), 2.73 (1H, ddd, J = 15.7, 9.7, 6.0 Hz, H_{12a}), 2.56 (1H, ddd, J = 15.7, 9.7, 6.0 Hz, H_{12b}), 2.31 (2H, q, J = 7.6 Hz, H₂·× 2), 2.21 (2H, q, J = 7.4 Hz, H₁₆× 2), 2.18-2.14 (2H, m, H₆× 2), 2.11-2.06 (1H, m, H_{22b}, 1.81-1.70 (3H, m, H₈, H_{11a}, H₂₄), 1.76 (3H, s, Me₁₄), 1.67-1.58 (1H, m, H_{22a}), 1.48-1.37 (4H, m, H_{11b}, H_{22b}, H₁₇× 2), 1.34-1.20 (8H, m, H₁₈₋₂₁), 1.14 (3H, t, J = 7.6 Hz, H₃·× 3), 1.06 (3H, d, J = 7.1 Hz, M₂₀, 0.95 (9H, t, J = 8.2 Hz, Si(CH₂C<u>H₃</u>)₃), 0.93 (9H, t, J = 7.6 Hz, H₂·× 2), 2.95 (1H, J = 8.2 Hz, Si(CH₂C<u>H₃</u>)₃), 0.93 (9H, t, J = 7.6 Hz, H₂·× 2), 0.95 (9H, t, J = 8.2 Hz, Si(CH₂C<u>H₃</u>)₃), 0.93 (9H, t, J = 7.6 Hz, H₃·× 3), 1.06 (3H, d, J = 7.1 Hz, M₂₀), 0.95 (9H, t, J = 8.2 Hz, Si(CH₂C<u>H₃</u>)₃), 0.93 (9H, t, J = 7.6 Hz, H₂·× 2), 0.95 (9H, t, J = 8.2 Hz, Si(CH₂C<u>H₃</u>)₃), 0.93 (9H, t, J = 7.6 Hz, H₂·× 2), 0.95 (9H, t, J = 8.2 Hz, Si(CH₂C<u>H₃</u>)₃), 0.93 (9H, t, J = 7.6 Hz, H₃·× 3), 1.06 (3H, d, J = 7.1 Hz, M₂₀), 0.95 (9H, t, J = 8.2 Hz, Si(CH₂C<u>H₃</u>)₃), 0.93 (9H, t, J = 7.6 Hz, H₃·× 3), 1.06 (3H, d, J = 7.1 Hz, M₂₀), 0.95 (9H, t, J = 8.2 Hz, Si(CH₂C<u>H₃</u>)₃), 0.93 (9H, t, J = 7.6 Hz, H₃·× 3), 1.06 (3H, d, J = 7.1 Hz, M₂₀), 0.95 (9H, t, J = 8.2 Hz, Si(CH₂C₁₃)₃), 0.93 (9H, t, J = 7.6 Hz, H₁₂·× 2), 1.20 (2H₃)₃), 0.93 (9H, t

8.2 Hz, Si(CH₂C<u>H</u>₃)₃), 0.92-0.89 (15H, m, SiC(C<u>H</u>₃)₃, Me₂₄, Me₁₀), 0.86 (3H, d, J = 6.9 Hz, Me₈), 0.61 (6H, q, J = 7.8 Hz, Si(C<u>H</u>₂CH₃)₃), 0.56 (6H, q, J = 7.5 Hz, Si(C<u>H</u>₂CH₃)₃), 0.07 (6H, s, Si(C<u>H</u>₃)₂). ¹³**C** NMR (125 MHz, CDCl3) δ_{C} 202.1, 174.1, 159.0, 142.1, 137.1, 131.5, 131.4, 130.9, 130.3, 130.3, 129.0, 113.7, 85.9, 77.5, 74.5, 73.1, 72.8, 71.6, 63.7, 61.4, 55.2, 41.8, 38.9, 38.2, 36.0, 35.9, 35.4, 32.8, 29.5, 29.5, 29.4, 29.1, 28.7, 28.0, 26.9, 26.0, 25.8, 18.4, 16.3, 16.3, 11.4, 10.6, 10.5, 9.4, 7.2, 7.0, 5.6, 5.3, -5.2; $[\alpha]_D^{20}$ –2.6 (*c* 1.01, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 2952, 2931, 2876, 2857, 1732, 1670, 1614, 1513, 1461, 1378, 1247, 1192, 1083, 1040, 1005, 990, 835, 775, 738, 725; **HRMS** calc. for C₆₂H₁₁₈O₉Si₃N [M+NH₄]⁺ 1104.8109, found 1104.8091.

Alcohol 22a

To a solution of enone **22** (1.96 g, 1.80 mmol) in THF (47 mL) was added (*R*)-Me-CBS catalyst (2.16 mL, 1 M in PhMe, 2.16 mmol) at -10 °C and the solution stirred for 5 min before dropwise addition of BH₃·SMe₂ (188 µL, 1.98 mmol). The solution was stirred at -10 °C for 1.5 h then carefully quenched by the addition of MeOH (50 mL). The solution was warmed to rt and concentrated *in vacuo*. The residue was re-dissolved in MeOH (40 mL) and was again concentrated *in vacuo*. This process was repeated twice further. Purification *via* flash column chromatography (1:6 EtOAc/PE) gave alcohol **22a** (1.79 g, 93%, >20:1 *dr*) as a colourless oil.

R_f 0.72 (1:3 EtOAc/PE); ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.24 (2H, d, J = 8.5 Hz, ArH), 6.86 (2H, d, J = 8.5 Hz, ArH), 6.18 (1H, dd, J = 15.2, 10.4 Hz, H₃), 6.04 (1H, dd, J = 15.3, 10.2 Hz, H₄), 5.68 (1H, dt, J = 14.7, 7.4 Hz, H₅), 5.64 (1H, dt, J = 15.3, 5.6 Hz, H₂), 5.36 (1H, t, J = 6.4 Hz, H₁₅), 5.18 (1H, td, J = 7.2, 1.8 Hz, H₂₃), 4.41 (2H, ABq, J = 11.1 Hz, OCH₂Ar), 4.20 (2H, d, J = 5.2 Hz, H₁ × 2), 3.94 (1H, td, J = 6.6, 2.5 Hz, H₁₃), 3.80 (3H, s, OMe), 3.62-3.58 (1H, m, H₇), 3.53 (1H, dd, J = 9.2, 4.8 Hz, H_{27a}), 3.50 (1H, dd, J = 5.1, 3.5 Hz, H₉), 3.38 (3H, s, OMe), 3.32 (1H, dd, J = 9.1, 7.4 Hz, H_{27b}), 2.87 (1H, dd, J = 8.6, 3.4 Hz, H₂₅), 2.31 (2H, q, J = 7.7 Hz, H₂· × 2), 2.18-2.12 (2H, m, H₆ × 2), 2.12-2.06 (1H, m, H₂₆), 2.03-1.94 (2H, m, H₁₆ × 2), 1.82-1.70 (2H, m, H₈, H₂₄), 1.66-1.60 (2H, m, H_{12a}, H_{22a}), 1.58 (3H, br s, Me₁₄), 1.54-1.48 (1H, m, H₁₀), 1.48-1.37 (4H, m, H₁₁ × 2, H_{12b}, H_{22b}), 1.35-1.29 (2H, m, H₁₇ × 2), 1.29-1.24 (8H, m, H₁₈. 21), 1.14 (3H, t, J = 7.6 Hz, H₃· × 3), 1.05 (3H, d, J = 7.0 Hz, Me₂₆), 0.96 (9H, t, J = 8.0 Hz, Si(CH₂C<u>H₃</u>)₃), 0.93 (9H, t, J = 7.9 Hz, Si(CH₂C<u>H₃</u>)₃), 0.91 (9H, s, SiC(C<u>H</u>₃)₃), 0.90-0.84 (9H, m, Me₈, Me₂₄, Me₁₀), 0.60 (6H, q, J = 8.0 Hz, Si(CH₂CH₃)₃), 0.57 (6H, q, J = 7.8 Hz,

Si(C<u>H</u>₂CH₃)₃), 0.07 (6H, s, Si(C<u>H</u>₃)₂). ¹³C NMR (125 MHz, CDCl3) $\delta_{\rm C}$ 174.1, 159.0, 136.7, 131.6, 131.4, 130.8, 130.3, 130.3, 129.0, 127.5, 113.7, 85.9, 78.7, 77.6, 74.6, 73.1, 72.7, 71.6, 63.7, 61.3, 55.2, 41.7, 38.8, 38.5, 35.9, 35.9, 33.0, 32.7, 29.5, 29.4, 29.3, 28.0, 27.8, 27.5, 25.9, 25.7, 18.4, 16.3, 16.2, 10.8, 10.6, 10.3, 9.4, 7.1, 7.0, 5.6, 5.2, -5.2; $[\alpha]_D^{20}$ +1.9 (*c* 1.01, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 2952, 2930, 2876, 2856, 1733, 1614, 1514, 1462, 1378, 1362, 1248, 1193, 1084, 1041, 1005, 990, 835, 776, 737, 725; **HRMS** calc. for C₆₂H₁₂₀O₉Si₃N [M+NH₄]⁺ 1106.8265, found 1106.8257.

Methyl ether 23

To a solution of Meerwein salt (143 mg, 0.96 mmol) and proton sponge (309 mg, 1.44 mmol) in CH₂Cl₂ (30 mL) was added alcohol **22a** (525 mg, 0.48 mmol). The reaction was stirred for 4 h at rt before being quenched with NH₄Cl (50 mL). The layers were separated, and the aqueous phase extracted with CH₂Cl₂ (3×50 mL). The combined organic layers were dried (MgSO₄), concentrated *in vacuo* and purified by flash column chromatography (1:20 \rightarrow 1:9 EtOAc/PE) to give methyl ether **23** as a colourless oil (445 mg, 87%).

