Supplementary Information In situ X-ray Raman spectroscopy and magnetic susceptibility study on Li[Li_{0.15}Mn_{1.85}]O₄ oxygen anion redox reaction

Kazuhiko Mukai,* Takamasa Nonaka, Takeshi Uyama, and Yusaku F. Nishimura

Toyota Central Research and Development Laboratories, Inc., 41–1 Yokomichi, Nagakute, Aichi 480–1192, Japan

*E-mail: e1089@mosk.tytlabs.co.jp

Phone: +81-561-71-7698. Fax: +81-561-63-6119

Table of Contents

- 1. Experimental
- 2. Fig. S1: Charge/discharge curves of the Al-laminated cell
- 3. Fig. S2: Setup and arrangements for the XRS/XRD measurements
- 4. Fig. S3: Charge/discharge curves for the χ measurements
- 5. Table S1: Structural parameters of the $\rm Li[Li_{0.15}Mn_{1.85}]O_4$ sample
- 6. Fig. S4: O K-edge spectrum of Li_2CO_3
- 7. Fig. S5: χ (χ^{-1}) of the y = 0.11, 0.22, and 0.49 samples
- 8. Table S2: Curie–Weiss parameters of the $\text{Li}_{1-y}[\text{Li}_{0.15}\text{Mn}_{1.85}]O_4$ samples
- 9. References

^{*}To whom correspondence should be addressed

Experimental

Preparation and characterization

A powder sample of Li[Li_{0.15}Mn_{1.85}]O₄ was prepared by a two-step solid-state reaction technique as previously reported.¹ The obtained sample was characterized by X-ray diffraction with Fe-K α radiation (D8 ADVANCE, Bruker AXS) and scanning electron microscopy (S-3600 N, Hitachi High-Technologies). Rietveld analysis was performed using the RIETAN-FP software,² and the crystal structure was drawn using the VESTA software.³

Electrochemical measurements

The electrochemical properties of Li[Li_{0.15}Mn_{1.85}]O₄ were examined in a non-aqueous lithium cell. A mixed electrode (diameter = 16 mm) consisting of 88 wt% Li[Li_{0.15}Mn_{1.85}]O₄, 6 wt% acetylene black (AB, Denka), and 6 wt% polyvinylidene fluoride (PVdF, Kureha) was used as the working electrode, and a lithium metal sheet pressed onto a stainless-steel (SUS) plate (diameter = 19 mm) was used as the counter electrode. The electrolyte was 1 M LiPF₆ dissolved in ethylene carbonate (EC)/dimethyl carbonate (DMC) (EC/DMC = 3/7 by volume, Kishida Chemical). Two sheets of the porous polyethylene membrane (TonenGeneral Sekiyu K. K.) were used as a separator. The cell was fabricated in an Ar-filled glove box, and then operated at a current of 0.3 mA ($\simeq 0.15 \text{ mA} \cdot \text{cm}^{-2}$) at 298 K. The voltage range was 3.0–5.0 V for initial three cycles, and then changed to 3.0–5.3 V for subsequent thirty cycles. The charge/discharge curves of the initial three cycles are shown in Fig. 1(c), while those of the subsequent thirty cycles are shown in Fig. 1(d).

In situ XRS/XAS measurements

Recently, we developed an in situ XRS system to clarify the electronic structures of C₆Li and C₁₂Li.⁴ We used the same XRS system to investigate the O K-edge spectra of $\text{Li}_{1-y}[\text{Li}_{0.15}\text{Mn}_{1.85}]\text{O}_4$ samples with $y \ge 0$. The lithium cell was packed into an Al-laminated film with a size of 80 mm \times 50 mm and exposed to hard X-rays at the BL33XU beamline

at SPring-8. The mix electrode was prepared by the same method described above, but a lithium metal sheet (diameter = 19 mm) without the SUS plate was used as the counter electrode. The thickness of the mix electrode was 53 μ m and the weight of the active material (Li[Li_{0.15}Mn_{1.85}]O₄) was 21.38 mg. Before the XRS/XAS measurements, the Allaminated cell was operated at 3.0–4.2 V for three cycles as a conditioning. The applied current was 0.3 mA and the environment temperature was 298 K. As shown in Fig. S1, these charge/discharge curves almost trace those in Fig. 1(c), suggesting that in situ lithium cell was successfully fabricated.

After charging the Al-laminated cell up to 4.5 or 5.3 V at the current of 0.3 mA, XRS/XAS measurements were performed at ~ 298 K under an open circuit condition (not monitored during the measurements). Fig. S2(a) shows the experimental setup for the in situ XRS/XAS measurements. Furthermore, Figs. S2(b) and S2(c) show schematic arrangements of the Allaminated cell for the XRS and XAS measurements, respectively. The Al-laminated cell was slightly tilted for the XRS measurements, where the angle between the Al-laminated cell and incident X-ray was 5°. We selected an energy of 9.8 keV as the incident X-ray because signals of scattered X-ray reached the maximum at 9.8 keV in the case of XRS measurements on C_6Li and $C_{12}Li$.⁴ However, the acquisition time for one XAS spectrum was at least 11 h. We also measured the O K-edge spectrum of Li_2CO_3 (Wako Pure Chemical Industries) with an acquisition time of 24 min. After each XRS measurement, Mn K-edge X-ray absorption near edge structure and extended X-ray absorption fine structure spectra were acquired by conventional XAS measurements. In contrast to the XRS measurements, the Al-laminated cell was set to be perpendicular to the incident X-ray. The analysis region for the XAS measurements was estimated to 3 mm \times 10 μ m, which was approximately 1.5 $\times~10^{-2}$ % of the surface area of the mix electrode ($\simeq~2~{\rm cm^2}).$ The analysis region for the XRS measurements is similar with that for the XAS measurements.