R_f 0.79 (1:3 EtOAc/PE); ¹**H** NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.24 (2H, d, J = 8.7 Hz, ArH), 6.86 $(2H, d, J = 8.7 \text{ Hz}, \text{ArH}), 6.18 (1H, dd, J = 14.9, 10.6 \text{ Hz}, H_3), 6.03 (1H, dd, J = 15.3, 10.6 \text{ Hz}, H_3)$ H₄), 5.68 (1H, dt, J = 14.8, 7.1 Hz, H₅), 5.64 (1H, dt, J = 14.8, 5.9 Hz, H₂), 5.31 (1H, t, J = 7.2Hz, H₁₅), 5.18 (1H, td, *J* = 7.2, 1.7 Hz, H₂₃), 4.41 (2H, ABq, *J* = 11.6 Hz, OCH₂Ar), 4.20 (2H, $d, J = 5.0 Hz, H_1 \times 2), 3.80 (3H, s, OMe), 3.62-3.56 (1H, m, H_7), 3.53 (1H, dd, J = 8.9, 4.5 Hz)$ H_{27a}), 3.48 (1H, dd, $J = 5.0, 3.2 Hz, H_9$), 3.38 (3H, s, OMe), 3.36-3.30 (2H, m, H_{13}, H_{27b}), 3.14 (3H, s, OMe), 2.87 (1H, dd, J = 8.2, 3.9 Hz, H₂₅), 2.31 (2H, q, J = 7.6 Hz, H₂, × 2), 2.19-2.12 (2H, m, H₆ × 2), 2.12-1.93 (3H, m, H₁₆ × 2, H₂₆), 1.83-1.68 (2H, m, H₈, H₂₄), 1.68-1.57 (2H, m, H_{12a}, H_{22a}), 1.54-1.40 (4H, m, H₁₀, H₁₂ × 2, H_{22b}), 1.49 (3H, s, Me₁₄), 1.39-1.31 (4H, m, H₁₁ × 2, $H_{17} \times 2$), 1.31-1.24 (8H, m, H_{18-21}), 1.14 (3H, t, J = 7.4 Hz, $H_{3'} \times 3$), 1.06 (3H, d, J = 7.1 Hz, Me₂₆), 0.94 (9H, t, J = 8.1 Hz, Si(CH₂CH₃)₃), 0.93 (9H, t, J = 8.1 Hz, Si(CH₂CH₃)₃), 0.91 (9H, s, SiC(CH₃)₃), 0.90-0.83 (9H, m, Me₈, Me₁₀, Me₂₄), 0.60 (6H, q, J = 7.6 Hz, Si(CH₂CH₃)₃), 0.57 (6H, q, J = 7.6 Hz, Si(CH₂CH₃)₃), 0.07 (6H, s, Si(CH₃)₂). ¹³C NMR (125 MHz, CDCl3) **δ**_C 174.1, 159.0, 133.8, 131.7, 131.3, 130.9, 130.3, 130.3, 129.6, 129.0, 113.7, 88.3, 85.9, 77.6, 74.7, 73.1, 72.8, 71.6, 63.7, 61.4, 55.5, 55.2, 41.7, 38.9, 38.6, 35.9, 35.8, 32.8, 31.8, 29.6, 29.6, 29.5, 29.4, 28.0, 27.9, 27.6, 26.0, 25.8, 18.4, 16.3, 16.1, 10.6, 10.3, 10.1, 9.4, 7.2, 7.0, 5.6, 5.2,

5.2; $[\alpha]_D^{20}$ +1.5 (c 0.89, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 2952, 2926, 2876, 2855, 1734, 1615, 1514, 1462, 1378, 1362, 1248, 1192, 1171, 1093, 1043, 1006, 990, 836, 776, 739, 725; **HRMS** calc. for C₆₃H₁₂₂O₉Si₃N [M+NH₄]⁺ 1120.8422, found 1120.8420.

Alcohol 23a

To a solution of ester **23** (1.58 g, 1.43 mmol) in CH_2Cl_2 (28 mL) was added DIBAL (2.86 mL, 2.86 mmol, 1.0 M in hexanes) at -78 °C. After 1.5 h, the reaction was quenched with NH₄Cl (25 mL) and Na⁺/K⁺ tartrate (25 mL) and allowed to warm to rt. The layers were separated and the aqueous was extracted with CH_2Cl_2 (3 × 25 mL) and the combined organics were dried (Na₂SO₄) and concentrated *in vacuo*. The crude was purified by flash column chromatography (1:4 EtOAc/PE) to afford alcohol **23a** as a colourless oil (1.51 g, 99%).

R_f 0.62 (1:3 EtOAc/PE); ¹**H** NMR (400 MHz, CDCl₃) δ _H 7.26 (2H, d, *J* = 8.9 Hz, ArH), 6.88 (2H, d, J = 8.6 Hz, ArH), 6.18 (1H, dd, J = 15.2, 10.7 Hz, H₃), 6.04 (1H, dd, J = 15.2, 10.7 Hz, H₄), 5.68 (1H, dt, J = 14.4, 7.0 Hz, H₅), 5.64 (1H, dt, J = 15.2, 5.0 Hz, H₂), 5.31 (1H, t, J = 7.0Hz, H₁₅), 4.44 (2H, s, OCH₂Ar), 4.20 (2H, d, J = 5.4 Hz, H₁ × 2), 3.89 (1H, t, J = 6.6 Hz, H₂₃), 3.80 (3H, s, OMe), 3.62-3.56 (1H, m, H₇), 3.54-3.50 (1H, m, H_{27a}), 3.50-3.46 (3H, m, H₉, H_{27b}, OH.), 3.44 (3H, s, OMe), 3.34 (1H, t, J = 7.1 Hz, H₁₃), 3.19 (1H, dd, J = 9.0, 3.0 Hz, H₂₅), 3.14 (3H, s, OMe), 2.19-2.10 (2H, m, H₆ × 2), 2.10-1.97 (3H, m, H₂₆, H₁₆ × 2), 1.76-1.70 (2H, m, H_8, H_{24}), 1.55-1.44 (4H, m, $H_{10}, H_{12} \times 2, H_{22a}$), 1.49 (3H, s, Me_{14}), 1.41-1.31 (5H, m, $H_{11} \times 2, H_{12} \times 2, H_{22a}$), 1.49 (3H, s, Me_{14}), 1.41-1.31 (5H, m, $H_{11} \times 2, H_{12} \times$ $H_{17} \times 2$, H_{22b}), 1.31-1.26 (8H, m, H_{18-21}), 1.04 (3H, d, J = 6.9 Hz, Me_{24}), 0.95 (9H, t, J = 8.1Hz, Si(CH₂C<u>H</u>₃)₃), 0.94 (9H, t, J = 8.1 Hz, Si(CH₂C<u>H</u>₃)₃), 0.94-0.91 (3H, obs m, Me₂₆), 0.91 $(9H, s, SiC(CH_3)_3), 0.87 (3H, d, J = 7.5 Hz, Me_{10}), 0.85 (3H, d, J = 7.6 Hz, Me_8), 0.60 (6H, q, H_2)$ J = 8.0 Hz, Si(CH₂CH₃)₃), 0.57 (6H, q, J = 8.1 Hz, Si(CH₂CH₃)₃), 0.07 (6H, s, Si(CH₃)₂). ¹³C NMR (125 MHz, CDCl3) δ_C 159.1, 133.7, 131.7, 131.3, 130.6, 130.3, 130.2, 129.6, 129.1, 113.7, 89.0, 88.2, 77.6, 74.7, 72.7, 72.0, 70.6, 63.7, 61.7, 55.5, 55.2, 41.6, 38.6, 37.1, 36.7, 35.8, 34.7, 31.7, 29.8, 29.6, 29.5, 29.4, 27.9, 28.5, 26.2, 25.9, 18.4, 16.0, 14.9, 11.4, 10.2, 10.0, 7.1, 7.0, 5.6, 5.2, 5.2; $[\alpha]_{p}^{20}$ 1.8 (c 1.01, CHCl₃)); **IR** (thin film) v_{max} (cm⁻¹) 3507, 2952, 2928, 2876, 2853, 1613, 1514, 1460, 1413, 1377, 1359, 1300, 1246, 1169, 1084, 1042, 1006, 990, 965, 834, 776, 739, 725, 675; **HRMS** calc. for C₆₀H₁₁₈O₈Si₃N [M+NH₄]⁺ 1064.8160, found 1064.8128.

Aldehyde 23b

To a solution of TBS ether **23a** (836 mg, 0.80 mmol) in CH₂Cl₂ (12 mL) and pH 9.2 buffer (3 mL) at 0 °C was added DDQ (200 mg, 0.88 mmol). The solution was stirred at this temperature for 15 min, then quenched with NaHCO₃ (60 mL) and warmed to rt. The mixture was extracted with CH₂Cl₂ (3×50 mL) and the combined organics were dried (Na₂SO₄) and concentrated *in vacuo*. Purification *via* flash column chromatography (1:6 EtOAc/PE) gave aldehyde **23b** (560 mg, 75%, 91% brsm) as a colourless oil.

R_f 0.62 (1:3 EtOAc/PE); ¹**H** NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 9.55 (1H, d, J = 7.9 Hz, H₁), 7.25 (2H, d, *J* = 7.8 Hz, ArH), 7.08 (1H, dd, *J* = 15.3, 10.1 Hz, H₃), 6.88 (2H, d, *J* = 8.5 Hz, ArH), 6.34-6.28 (2H, m, H₄, H₅), 6.08 (1H, dd, J = 15.4, 8.2 Hz, H₂), 5.31 (1H, t, J = 7.0 Hz, H₁₅), 4.43 (2H, s, OCH₂Ar), 3.90 (1H, app t, J = 6.6 Hz, H₂₃), 3.81 (3H, s, OMe), 3.70-3.63 (1H, m, H_7), 3.55-3.45 (4H, m, H_9 , $H_{27} \times 2$, OH), 3.44 (3H, s, OMe), 3.34 (1H, t, J = 6.1 Hz, H_{13}), 3.18 $(1H, dd, J = 9.3, 3.7 Hz, H_{25}), 3.14 (3H, s, OMe), 2.37-2.24 (2H, m, H_6 \times 2), 2.11-1.93 (3H, m, H_6 \times 2))$ H₁₆ × 2, H₂₆), 1.80-1.71 (1H, m, H₈), 1.71-1.64 (1H, m, H₂₄), 1.57-1.51 (4H, m, H₁₀, H_{22a}, H₁₂ \times 2), 1.49 (3H, s, Me₁₄), 1.45-1.33 (5H, m, H₁₇ \times 2, H₁₁ \times 2, H_{22b}), 1.33-1.25 (8H, m, H₁₈₋₂₁), 1.04 (3H, d, J = 7.1 Hz, Me₂₄), 0.95 (9H, t, J = 7.9 Hz, Si(CH₂CH₃)₃), 0.94 (9H, t, J = 7.9 Hz, Si(CH₂C<u>H</u>₃)₃), 0.93 (3H, obs d, J = 7.8 Hz, Me₂₆), 0.88 (3H, d, J = 6.8 Hz, Me₁₀), 0.87 (3H, d, J = 6.8 Hz, Me₈), 0.60 (6H, q, J = 7.8 Hz, Si(CH₂CH₃)₃), 0.57 (6H, q, J = 7.8 Hz, Si(C<u>H</u>₂CH₃)₃)); ¹³C NMR (125 MHz, CDCl3) $\delta_{\rm C}$ 193.9, 159.1, 152.5, 144.8, 133.7, 130.6, 130.3, 130.2, 129.6, 129.2, 113.7, 89.0, 88.2, 77.4, 74.3, 72.7, 72.0, 70.6, 61.7, 55.5, 55.2, 41.5, 38.9, 37.1, 36.7, 36.4, 34.7, 31.8, 29.8, 29.6, 29.5, 29.4, 28.3, 27.5, 26.2, 15.9, 14.9, 11.4, 10.1, 10.0, 7.1, 6.9, 5.6, 5.1; $[\alpha]_{D}^{20}$ 2.4 (c 1.01, CHCl3); **IR** (thin film) v_{max} (cm⁻¹) 3486, 2952, 2931, 2876, 2853, 1685, 1640, 1613, 1514, 1459, 1416, 1378, 1367, 1302, 1247, 1171, 1159, 1087, 1038, 1009, 988, 820, 739, 725; **HRMS** calc. for $C_{54}H_{102}NO_8Si_2[M+NH_4]^+$ 948.7138, found 948.7133.

Seco acid 24

To aldehyde **23b** (510 mg, 0.55 mmol) was added 2-methyl-2-butene (8.71 mL, 82.6 mmol) and the solution was cooled to 0 °C. NaClO₂ (1.86 g, 80% technical grade, 16.4 mmol) and NaH₂PO₄·H₂O (3.43 g, 22 mmol) were dissolved in H₂O/*t*-BuOH (34 mL, 1:1) and added to the reaction mixture. The reaction was warmed to rt and stirred for 16 h before being diluted with EtOAc (50 mL) and brine (50 mL). The mixture was extracted with EtOAc ($3 \times 10 \text{ mL}$) and the combined organics were dried (Na₂SO₄) and concentrated *in vacuo* to give *seco*-acid **24** (*ca*. 521 mg) as a pale-yellow oil. The crude material was used directly in the next reaction without further purification.

R_f 0.21 (1:4:1 EtOAc/PE/AcOH); ¹**H** NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.32 (1H, dd, J = 15.2, 9.9Hz, H₃), 7.25 (2H, d, J = 8.5 Hz, ArH), 6.88 (2H, d, J = 8.5 Hz, ArH), 6.27-6.12 (2H, m, H₄, H₅), 5.79 (1H, d, J = 15.5 Hz, H₂), 5.31 (1H, t, J = 7.0 Hz, H₁₅), 4.44 (2H, s, OCH₂Ar), 3.98- $3.91 (1H, t, J = 7.1 Hz, H_{23}), 3.81 (3H, s, OMe), 3.67-3.60 (1H, m, H_7), 3.55-3.40 (2H, m, H_9), 3.91 (1H, t, J = 7.1 Hz, H_{23}), 3.81 (3H, s, OMe), 3.67-3.60 (1H, m, H_7), 3.55-3.40 (2H, m, H_9), 3.67-3.60 (2H, m, H_9), 3.57-3.60 (2H, m, H_9), 3.67-3.60 (2H, H_9), 3.67-3.60 (2H, H_9), 3.67-3.60 (2H, H_9), 3.6$ H_{27b}), 3.49-3.45 (1H, m, H_{27b}), 3.45 (3H, s, OMe), 3.35 (1H, t, J = 6.9 Hz, H_{13}), 3.19 (1H, dd, $J = 8.8, 3.1 \text{ Hz}, \text{H}_{25}$, 3.14 (3H, s, OMe), 2.31-2.22 (2H, m, H₆ × 2), 2.12-2.06 (2H, m, H_{16a}, H₂₆), 2.01-1.93 (1H, m, H_{16b}), 1.76-1.70 (2H, m, H₈, H₂₄), 1.65-1.54 (4H, m, H₁₀, H₁₂×2, H_{22a}), 1.50 (3H, s, Me₁₄), 1.40-1.20 (13H, m, H₁₁ × 2, H₁₇₋₂₁, H_{22b}), 1.04 (3H, d, J = 7.3 Hz, Me₂₄), $0.95 (9H, t, J = 7.9 \text{ Hz}, \text{Si}(\text{CH}_2\text{C}_{\underline{H}_3})_3), 0.94 (9H, t, J = 7.9 \text{ Hz}, \text{Si}(\text{CH}_2\text{C}_{\underline{H}_3})_3), 0.94 (3H, \text{obs d}, \text{Si})$ J = 8.0 Hz, Me₂₆), 0.88 (3H, d, J = 6.8 Hz, Me₁₀), 0.84 (3H, d, J = 7.1 Hz, Me₈), 0.59 (6H, q, J= 7.1 Hz, Si(CH₂CH₃)₃), 0.57 (6H, q, J = 7.8 Hz, Si(CH₂CH₃)₃); ¹³C NMR (125 MHz, CDCl3) **δ**_C 170.9, 159.1, 146.5, 142.7, 133.6, 130.6, 130.0, 129.8, 129.2, 118.9, 113.7, 89.1, 88.1, 77.2, 74.2, 72.8, 72.0, 70.8, 61.7, 55.5, 55.3, 41.3, 39.1, 37.1, 36.6, 36.3, 34.6, 31.7, 29.7, 29.7, 29.4, 29.3, 28.3, 27.6, 26.1, 15.6, 14.9, 11.5, 10.2, 10.0, 7.1, 7.0, 5.6, 5.2; $[\alpha]_{D}^{20}$ 6.0 (c 0.99, CHCl₃); IR (thin film) n max (cm-1) 2948, 2931, 2876, 2853, 1712, 1690, 1643, 1614, 1513, 1459, 1415, 1377, 1302, 1246, 1173, 1084, 1038, 1009, 820, 739, 727; HRMS calc. for $C_{54}H_{102}NO_9Si_2[M+NH_4]^+$ 964.7081, found 964.7088.

Macrocycle 25

Crude *seco*-acid **24** (*ca.* 568 mg, 0.60 mmol) was dissolved in THF (15 mL) and NEt₃ (836 µL, 6.00 mmol) and TCBC (656 µL, 4.20 mmol) were added. The mixture was stirred at rt for 1 h, then diluted with PhMe (100 mL) and the resulting cloudy orange solution added to a solution of DMAP (733 mg, 6.00 mmol) in PhMe (50 mL) *via* syringe pump at a rate of 4.6 mL/h. Once complete the reaction was stirred for a further 16 h before being quenched with NH₄Cl (100 mL). The layers were separated, and the aqueous phase was extracted with EtOAc (3 × 100 mL) and the combined organics were dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (1:50 \rightarrow 1:9 EtOAc/PE) yielded macrocycle **25** (386 mg, 70% over two steps) as a colourless oil.

R_f 0.52 (1:5 EtOAc/PE); ¹**H** NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.28 (1H, dd, J = 15.3, 10.0 Hz, H₃), 7.24 (2H, d, J = 8.9 Hz, ArH), 6.86 (2H, d, J = 8.5 Hz, ArH), 6.25-6.15 (2H, m, H₄, H₅), 5.83 $(1H, d, J = 15.7 Hz, H_2)$, 5.38 $(1H, dt, J = 10.8, 2.3 Hz, H_{23})$, 5.24 (1H, dd, J = 8.0, 6.0 Hz, 10.8 Hz)H₁₅), 4.41 (2H, ABq, J = 11.4 Hz, OCH₂Ar), 3.80 (3H, s, OMe), 3.67-3.61 (1H, m, H₇), 3.56- $3.50 (2H, m, H_9, H_{27a}), 3.45 (3H, s, OMe), 3.32 (1H, dd, J = 9.2, 7.2 Hz, H_{27b}), 3.31 (1H, t, J = 0.2)$ 8.7 Hz, H_{13}), 3.13 (3H, s, OMe), 2.90 (1H, dd, J = 8.3, 3.8 Hz, H_{25}), 2.35-2.26 (1H, m, H_{6a}), 2.18-2.03 (3H, m, H_{6b}, H_{16a}, H₂₆), 1.88-1.80 (1H, m, H_{16b}), 1.78-1.73 (1H, m, H₂₄), 1.73-1.64 (2H, m, H₈, H_{22a}), 1.62-1.57 (2H, m, H₁₀, H_{12a}), 1.53-1.48 (1H, m, H_{12b}), 1.48 (3H, s, Me₁₄), 1.43-1.33 (3H, m, H_{11a} , H_{21a} , H_{22b}), 1.33-1.20 (10H, m, H_{11b} , H_{17-20} , H_{21b}), 1.06 (3H, d, J = 7.1Hz, Me₂₆), 0.96 (9H, t, J = 8.2 Hz, Si(CH₂CH₃)₃), 0.95 (9H, t, J = 8.2 Hz, Si(CH₂CH₃)₃), 0.94 (9H, m, Me₈, Me₁₀, Me₂₄), 0.61 (6H, q, J = 7.8 Hz, Si(CH₂CH₃)₃), 0.58 (6H, q, J = 7.8 Hz, Si(CH₂CH₃)₃); ¹³C NMR (125 MHz, CDCl₃) δ_C 167.1, 158.9, 144.8, 141.8, 133.2, 130.8, 130.0, 129.9, 119.7, 113.6, 88.0, 85.6, 73.1, 72.6, 71.5, 61.0, 55.5, 55.1, 40.9, 40.7, 36.4, 35.9, 33.8, 31.3, 28.9, 28.5, 28.4, 28.2, 27.8, 27.7, 27.6, 24.5, 23.8, 20.7, 17.4, 17.2, 16.1, 14.6, 11.7, 11.1, 9.7, 7.0, 6.9, 5.3, 5.1; $[\alpha]_{D}^{20}$ +10.9 (c 1.00, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 2930, 2876, 1711, 1643, 1614, 1580, 1513, 1458, 1367, 1300, 1245, 1171, 1134, 1091, 1038, 1001; HRMS calc. for C₅₄H₉₆O₈Si₂Na [M+Na]⁺951.6536, found 951.6541.

3.4. Completion of synthesis of the aplyologues

Alcohol 25a

To a solution of PMB ether **25** (335 mg, 0.36 mmol) in CH₂Cl₂ (20 mL) and pH 7.0 buffer (10 mL) was added DDQ (164 mg, 0.72 mmol). The reaction was stirred for 2 h before being quenched with NaHCO₃ (50 mL). The solution was diluted with H₂O (100 mL) and the layers were separated. The aqueous phase was extracted with CH₂Cl₂ (3×100 mL) and the combined organics dried (Na₂SO₄) and concentrated *in vacuo*. The crude residue was purified by flash column chromatography (1:50 EtOAc/PhMe \rightarrow 1:2 EtOAc/PE) to give alcohol **25a** (238 mg, 82%) as a colourless oil.