χ measurements

The χ (= M/H) values were determined using a superconducting quantum interference

device (SQUID) magnetometer (MPMS, Quantum Design), where M is the magnetization and H is the applied magnetic field. M was measured in field-cooling mode with H = 10kOe and cooling from 400 to 5 K. Delithiated Li_{1-y}[Li_{0.15}Mn_{1.85}]O₄ samples with y > 0 were prepared by the electrochemical reaction. Each Li[Li_{0.15}Mn_{1.85}]O₄/Li cell was charged up to a desired Li composition at the current of 0.3 mA, and rested for 5 h to reach a stable open circuit voltage. Charge curves for the χ measurements are shown in Fig. S3. The weight of active material (Li_{1-y}[Li_{0.15}Mn_{1.85}]O₄) was approximately 15 mg. Each mix electrode consisting of Li_{1-y}[Li_{0.15}Mn_{1.85}]O₄, AB, and PVdF was removed from the cell in the Ar-filled glove box, and packed into two sheets (20 mm × 20 mm) of Al foils to avoid reactions with moist air. Finally the Li_{1-y}[Li_{0.15}Mn_{1.85}]O₄ sample was fixed to the sample rod of the SQUID magnetometer with a Cu wire. Above procedure was essentially same with χ measurements on Li_{1-y}[Ni_{1/2}Mn_{3/2}]O₄⁵ and Li_{1+y}[Li_{1/3}Ti_{5/3}]O₄.⁶

Fig. S1: Conditioning charge/discharge (C/D) curves of the Al-laminated lithium cell for the XRS/XAS measurements. C/D curves in Fig. 1(c) are also shown for comparison.

Fig. S2: (a) Setup of in situ XRS measurements and schematic arrangements of the Al-laminated cell for the (b) XRS and (c) XAS measurements.

Fig. S3: Charge/discharge (C/D) curves for the χ measurements. The closed circles indicate open circuit voltages just before χ measurements. C/D curves in Fig. 1(c) are also shown for comparison.

	XXX 1 (0)	0						
Atom	Wyckoff	Occupancy	x	y	z	$B_{\rm iso}$		
	position					$/ Å^2$		
Li1	8a	1.0	0.125	0.125	0.125	0.9(1)		
Li2	16d	0.075	0.5	0.5	0.5	0.8(1)		
Mn1	16d	0.925	0.5	0.5	0.5	0.8(1)		
Ο	32e	1.0	0.262(1)	0.262(1)	0.262(1)	1.8(1)		
Space group: $Fd\bar{3}m$, $a_{\rm c} = 8.1899(1)$ Å, $R_{\rm wp} = 2.82$ %, and $S = 1.27$.								

Table S1: Structural parameters of the $\rm Li[Li_{0.15}Mn_{1.85}]O_4$ sample determined by Rietveld analysis

Fig. S4: O *K*-edge spectrum of Li₂CO₃ obtained by the XRS measurement. O *K*-edge spectrum of the Li_{1-y}[Li_{0.15}Mn_{1.85}]O₄ (y = 0) sample is also shown for comparison.

Fig. S5: (a) χ and (b) χ^{-1} of the y = 0.11, 0.22, and 0.49 samples measured in field-cooling mode with H = 10 kOe.

y	OCV / V	μ_{eff} / μ_{B}	$\Theta_{\rm p}$ / K
0	_	3.93(2)	-62(3)
0.11	3.985	3.84(4)	-19(2)
0.25	4.073	3.62(4)	-11(1)
0.29	4.098	3.57(2)	-12(1)
0.38	4.154	3.56(3)	-13(2)
0.49	4.341	3.56(4)	-13(1)
0.78	4.601	3.57(3)	-19(1)
0.98	5.039	3.68(3)	-40(1)

Table S2: Curie–Weiss parameters of the $Li_{1-y}[Li_{0.15}Mn_{1.85}]O_4$ samples

References

- K. Mukai, J. Sugiyama, Y. Ikedo, H. Nozaki, K. Kamazawa, D. Andreica, A. Amato, M. Månsson, J. H. Brewer, E. J. Ansaldo and K. H. Chow, *J. Phys. Chem. C*, 2010, 114, 11320.
- [2] F. Izumi and K. Momma, *Solid State Phenom.*, 2007, **130**, 15.
- [3] K. Momma and F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272.
- [4] T. Nonaka, H. Kawaura, Y. Makimura, Y. F. Nishimura and K. Dohmae, J. Power Sources, 2019, 419, 203.
- [5] K. Mukai and J. Sugiyama, *Solid State Commun.*, 2010, **150**, 906.
- [6] K. Mukai and J. Sugiyama, Phys. Chem. Chem. Phys., 2015, 17, 22652.