R_f 0.21 (1:5 EtOAc/PE); ¹**H** NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.28 (1H, dd, J = 15.1, 10.3 Hz, H₃), 6.23-6.18 (2H, m, H₄, H₅), 5.84 (1H, d, J = 14.8 Hz, H₂), 5.38 (1H, dt, J = 10.9, 2.6 Hz, H₂₃), 5.25 (1H, dd, J = 8.4, 5.7 Hz, H₁₅), 3.80 (1H, dd, J = 10.9, 3.5 Hz, H_{27a}), 3.68-3.62 (1H, m, H₇), 3.59-3.55 (2H, m, H₉, H_{27b}), 3.53 (3H, s, OMe), 3.31 (1H, dd, J = 8.4, 5.8 Hz, H₁₃), 3.14 (3H, s, OMe), 3.00 (1H, dd, J = 8.1, 3.5 Hz, H₂₅), 2.87 (1H, br s, OH), 2.35-2.27 (1H, m, H_{6a}), 2.23-2.06 (2H, m, H_{6b}, H_{16a}), 1.94-1.80 (3H, m, H_{16b}, H₂₄, H₂₆), 1.77-1.64 (2H, m, H₈, H_{22a}), 1.64-1.49 (4H, m, H_{10} , $H_{12} \times 2$, H_{22b}), 1.47 (3H, s, Me_{14}), 1.45-1.36 (2H, m, H_{11a} , H_{21a}) 1.35-1.18 (10H, m, H_{11b}, H₁₇₋₂₀, H_{21b}), 1.13 (3H, d, J = 7.2 Hz, Me₂₆), 0.96 (9H, t, J = 7.9 Hz, Si(CH₂CH₃)₃), 0.95 (9H, t, J = 7.9 Hz, Si(CH₂CH₃)₃), 0.93 (3H, obs d, Me₂₄), 0.91 (3H, d, J =7.6 Hz, Me₁₀), 0.89 (3H, d, J = 7.0 Hz, Me₈), 0.60 (6H, q, J = 7.8 Hz, Si(CH₂CH₃)₃), 0.58 (6H, q, J = 7.8 Hz, Si(CH₂CH₃)₃); ¹³C NMR (125 MHz, CDCl₃) δ_{C} 167.3, 145.1, 141.8, 133.3, 130.1, 129.9, 129.1, 128.7, 119.6, 88.7, 88.1, 77.2, 73.4, 73.1, 65.1, 61.5, 41.7, 41.1, 39.6, 36.2, 36.2, 33.6, 31.4, 29.0, 28.6, 28.3, 27.9, 27.8, 27.7, 24.5, 16.2, 14.5, 11.7, 11.2, 9.8, 7.1, 7.0, 5.4, 5.2; $[\alpha]_{D}^{20}$ +19.2 (c 1.00, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 3452, 2935, 2876, 1712, 1642, 1458, 1415, 1367, 1300, 1238, 1134, 1092, 842, 739; **HRMS** calc. for C₄₆H₈₈O₇Si₂Na [M+Na]⁺ 831.5961, found 831.5957.

Aldehyde 26

To a solution of alcohol **25a** (144 mg, 0.18 mmol) in CH_2Cl_2 (17 ml) was added DMP (377 mg, 0.89 mmol) and NaHCO₃ (74 mg, 0.89 mmol). The mixture was stirred for 2 h before being quenched with Na₂S₂O₃ (50 mL). The quenching mixture was stirred for 1 h and the layers were separated. The aqueous phase was extracted with CH_2Cl_2 (3 × 50 mL) and the combined organics were dried (Na₂SO₄) and concentrated *in vacuo*. Aldehyde **26** was used immediately and crude subsequent aldol reaction.

R_f 0.68 (1:1 EtOAc/PE); ¹**H NMR** (500 MHz, CDCl₃) **δ**_H 9.74 (1H, d, J = 1.4 Hz, CHO), 7.29 (1H, dd, J = 15.0, 10.0 Hz, H₃), 6.27-6.15 (2H, m, H₄, H₅), 5.84 (1H, d, J = 14.4 Hz, H₂), 5.45 (1H, dt, J = 10.8, 2.2 Hz, H₂₃), 5.25 (1H, dd, J = 8.4, 5.7 Hz, H₁₅), 3.68-3.61 (1H, m, H₇), 3.56-3.49 (1H, m, H₉), 3.44 (3H, s, OMe), 3.34-3.26 (2H, m, H₁₃, H₂₅), 3.13 (3H, s, OMe), 2.74-2.64 (1H, m, H₂₆), 2.37-2.25 (1H, m, H_{6a}), 2.25-2.04 (2H, m, H_{6b}, H_{16a}), 1.90-1.78 (2H, m, H_{16b}, H₂₄), 1.78-1.65 (2H, m, H₈, H_{22a}), 1.65-1.49 (3H, m, H₁₀, H₁₂ × 2,) 1.47 (3H, s, Me₁₄), 1.45-1.35 (3H, m, H_{11a}, H_{21a}, H_{22b}), 1.35-1.19 (10H, m, H_{11b}, H₁₇₋₂₀, H_{21b}), 1.16 (3H, d, J = 7.0 Hz, Me₂₆), 0.96 (18H, t, J = 7.6 Hz, Si(CH₂CH₃)₃ × 2), 0.93 (3H, d, J = 7.2 Hz, Me₁₀), 0.89 (3H, d, J = 7.0 Hz, Me₈), 0.83 (3H, d, J = 7.0 Hz, Me₂₄), 0.61 (6H, q, J = 7.9 Hz, Si(CH₂CH₃)₃), 0.57 (6H, q, J = 7.9 Hz, Si(CH₂CH₃)₃). ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 203.9, 167.2, 145.2, 141.9, 133.3, 130.1, 129.9, 119.4, 88.0, 83.4, 77.2, 73.4, 72.6, 59.2, 55.4, 48.1, 40.8, 39.5, 36.4, 33.2, 31.4, 29.7, 29.0, 28.6, 28.3, 27.8, 27.8, 27.6, 24.6, 14.5, 11.6, 10.4, 9.9, 9.8, 7.0, 7.0, 5.4, 5.2; [*α*]²⁰_D 1.9 (c 1.00, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 2948, 2932, 2876, 1714, 1641, 1615, 1458, 1413, 1361, 1300, 1260, 1236, 1171, 1133, 1096, 1058, 1002, 739, 725; **HRMS** calc. for C₄₆H₉₀O₇Si₂N [M+NH₄]⁺ 824.6250, found 824.6250.

Enone 26a

Ketone *E*-11 was azeotropically dried with benzene and placed under vacuum for 16 h. To a solution of ketone *E*-11 (125 mg, 0.55 mmol) in Et₂O (5 mL) at 0 °C was added a freshly prepared solution of BCy₂Cl·NEt₃ (275 μ L, 0.55 mmol, 2.0 M in Et₂O). The resulting cloudy yellow solution of enolate was stirred at 0 °C for 1 h before being cooled to -78 °C. A solution of crude aldehyde 26 (ca. 140 mg) in Et₂O (3 mL) was added and the reaction mixture was stirred at -78 °C for 2 h, then warmed to -10 °C over 1 h before being quenched with SiO₂ (*ca.* 1 g). The slurry was stirred for 1 h then filtered and rinsed with Et₂O (10 mL) before being concentrated *in vacuo*. The crude material was purified by flash column chromatography (3:1 \rightarrow 1:1 EtOAc/PE). As the aldol adduct and ketone *E*-11 were inseparable by chromatography, all fractions containing the intermediary aldol adduct and ketone *E*-11 were combined and used subsequently in the elimination reaction.

To a solution of the crude aldol adduct and ketone *E*-11 (*ca.* 184 mg) in THF (6 mL) was added Burgess reagent (83 mg, 0.36 mmol). The reaction mixture was stirred at room temperature for 16 h then quenched with NH₄Cl (10 mL) and extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (15 mL), dried (MgSO₄) and concentrated *in vacuo*. The crude product was purified by flash column chromatography (2:1 \rightarrow 1:1 EtOAc/PE) yielding enone **26a** (117 mg, 65% over three steps) and recovered ketone *E*-11 (75 mg).

R_f 0.89 (1:1 EtOAc/PE); ¹**H** NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.30 (0.60H, s, NCHO), [8.08] (0.30H, s, NCHO^{*}), 7.30 (1H, dd, J = 15.4, 9.1 Hz, H₃), [7.15] (0.33H, d, J = 14.6 Hz, H₃₄^{*}), 6.91 (1H, dd, J = 15.1, 8.1 Hz, H₂₇), 6.48 (0.67H, d, J = 14.3 Hz, H₃₄), 6.25-6.10 (3H, m, H4, H₅, H₂₈), 5.83 (1H, d, J = 15.2 Hz, H₂), 5.40 (1H, br d, J = 10.7 Hz, H₂₃), 5.24 (1H, t, J = 6.0 Hz, H₁₅), 5.15 (1H, dd, J = 13.5, 9.9 Hz, H₃₃), 3.68-3.61 (1H, m, H7), 3.56-3.51 (1H, m, H9), 3.49 (3H, s, OMe), 3.03-2.95 (1H, m, H₁₃, H₃₁, OMe), 3.13 (3H, s, OMe), [3.10] (1H, s, NMe^{*}), 3.06 (2H, s, NMe), 3.03-2.95 (1H, m, H₃₀), 2.95-2.89 (1H, m, H₂₅), 2.66-2.57 (1H, m, H₂₆), 2.50-2.37 (1H, m, H₃₂), 2.36-2.24 (1H, m, H_{6a}), 2.22-2.07 (2H, m, H_{6b}, H_{16a}), 1.89-1.79 (1H, m, H_{16b}), 1.74-1.65 (2H, m, H₈, H_{22a}), 1.64-1.57 (3H, m, H₁₀, H_{12a}, H₂₄), 1.47 (3H, s, Me₁₄), 1.44-1.33 (2H, m, H_{11a}, H_{22b}), 1.32-1.19 (11H, m, H_{11b}, H₁₇₋₂₁), 1.18-1.12 (6H, m, Me₂₆, Me₃₂), 0.96 (18H, t, J = 7.7 Hz, Si(CH₂C<u>H</u>₃)₃) × 2), 0.95 (3H, d, Me₃₀), 0.92 (3H, d, J = 7.1 Hz, Me₁₀),

0.89 (3H, d, J = 7.1 Hz, Me₈), 0.83 (3H, d, J = 7.4 Hz, Me₂₄), 0.60 (6H, q, J = 7.4 Hz, Si(CH₂CH₃)₃), 0.58 (6H, q, J = 7.4 Hz, Si(CH₂CH₃)₃); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ [203.5], 203.4, [167.2], 162.2, [160.9], 149.3, [149.2], 145.1, 141.9, 133.2, [130.5], 130.1, 129.9, 128.8, [124.7], 119.5, [113.3], 111.4, 88.0, [87.6], 87.5, 86.0, 77.1, 73.4, 72.9, 61.2, 61.1, 55.4, [46.1], 46.0, 41.4, 39.6, 39.5, [37.9], 37.7, 36.5, 33.5, [33.0], 31.4, 29.0, 28.6, 28.3, 27.9, 27.8, 27.7, 27.5, 24.6, 19.5, 17.4, 14.5, 13.8, [13.7], 11.7, 10.4, [10.3], 9.8, 7.1, 7.0, 5.4, 5.2; $[\alpha]_D^{20}$ –39.7 (*c* 1.00, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 2924, 2875, 1696, 1656, 1458, 1370, 1237, 1134, 1095, 1069, 1003, 913; **HRMS** calc. for C₅₈H₁₀₅NO₉Si₂Na [M+Na]⁺ 1038.7220, found 1038.7230.

Distinguishable resonances of the minor rotamer (2:1 ratio) are given in brackets and assignments denoted with an asterisk.

Ketone 10

Stryker's reagent solution (104 μ L, 0.0026 mmol, 0.025 M in PhMe) was added to enone **26a** (54 mg, 0.052 mmol) and the reaction mixture stirred at room temperature for 1 h. Further aliquots of Stryker's reagent solution (100 μ L) were added every hour for a further 4 h. The solution was applied directly to a silica gel column and the product eluted with EtOAc/CH₂Cl₂ (1:4) to afford ketone **10** (48 mg, 89%) as a colourless oil.

R_f 0.88 (1:1 EtOAc/PE); ¹**H** NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.29 (0.67H, s, NCHO), [8.08] (0.33H, s, NCHO*), 7.28 (1H, dd, J = 15.4, 10.6 Hz, H₃), [7.15] (0.33H, d, J = 14.6 Hz, H₃₄*), 6.46 (0.67H, d, J = 14.6 Hz, H₃₄), 6.24-6.12 (2H, m, H₄, H₅), 5.83 (1H, d, J = 15.3 Hz, H₂), 5.42 (1H, d, J = 11.5 Hz, H₂₃), 5.23 (1H, t, J = 8.4 Hz, H₁₅), 5.15 (1H, dd, J = 14.6, 9.8 Hz, H₃₃), 3.67-3.59 (1H, m, H₇), 3.55-3.49 (1H, m, H₉), 3.47 (3H, s, OMe), 3.33 (3H, s, OMe), 3.23-3.27 (2H, m, H₁₃, H₃₁), 3.14 (3H, s, OMe), [3.07] (1H, s, NMe*), 3.03 (2H, s, NMe), 2.82-2.74 (1H, m, H₂₅), 2.72-2.62 (1H, m, H₃₀), 2.61-2.50 (1H, m, H_{28a}), 2.50-2.35 (2H, m, H_{28b}, H₃₂), 2.35-2.26 (1H, m, H_{6a}), 2.16-1.97 (2H, m, H_{6b}, H_{16a}), 1.88-1.79 (1H, m, H_{16b}), 1.78-1.49 (8H, m, H₈, H₁₀, H₁₂ × 2, H_{22a}, H₂₄, H₂₆, H_{27a}), 1.47 (3H, s, Me₁₄), 1.43-1.33 (3H, m, H_{11a}, H_{22b}, H_{27b}), 1.32-1.19 (11H, m, H₁₇₋₂₁, H_{11b}), 1.15 (3H, d, J = 7.5 Hz, Me₃₂), 0.96-0.87 (33H, m, Me₈, Me₁₀, Me₂₄, Me₂₆, Me₃₀, Si(CH₂CH₃)₃), 0.60 (6H, q, J = 7.7 Hz, Si(CH₂CH₃)₃), 0.58 (6H, q, J

= 7.7 Hz, Si(C<u>H</u>₂CH₃)₃); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ [214.3], 214.2, 167.2 162.1, [160.8], 144.9, 134.9, 133.2, 130.2, 130.0, 128.9, [124.5], 119.8, [113.2], 111.3, 88.0, 87.4, 87.3, 74.4, 73.4, 73.2, 61.4, 61.3, 55.5, [49.2], 49.1, 42.0, 41.0, 40.4, [37.7], 37.5, 36.5, 34.4, 33.7, [33.1], 31.4, 29.7, 29.0, 28.6, 28.3, 28.0, 27.8, 27.7, [27.4], 24.6, 23.4, [19.4], 19.3, 17.4, 14.5, 13.6, 13.5, 10.8, 9.8, 7.1, 7.0, 5.4, 5.2; $[\alpha]_D^{20}$ –22.5 (*c* 1.00, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 2934, 2869, 1706, 1657, 1458, 1369, 1238, 1068, 1004, 725; **HRMS** calc. for C₅₈H₁₀₇NO₉Si₂Na [M+Na]⁺ 1040.7377, found 1040.7353.

Distinguishable resonances of the minor rotamer (2:1 ratio) are given in brackets and assignments denoted with an asterisk.

Diol (Aplyronine C/scytophycin hybrid) 9

A stock solution of HF·pyridine was prepared by adding HF·pyridine (100 µL) to a solution of pyridine (200 µL) in THF (1 mL) at 0 °C before warming to rt and stirring for 30 min. This solution was added to *bis*-TES ether **10** (8 mg, 7.9 µmol) in a plastic reaction vessel at 0 °C and the reaction stirred at rt overnight. The reaction was quenched at 0 °C with NaHCO₃ solution (5 mL), stirred vigorously at rt for 30 min and the aqueous phase extracted with EtOAc (3 × 5 mL). The combined organics were dried (Na₂SO₄) and concentrated *in vacuo*. Purification *via* flash column chromatography (1:1:0 \rightarrow 10:10:1 EtOAc/CH₂Cl₂/MeOH) yielded diol **9** (5.3 mg, 85%) as a colourless oil.

R_f 0.52 (5:5:1 EtOAc/CH₂Cl₂/MeOH); ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.29 (0.67H, s, NCHO), [8.07] (0.33H, s, NCHO*), 7.27 (1H, obs dd, H₃), [7.13] (0.33H, d, J = 14.8 Hz, H₃₄*), 6.46 (0.67H, d, J = 13.6 Hz, H₃₄), 6.28 (1H, dd, J = 15.4, 11.1 Hz, H₄), 6.11 (1H, dt, J = 15.1, 7.4 Hz, H₅), 5.84 (1H, d, J = 15.0 Hz, H₂), 5.35 (1H, td, J = 10.2, 2.6 Hz, H₂₃), 5.30 (1H, t, J = 7.9Hz, H₁₅), 5.11 (1H, dd, J = 14.3, 9.5 Hz, H₃₃), 3.89-3.82 (1H, m, H₇), 3.70-3.64 (1H, m, H₉), 3.46 (3H, s, OMe), 3.38-3.35 (1H, m, H₁₃), 3.34 (3H, s, OMe), 3.31 (1H, br d, J = 9.3 Hz, H₃₁), 3.15 (3H, s, OMe), [3.08] (1H, s, NMe*), 3.04 (2H, s, NMe), 2.82-2.74 (2H, m, H₂₅, OH), 2.71-2.62 (1H, m, H₃₀), 2.59-2.52 (3H, m, H₆ × 2, H_{28a}), 2.49-2.32 (3H, m, H_{28b}, H₃₂, OH), 2.09-1.94 (2H, m, H₁₆ × 2), 1.80-1.54 (8H, m, H₈, H₁₀, H₁₂ × 2, H_{22a}, H₂₄, H₂₆, H_{27a}), 1.53-1.47 (1H, m, H_{11a}), 1.47 (3H, s, Me₁₄), 1.47-1.33 (2H, m, H_{22b}, H_{27b}), 1.32-1.19 (11H, m, H_{11b}, H₁₇₋₂₁), 1.16 (3H, d, J = 6.8 Hz, Me₃₂), 1.04 (3H, d, J = 7.1 Hz, Me₂₄), 0.97 (3H, d, J = 6.8 Hz, Me₈), 0.90 (3H, d, J = 7.1 Hz, Me₃₀), 0.90 (3H, d, J = 7.1 Hz, Me₂₆), 0.79 (3H, d, J = 7.2 Hz, Me₁₀); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ [214.3], 214.2, 167.0 162.2, [160.9], 144.3, 138.9, 133.7, 131.0, 129.9, 128.8, [124.7], 120.6, [113.3], 111.4, 87.9, 87.5, 87.3, 75.3, 75.2, 73.8, 61.4, 61.3, 55.7, 49.1, 42.1, 40.7, 39.0, [37.7], 37.5, 37.0, 34.5, 33.7, [33.1], 30.9, 29.7, 28.8, 28.7, 28.5, 27.8, 27.6, 27.3, 25.1, 23.5, 19.5, 17.4, 15.8, 13.5, 11.6, 10.9, 10.3; $[\alpha]_D^{20}$ –46.8 (*c* 0.21, CHCl₃); IR (thin film) v_{max} (cm⁻¹) 3349, 2939, 2853, 1703, 1655, 1461, 1360, 1277, 1134, 1065, 1002, 970, 800, 725; HRMS calc. for C₄₆H₇₉NO₉Na [M+Na]⁺ 812.5647, found 812.5643.

Distinguishable resonances of the minor rotamer (2:1 ratio) are given in brackets and assignments denoted with an asterisk.

Aplyronine A,D/scytophycin hybrid (bearing S-TMSer) S-8

(S)-Trimethyl serine (3.9 mg, 26.5 μ mol) and DMAP (3.2 mg, 26.3 μ mol) were dissolved in CH₂Cl₂ (3 mL), then TCBC (8 μ L, 51.1 μ mol) and NEt₃ (11 μ L, 78.9 μ mol) were added to form a stock solution of mixed anhydride. Diol **9** (2 mg, 2.65 μ mol) was dissolved in benzene (0.30 mL) and an aliquot of the stock solution (0.30 mL) was added at 0 °C. Further aliquots of stock solution (0.15 mL) were added hourly for 4 h. The reaction was then quenched with MeOH (0.5 mL) and concentrated *in vacuo*. The crude residue was purified by preparative thin layer chromatography (4:4:1 EtOAc/CH₂Cl₂/MeOH) to give ester *S*-**8** as a colourless oil (1.5 mg, 62%).

R_f 0.57 (4:4:1 EtOAc/CH₂Cl₂/MeOH); ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.29 (0.67H, s, NCHO), [8.07] (0.33H, s, NCHO*), 7.23 (1H, obs dd, H₃), [7.12] (0.33H, d, *J* = 14.8 Hz, H₃₄*), 6.45 (0.67H, d, *J* = 14.2 Hz, H₃₄), 6.26 (1H, dd, *J* = 14.7, 11.2 Hz, H₄), 6.04 (1H, dt, *J* = 14.7, 6.7 Hz, H₅), 5.86 (1H, d, *J* = 15.1 Hz, H₂), 5.38 (1H, br d, *J* = 10.8 Hz, H₂₃), 5.28 (1H, t, *J* = 7.5 Hz, H₁₅), 5.11 (1H, dd, *J* = 14.5, 9.6 Hz, H₃₃), 5.00-4.95 (1H, m, H₇), 3.67 (1H, dd, *J* = 9.9, 2.8 Hz, H_{3'a}), 3.64 (1H, dd, J = 8.3, 4.0 Hz, H_{3'b}), 3.61-3.58 (1H, m, H₉), 3.46 (3H, s, OMe), 3.42-3.39 (1H, m, H_{2'}), 3.38-3.35 (4H, m, H₁₃, OMe), 3.34 (3H, s, OMe), 3.31 (1H, br d, J = 9.1 Hz, H₃₁), 3.14 (3H, s, OMe), [3.08] (1H, s, NMe*), 3.04 (2H, s, NMe), 2.78 (1H, dt, J = 9.1, 2.5 Hz, H₂₅), 2.72-2.61 (1H, m, H₃₀), 2.61-2.51 (2H, m, H_{6a}, H_{28a}), 2.50-2.40 (3H, m, H_{6b}, H_{28b}, H₃₂), 2.40-2.35 (7H, m, OH, C₂·NMe₂), 1.95-1.90 (2H, m, H₁₆ × 2), 1.80-1.70 (3H, m, H₂₄, H₂₆, H_{27a}) 1.65-1.58 (3H, m, H₁₀, H₁₂ × 2), 1.50 (3H, s, Me₁₄), 1.46-1.35 (4H, m, H_{11a}, H₂₂ × 2, H_{27b}), 1.35-1.19 (11H, m, H_{11b}, H₁₇₋₂₁), 1.16 (3H, d, J = 6.9 Hz, Me₃₂), 0.99-0.95 (6H, m, Me₈, Me₁₀), 0.92 (3H, d, J = 6.5 Hz, Me₃₀), 0.90 (3H, d, J = 6.1 Hz, Me₂₄), 0.88 (3H, d, J = 6.9 Hz, Me₂₆); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ [214.3], 214.2, 170.2, 167.0, 162.2, [160.9], 144.0, 137.8, 133.8, 131.4, 129.9, 128.7, 128.2, [124.7], 121.2, [113.2], 111.4, 87.8, 87.4, 87.4, 87.3, 74.0, 73.7, 70.5, 67.6, 67.4, 61.4, [61.3], 59.2, 55.6, [49.2], 49.1, 42.5, 42.4, 42.1, [40.8], 40.8, [37.7], 37.5, 36.7, 36.4, 34.6, 34.5, 33.8, [33.1], 31.6, 29.7, 29.4, 28.9, 28.4, 28.1, 27.7, 27.6, 27.4, 22.7, [22.7], [19.4], 19.4, 17.4, 15.5, 13.5, 11.8, 10.9, 10.1; $[\alpha]_D^{20}$ -22.1 (c 0.032, CHCl₃); **IR** (thin film) ν_{max} (cm⁻¹) 3390, 2451, 2896, 2853, 1711, 1678, 1651, 1462, 1360, 1272, 1220, 1079, 1002, 957, 891, 829, 701; **HRMS** calc. for C₅₂H₉₀N₂O₁₁K [M+K]⁺ 957.6176, fourd 957.6189.

Distinguishable resonances of the minor rotamer (2:1 ratio) are given in brackets and assignments denoted with an asterisk.

Aplyronine A,D/scytophycin hybrid (bearing R-TMSer) R-8

(*R*)-Trimethyl serine (3.9 mg, 26.5 μ mol) and DMAP (3.2 mg, 26.3 μ mol) were dissolved in CH₂Cl₂ (3 mL), then TCBC (8 μ L, 51.1 μ mol) and NEt₃ (11 μ L, 78.9 μ mol) were added to form a stock solution of mixed anhydride. Diol **9** (2.1 mg, 2.67 μ mol) was dissolved in benzene (0.30 mL) and an aliquot of the stock solution (0.30 mL) was added at 0 °C. Further aliquots of stock solution (0.30 mL) were added every 30 min for 1.5 h. The reaction was then quenched with MeOH (1.00 mL) and concentrated *in vacuo*. The crude residue was purified by flash

column chromatography (1:1:0 \rightarrow 4:4:1 EtOAc/CH₂Cl₂ /MeOH) to give ester *R*-8 as a colourless oil (1.8 mg, 73%).

 \mathbf{R}_{f} 0.42 (5:5:1 EtOAc/CH₂Cl₂/MeOH); ¹H NMR (500 MHz, CDCl₃) $\boldsymbol{\delta}_{H}$ 8.29 (0.67H, s, NCHO), [8.07] (0.33H, s, NCHO*), 7.26 (1H, obs dd, H₃), [7.13] (0.33H, d, J = 14.0 Hz, H₃₄*), 6.46 (0.67H, d, *J* = 14.1 Hz, H₃₄), 6.26 (1H, dd, *J* = 14.6, 11.9 Hz, H₄), 6.06-6.00 (1H, m, H₅), 5.86 $(1H, d, J = 15.5 Hz, H_2)$, 5.38 $(1H, br d, J = 10.7 Hz, H_{23})$, 5.32-5.26 $(1H, m, H_{15})$, 5.09 $(1H, m, H_{15})$, 5.0 dd, J = 14.3, 9.1 Hz, H₃₃), 4.99-4.95 (1H, m, H₇), 3.69 (2H, app d, J = 6.4 Hz, H_{3'} × 2), 3.59-3.56 (1H, m, H₉), 3.46 (3H, s, OMe), 3.46-3.40 (1H, m, H₂), 3.37-3.35 (4H, m, H₁₃, OMe), $3.34 (3H, s, OMe), 3.31 (1H, br d, J = 10.9 Hz, H_{31}), 3.14 (2H, s, OMe), [3.12] (1H, s, OMe^*),$ [3.08] (1H, s, NMe*), 3.04 (2H, s, NMe), 2.78 (1H, dt, J = 8.2, 3.1 Hz, H₂₅), 2.72-2.62 (1H, m, H₃₀), 2.61-2.42 (5H, m, H₆ × 2, H₂₈ × 2, H₃₂), 2.40-2.35 (7H, m, OH, C₂, NMe₂), 1.96-1.90 (2H, m, $H_{16} \times 2$), 1.82-1.71 (3H, m, H_{24} , H_{26} , H_{27a}) 1.65-1.59 (3H, m, H_{10} , $H_{12} \times 2$), 1.51 (3H, s, Me₁₄), 1.43-1.35 (4H, m, H_{11a}, H₂₂ × 2, H_{27b}), 1.35-1.17 (11H, m, H_{11b}, H₁₇₋₂₁), 1.15 (3H, d, J = 7.0 Hz, Me₃₂), 0.99-0.95 (6H, m, Me₈, Me₁₀), 0.92 (3H, d, J = 6.6 Hz, Me₃₀), 0.90 (3H, d, J = 6.4 Hz, Me₂₄), 0.88 (3H, d, J = 7.0 Hz, Me₂₆); ¹³C NMR (125 MHz, CDCl₃) δ_{C} [214.3], 214.2, 169.9, 166.9, 162.2, [160.8], 143.8, 138.8, 137.6, 133.8, 132.1, 131.5, 129.9, 128.7, 128.5, 127.7, 125.0, [124.7], 121.2, [113.2], 111.4, 87.8, 87.4, 87.4, 87.4, 87.3, 74.0, 73.7, 71.3, 67.2, 61.4, [61.4], 61.3, 59.1, 55.6, [49.2], 49.1, 42.3, 42.1, 40.8, [37.7], 37.5, 36.6, 36.3, 34.6, 34.5, 33.8, [33.1], 30.5, 29.7, 29.4, 29.0, 28.4, 28.2, 27.7, 27.6, 27.5, 22.7, [19.4], 19.4, 17.4, 15.5, [13.6], 13.5, 11.6, 10.9, [10.9], 10.1; $[\alpha]_{p}^{20}$ -7.1 (c 0.028, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 3392, 2896, 2846, 1710, 1675, 1651, 1461, 1343, 1288, 1221, 1082, 1003, 960, 892, 829, 700; **HRMS** calc. for $C_{52}H_{90}N_2O_{11}Na [M+Na]^+ 941.6442$, found 941.6402.

Distinguishable resonances of the minor rotamer (2:1 ratio) are given in brackets and assignments denoted with an asterisk.

Alcohol 27a

 $Zn(BH_4)_2$ solution (1.12 mL, 0.175 M in Et₂O, 0.196 mmol) was added to ketone **10** (20 mg, 0.0196 mmol) at 0 °C and the reaction stirred at this temperature for 5 h before being quenched with NH₄Cl (5 mL) and Na⁺/K⁺ tartrate solution (10 mL). The quenching mixture was stirred vigorously for 3 h then extracted with CH₂Cl₂ (3 × 10 mL). The combined organics were dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by flash chromatography (1:0 \rightarrow 4:1 \rightarrow 1:1 CH₂Cl₂/EtOAc) to yield alcohol **27a** as a colourless oil (11.5 mg, 58%, 2:1 *dr*).

R_f 0.45 (1:2 EtOAc/CH₂Cl₂); ¹**H** NMR (500 MHz, CDCl₃) **δ**_H 8.29 (0.66H, s, NCHO), [8.07] $(0.33H, s, NCHO^*)$, 7.28 (1H, dd, $J = 15.2, 9.8 Hz, H_3$), [7.15] (0.33H, d, $J = 14.7 Hz, H_{34}^*$), 6.49 (0.66H, d, J = 14.3 Hz, H₃₄), 6.24-6.14 (2H, m, H₄, H₅), 5.84 (1H, d, J = 15.1 Hz, H₂), 5.42 (1H, dd, J = 10.9, 2.0 Hz, H₂₃), 5.24 (1H, t, J = 7.8 Hz, H₁₅), [5.15] (0.37H, dd, J = 15.2, 8.8 Hz, H_{33}^*), 5.07 (0.60H, dd, J = 14.2, 8.3 Hz, H_{33}), 3.90-3.83 (1H, m, H_{29}), 3.67-3.61 (1H, m, H₇), 3.55-3.40 (1H, m, H₉), 3.48 (3H, s, OMe), 3.46 (3H, s, OMe), 3.30 (1H, dd, J = 8.1, 5.9 Hz, H₁₃), [3.06] (1H, s, NMe*), 3.02 (2H, s, NMe), 3.01 (1H, obs dd, H₃₁), 2.79 (1H, dd, J = 11.0, 2.1 Hz, H₂₅), 2.60-2.46 (1H, m, H₃₂), 2.38-2.27 (1H, m, H_{6a}), 2.17-2.00 (3H, m, H_{6b}), $H_{16} \times 2$, 1.88-1.77 (1H, m, H_{22a}), 1.75-1.61 (4H, m, H_8 , H_{22b} , H_{24} , H_{26}), 1.61-1.55 (4H, m, H_{10} , $H_{12} \times 2, H_{30}$, 1.51-1.48 (2H, m, $H_{28} \times 2$), 1.47 (3H, s, Me_{14}), 1.43-1.33 (4H, m, $H_{11} \times 2, H_{27} \times 2, H_{11} \times 2, H_{12} \times 2, H_{12} \times 2, H_{12} \times 2, H_{12} \times 2, H_{11} \times 2, H_{12} \times 2, H_$ 2), 1.31-1.20 (10H, m, H_{17-21}), [1.10] (1H, d, J = 6.7 Hz, Me_{32} *), 1.07 (2H, d, J = 6.7 Hz, Me_{32}), 1.00 (3H, d, J = 6.7 Hz, Me₂₆), 0.97 (3H, obs d, Me₈), 0.96 (9H, t, J = 8.3 Hz, Si(CH₂C<u>H₃</u>)₃), $0.95 (9H, t, J = 8.3 Hz, Si(CH_2CH_3)_3), 0.92-0.86 (9H, m, Me_{10}, Me_{24}, Me_{30}), 0.60 (6H, q, J = 0.95 (9H, t, J = 0.3 Hz, Si(CH_2CH_3)_3))$ 8.0 Hz, Si(C<u>H</u>₂CH₃)₃), 0.58 (6H, q, J = 8.0 Hz, Si(C<u>H</u>₂CH₃)₃); ¹³C NMR (125 MHz, CDCl₃) δ_C 167.3, 162.2, [160.8], 144.9, 135.2, 134.5, 133.1, 132.1, 131.9, 130.1, 129.9, 128.5, 125.0, [124.5], 122.3, 119.8, 114.5, [113.0], 90.5, 90.1, 88.0, [87.6], 87.5, 74.3, 73.6, 73.3, 71.8, 71.5, 61.9, [61.2], 55.4, [40.9], 40.4, 40.1, 39.3, 38.8, 38.1, 35.5, 33.7, [33.1], 31.9, 31.4, 30.7, 29.7, 29.6, 29.1, 28.9, 28.7, 28.3, 27.9, 27.7, 27.5, 26.6, 25.7, 24.6, 23.4, 22.7, 18.8, 17.7, 14.5, 14.1, [10.9], 10.8, 9.8, 9.7, 7.1, 7.0, 5.4, 5.2; $[\alpha]_D^{20}$ -15.1 (*c* 0.46, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹)

3445, 2933, 2876, 1698, 1657, 1461, 1240, 1225, 1006, 727, 669; **HRMS** calc. for $C_{58}H_{109}NO_9Si_2Na [M+Na]^+ 1042.7533$, found 1042.7539.

Distinguishable resonances of the minor rotamer (2:1 ratio) are given in brackets and assignments denoted with an asterisk.

The configuration at C23 was confirmed by synthesising the diastereomeric Mosher esters for analysis:

To a solution of alcohol **27** (2 mg, 1.96 μ mol) in CH₂Cl₂ (0.10 mL) was added DMAP (1 crystal), DMAP hydrochloride (1 crystal), DCC (7 μ L, 1M in CH₂Cl₂, 9.82 μ mol) and (*R*)-(-)-MTPA OH (2 mg, 9.82 μ mol) and the mixture was stirred for 16 h. Once complete, the reaction was purified by flash column chromatography (1:4 EtOAc/CH₂Cl₂) to give (*R*)-Mosher ester *R*-MTPA-**27a** as a colourless oil (1.5 mg, 63%). The corresponding (*S*)-Mosher ester was synthesised from **27a** (1.8 mg, 1.77 μ mol) to generate *S*-MTPA-**27a** as a colourless oil (1.6 mg, 72%).

S-MTPA-27a

R_f 0.78 (1:3 EtOAc/CH₂Cl₂); ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.27 (0.66H, s, NCHO), [8.05] (0.33H, s, NCHO^{*}), 7.62-7.56 (2H, m, ArH), 7.43-7.37 (3H, m, ArH), 7.29 (1H, obs dd, H₃), [7.10] (0.33H, d, J = 14.5 Hz, H₃₄*), 6.41 (0.66H, d, J = 14.5 Hz, H₃₄), 6.24-6.14 (2H, m, H₄, H₅), 5.83 (1H, d, J = 15.5 Hz, H₂), 5.39 (1H, dd, J = 10.7, 2.4 Hz, H₂₃), 5.35 (1H, app q, J = 8.4 Hz, H₂₉), 5.24 (1H, t, J = 8.2 Hz, H₁₅), [5.10] (0.37H, dd, J = 14.3, 8.2 Hz, H₃₃*), 5.04 (0.6H, dd, J = 14.7, 8.2 Hz, H₃₃), 3.67-3.59 (1H, m, H₇), 3.57 (3H, s, OMe), 3.55-3.40 (1H, m, H₉), 3.45 (3H, s, OMe), 3.39 (3H, s, OMe), 3.31 (1H, dd, J = 8.4, 5.7 Hz, H₁₃), 3.15 (3H, s, OMe), [3.03] (1H, s, NMe^{*}), 3.00 (2H, s, NMe), 2.75 (1H, dt, J = 8.9, 2.2 Hz, H₂₅), 2.64 (1H, td, J = 9.6, 1.7 Hz, H₃₁), 2.41-2.24 (3H, m, H₆ × 2, H₃₂), 2.17-2.08 (2H, m, H₁₆ × 2), 1.90-1.72 (2H, m, H₈, H_{22a}), 1.65-1.55 (7H, m, H₁₀, H₁₂ × 2, H_{22b}, H₂₄, H₂₆, H₃₀), 1.51-1.44 (5H, m, H₂₈ × 2, Me₁₄), 1.43-1.35 (4H, m, H₁₁ × 2, H₂₇ × 2), 1.32-1.22 (10H, m, H₁₇₋₂₁), 1.09 (3H, d, J = 6.8 Hz, Me₃₂), 1.00 (3H, d, J = 7.0 Hz, Me₂₆), 0.97 (3H, obs d, Me₈), 0.96 (9H, t, J = 8.2 Hz, Si(CH₂CH₃)₃),

0.95 (9H, t, J = 8.2 Hz, Si(CH₂C<u>H₃</u>)₃), 0.89 (3H, d, J = 6.6 Hz, Me₂₄), 0.84 (3H, d, J = 6.6 Hz, Me₁₀), 0.76 (3H, d, J = 6.6 Hz, Me₃₀), 0.60 (6H, q, J = 8.2 Hz, Si(C<u>H</u>₂CH₃)₃), 0.58 (6H, q, J = 8.2 Hz, Si(C<u>H</u>₂CH₃)₃).

R-MTPA-27a

R_f 0.78 (1:3 EtOAc/CH₂Cl₂); ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.27 (0.66H, s, NCHO), [8.05] (0.33H, s, NCHO*), 7.61-7.56 (2H, m, ArH), 7.44-7.37 (3H, m, ArH), 7.30 (1H, obs dd, H₃), [7.11] (0.33H, d, J = 14.7 Hz, H₃₄*), 6.43 (0.66H, d, J = 14.5 Hz, H₃₄), 6.24-6.14 (2H, m, H₄, H₅), 5.84 (1H, d, J = 15.1 Hz, H₂), 5.38 (1H, dd, J = 10.9, 2.1 Hz, H₂₃), 5.36 (1H, app q, J = 8.4 Hz, H₂₉), 5.24 (1H, t, J = 7.4 Hz, H₁₅), [5.13] (0.47H, dd, J = 15.2, 8.8 Hz, H_{33*}), 5.06 (1H, dd, J = 13.9, 7.9 Hz, H₃₃), 3.68-3.61 (1H, m, H₇), 3.56-3.51 (1H, m, H₉), 3.49 (3H, s, OMe), 3.47 (3H, s, OMe), 3.38 (3H, s, OMe), 2.74 (1H, dt, J = 8.2, 5.9 Hz, H₁₃), 3.15 (3H, s, OMe), [3.04] (1H, s, NMe*), 3.00 (2H, s, NMe), 2.74 (1H, dt, J = 8.8, 2.7 Hz, H₂₅), 2.65 (1H, td, J = 9.6, 1.7 Hz, H₃₁), 2.43-2.22 (3H, m, H₆× 2, H₃₂), 2.15-2.08 (2H, m, H₁₆× 2), 1.91-1.71 (2H, m, H₈, H_{22a}), 1.65-1.55 (7H, m, H₁₀, H₁₂× 2, H_{22b}, H₂₄, H₂₆, H₃₀), 1.54-1.43 (4H, m, H₂₈× 2, Me₁₄), 1.42-1.36 (4H, m, H₁₁× 2, H₂₇× 2), 1.32-1.22 (10H, m, H₁₇₋₂₁), 1.10 (3H, d, J = 6.8 Hz, Me₃₂), 0.99 (3H, d, J = 7.0 Hz, Me₂₆), 0.97 (3H, obs d, Me₈), 0.96 (9H, t, J = 8.0 Hz, Si(CH₂CH₃)₃), 0.95 (9H, t, J = 8.0 Hz, Si(CH₂CH₃)₃), 0.60 (6H, q, J = 8.1 Hz, Si(CH₂CH₃)₃), 0.58 (6H, q, J = 8.1 Hz, Si(CH₂CH₃)₃).

Distinguishable resonances of the minor rotamer (2:1 ratio) are given in brackets and assignments denoted with an asterisk.

Proton	δH (S)-MTPA (ppm)	δH (<i>R</i>)-MTPA (ppm)	$\Delta\delta_{S-R}$ (ppm)
H23	5.39	5.38	+0.01
Me24	0.89	0.87	+0.02
H25	2.75	2.74	+0.01
H29	5.35	5.36	-0.01
Me30	0.76	0.78	-0.02
H31	2.64	2.65	-0.01
Me32	1.09	1.10	-0.01

Table 2. Diagnostic ¹H NMR signals for the configurational assignment of 29R
Diol 27

DMAP (11 mg, 8.8 μ mol), DMAP hydrochloride (14 mg, 8.8 μ mol), dimethylglycine (9 mg, 8.8 μ mmol) and alcohol **27a** (9 mg, 8.8 μ mmol) were dissolved in CH₂Cl₂ (0.50 mL). DCC (88 μ L, 8.8 μ mol, 1M in CH₂Cl₂) was added and the reaction stirred for 16 h before being quenched with NaHCO₃ (2 mL). The layers were separated, and the aqueous phase extracted with CH₂Cl₂ (3 × 5 mL). The combined organics were dried (Na₂SO₄), concentrated *in vacuo* and the crude material transferred to a plastic reaction vessel.

A stock solution of HF·pyridine was prepared by adding HF·pyridine (100 µL) to a solution of pyridine (200 µL) in THF (1 mL) at 0 °C before warming to rt and stirring for 30 min. This solution was added the crude material 0 °C and the reaction stirred at rt overnight. The reaction was quenched at 0 °C with NaHCO₃ solution (5 mL), stirred vigorously at rt for 30 min and the aqueous phase extracted with EtOAc (3 × 5 mL). The combined organics were dried (Na₂SO₄) and concentrated *in vacuo*. Purification *via* flash column chromatography (1:1:0 \rightarrow 4:4:1 EtOAc/CH₂Cl₂/MeOH) yielded diol **27** (5.3 mg, 69%) as a colourless oil.

R_f 0.45 (4:4:1 EtOAc/CH₂Cl₂/MeOH); ¹**H NMR** (500 MHz, CDCl₃) **δ**_H 8.28 (0.66H, s, NCHO), [8.06] (0.33H, s, NCHO*), 7.27 (1H, obs dd, H₃), [7.12] (0.33H, d, J = 14.5 Hz, H_{34*}), 6.45 (0.66H, d, J = 14.5 Hz, H₃₄), 6.28 (1H, dd, J = 15.3, 11.0 Hz, H₄), 6.12 (1H, dt, J = 15.2, 7.8 Hz, H₅), 5.84 (1H, d, J = 15.7 Hz, H₂), 5.35-5.27 (2H, m, H₂₃, H₂₉), 5.24 (1H, t, J = 6.9 Hz, H₁₅), 5.11 (1H, dd, J = 14.5, 10.0 Hz, H₃₃), 3.88-3.80 (1H, m, H₇), 3.70-3.59 (1H, m, H₉), 3.53-3.46 (2H, m, H₂...×2), 3.44 (3H, s, OMe), 3.43 (3H, s, OMe), 3.41 (1H, obs dd, H₁₃), 3.15 (3H, s, OMe), [3.05] (1H, s, NMe*), 3.00 (2H, s, NMe), 2.81 (1H, dd, J = 9.8, 2.1 Hz, H₂₅), 2.75 (1H, dd, J = 8.4, 2.4 Hz, H₃₁), 2.59-2.42 (3H, m, H₆×2, H₃₂), 2.39 (6H, s, C₂...NMe₂), 2.10-1.99 (2H, m, H₁₆×2), 1.73-1.65 (6H, m, H₈, H_{22a}, H₂₄, H₂₆, H₂₈×2), 1.64-1.51 (5H, m, H₁₀, H₁₂×2, H_{22b}, H₃₀), 1.38-1.31 (4H, m, H₁₁×2, H₂₇×2), 1.48 (3H, s, Me₁₄), 1.30-1.19 (10H, m, H₁₇₋₂₁), 1.16 (3H, d, J = 6.6 Hz, Me₃₂), 1.04 (3H, d, J = 6.6 Hz, Me₈), 0.97 (3H, d, J = 7.4 Hz, Me₂₆), 0.88-0.82 (6H, m, Me₁₀, Me₂₄), 0.79 (3H, d, J = 7.4 Hz, Me₃₀); ¹³C NMR (125 MHz, CDCl₃) **δ**_c 170.2, 167.0, 162.2, [160.9], 156.7, 144.3, 139.0, 133.7, 130.9, 129.9, 128.8, 128.6, [124.6], 120.5, [113.4], 111.7, 87.9, 87.3, 86.6, 75.3, 74.0, 73.9, 61.3, [61.1], 60.3, 55.6, 49.1, 45.2, 40.6, [39.3], 39.1, 39.0, 38.1, [37.8], 37.0, 36.9, 35.2, 33.9, 33.6, [33.1], 30.9, 29.7, 28.8, 28.7, 28.5, 27.8, 27.6, 27.3, 24.9, 20.3, [17.4], 17.3, 15.7, [11.6], 11.1, 10.3, 9.8, 9.7; $[\alpha]_D^{20}$ -13.9 (*c* 0.16, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 3325, 2952, 2853, 1708, 1690, 1656, 1635, 1559, 1448, 1254, 1159, 1091 975; **HRMS** calc. for C₅₀H₈₈N₂O₁₀Na [M+Na]⁺ 899.6337, found 899.6324.

Distinguishable resonances of the minor rotamer (2:1 ratio) are given in brackets and assignments denoted with an asterisk.

Aplyrologue D (7)

(S)-Trimethyl serine (6.7 mg, 46.1 µmol) and DMAP (5.6 mg, 46.1 µmol) were dissolved in CH₂Cl₂ (3 mL) and TCBC (15 µL, 92.3 µmol) and NEt₃ (13 µL, 92.3 µmol) were added to form a stock solution of mixed anhydride. Diol **27** (2 mg, 46.1 µmol) was dissolved in benzene (0.30 mL) and an aliquot of the stock solution (0.40 mL) was added at 0 °C. Further aliquots of stock solution (0.40 mL) were added every 30 min for 2 h. The reaction was then quenched with MeOH (1.5 mL) and concentrated *in vacuo*. The crude residue was purified by flash column chromatography (1:0:0 \rightarrow 1:1:0 \rightarrow 4:4:1 CH₂Cl₂/EtOAc/MeOH) to give aplyrologue D (7) as a colourless oil (1.4 mg, 65%).

R_f 0.31 (4:4:1 EtOAc/CH₂Cl₂/MeOH); ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.28 (0.66H, s, NCHO), [8.06] (0.33H, s, NCHO*), 7.24 (1H, obs dd, H₃), [7.12] (0.33H, d, *J* = 14.4 Hz, H_{34*}), 6.46 (0.66H, d, *J* = 14.2 Hz, H₃₄), 6.28 (1H, dd, *J* = 14.8, 11.1 Hz, H₄), 6.03 (1H, dt, *J* = 15.2, 7.8 Hz, H₅), 5.86 (1H, d, *J* = 15.4 Hz, H₂), 5.34 (1H, dt, *J* = 9.5, 2.4 Hz, H₁₅), 5.31-5.25 (2H, m, H₂₃, H₂₉), 5.08 (1H, dd, *J* = 14.6, 9.4 Hz, H₃₃), 5.01-4.95 (1H, m, H₇), 3.82-3.68 (2H, m, H₃·× 2, H₂··× 2), 3.60-3.55 (1H, m, H₉), 3.44 (3H, s, OMe), 3.43 (3H, s, OMe), 3.37 (3H, s, OMe) 3.42-3.38 (1H, m, H₂·), 3.35 (1H, br d, *J* = 6.4 Hz, H₁₃), 3.15 (3H, s, OMe), [3.05] (1H, s, NMe*), 3.00 (2H, s, NMe), 2.81 (1H, dd, *J* = 9.1, 2.5 Hz, H₂₅), 2.76 (1H, dd, *J* = 8.4, 2.7 Hz, H₃₁), 2.58 (6H, s, C₂· NMe₂), 2.52 (7H, s, C₂··NMe₂, H₃₂), 2.50-2.41 (2H, m, H₆ × 2), 1.96-1.86 (2H, m, H₁₆ × 2), 1.72-1.66 (4H, m, H₈, H_{22a}, H₂₄, H₂₆), 1.64-1.53 (7H, m, H₁₀, H₁₂× 2, H_{22b}, H₂₈ × 2, H₃₀), 1.38-1.29 (4H, m, H₁₁ × 2, H₂₇ × 2), 1.50 (3H, s, Me₁₄), 1.28-1.19 (10H, m, H₁₇). ^{21,}), 1.15 (3H, d, J = 6.6 Hz, Me₃₂), 0.98 (6H, d, J = 7.4 Hz, Me₈, Me₂₆), 0.88 (3H, d, J = 6.8 Hz, Me₁₀), 0.86 (3H, d, J = 6.8 Hz, Me₂₄), 0.83 (3H, d, J = 7.0 Hz, Me₃₀); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 169.1, [168.5], 166.9, 162.2, 160.9, 143.9, 137.7, 135.2, 133.8, 131.4, 129.9, 128.7, 127.6, 125.0, [124.7], 121.1, [113.6], 111.7, 87.7, [87.3], 86.6, 74.1, 73.7, 70.3, 67.0, 61.9, 61.3, [61.3], 59.2, 55.6, 49.2, 45.2, 42.2, 40.8, 39.2, 39.0, 38.1, 37.8, 36.5, 35.2, 34.3, 33.9, 33.7, [33.1], 30.4, 29.7, 29.4, 29.0, 28.4, 28.1, 27.8, 27.6, 27.5, 26.4, 25.9, 23.4, 22.7, 20.1, 17.6, [17.5], 15.5, 14.1, [11.6], 11.1, 10.2, 9.9, 9.8; $[\alpha]_D^{20}$ –4.5 (*c* 0.056, CHCl₃); **IR** (thin film) v_{max} (cm⁻¹) 3456, 2940, 2925, 2912, 1714, 1692, 1649, 1613, 1546, 1454, 1368, 1258, 1218, 1129, 1094, 852, 820, 780, 731; **HRMS** calc. for C₅₅H₉₈N₃O₁₁ [M+H]⁺ 992.7151 found 992.7126.

Distinguishable resonances of the minor rotamer (2:1 ratio) are given in brackets and assignments denoted with an asterisk.

4. Experimental Procedures for Cell Viability Studies

4.1. Cell viability studies

HeLa cells were obtained from the American Type Culture Collection (ATCC) and were maintained in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% heat-inactivated FBS and 2 mM L-glutamine.

Cells were seeded at 2,000 cells/well in 96-well plates for 24 h at 37 °C with 5% CO₂. Serial dilutions of aplyronines (1-3) and their analogues (7-9) were added to the cells in complete growth medium and incubated at 37 °C with 5% CO₂ for 96 h. Cell viability was measured using CellTiter-Glo viability assay (Promega) according to the manufacturer's instructions. Cell viability was plotted as a percentage of untreated cells. Each measurement was taken in triplicate and three independent repeats were performed from different cell passages. Discodermolide was used as an external control between all tests.

4.2. Cytotoxicity graphs

Figure 4. Graph showing cell viability as a function of log[drug] for 7 (aplyrologue D), S-/R-8 (aplyronine A,D/scytophycin hybrid) and 9 (aplyronine C/scytophcin hybrid). Discodermolide was included as an external control

Figure 5. Graph showing cell viability as a function of log[drug] for synthetic aplyronines A (1), C (2) and D (3)^{8,9}. *Discodermolide was included as an external control*

References

- H. Kigoshi, K. Suenaga, T. Mutou, T. Ishigaki, T. Atsumi, H. Ishiwata, A. Sakakura,
 T. Ogawa, M. Ojika and K. Yamada, J. Org. Chem., 1996, 61, 5326–5351.
- 2 K. Kobayashi, Y. Fujii, Y. Hirayama, S. Kobayashi, I. Hayakawa and H. Kigoshi, Org. Lett., 2012, 14, 1290–1293.
- K. Hirata, S. Muraoka, K. Suenaga, T. Kuroda, K. Kato, H. Tanaka, M. Yamamoto, M. Takata, K. Yamada and H. Kigoshi, *J. Mol. Biol.*, 2006, 356, 945–954.
- 4 M. Kita, Y. Hirayama, K. Yoneda, K. Yamagishi, T. Chinen, T. Usui, E. Sumiya, M. Uesugi and H. Kigoshi, *J. Am. Chem. Soc.*, 2013, **135**, 18089–18095.
- 5 H. Kigoshi, K. Suenaga, M. Takagi, A. Akao, K. Kanematsu, N. Kamei, Y. Okugawa and K. Yamada, *Tetrahedron*, 2002, **58**, 1075–1102.
- L. Diab, T. Šmejkal, J. Geier and B. Breit, *Angew. Chem. Int. Ed.*, 2009, 48, 8022–8026.
- 7 M. J. Cryle, P. Y. Hayes and J. J. De Voss, *Chem. Eur. J.*, 2012, **18**, 15994–15999.
- I. Paterson, S. J. Fink, L. Y. W. Lee, S. J. Atkinson and S. B. Blakey, *Org. Lett.*, 2013, 15, 3118–3121.
- N. Anžiček, S. Williams, M. P. Housden and I. Paterson, Org. Biomol. Chem., 2018, 16, 1343–1350.

NMR Spectra for All New Compounds

¹H and ¹³C NMR spectra of all new compounds are presented below.

	ио ¹⁵ HO ¹⁵ HO ¹⁵ HO ¹⁵ HO ¹⁵ HO ¹⁵ HO ²⁷ OPMB 16b: ¹³ C NMR (125 MHz)																			
ing the state of t									k sisten og stor bruden											
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10)	0 ppm

