Supporting Information

N-heterocyclic silylene stabilized monocordinated copper(I)arene cationic complexes and their application in Click chemistry

Nasrina Parvin,^a Jabed Hossain,^a Anjana George,^b Pattiyil Parameswaran*^b and Shabana Khan*^a

Contents

- S1. Experimental Details
- S2. Crystal Data and Structure Refinements for 2, 3, 5, 6, 8 and 9
- S3. Deduction of hapticities in 2, 3, 5 and 6.
- S4. Computational Methodology
- S5. ¹H NMR spectrum of the catalysis products

S1. Experimental Details:

All experiments were carried out under an atmosphere of dry argon or in vaccuo using standard Schlenk technique and in a dinitrogen filled MBRAUN MB 150-G1 glovebox. The solvents used were purified by MBRAUN solvent purification system MB SPS-800. All the chemicals purchased from Aldrich were used without further purification. ¹H, ¹³C,²⁹Si and ¹⁹F NMR spectra were recorded with Bruker 400 MHz spectrometer, using CDCl₃ as solvent with an external standard (SiMe₄ for ¹H, ¹³C, ²⁹Si and CHF₃ for ¹⁹F). Concentrated solution of the samples in CDCl₃ were sealed off in a NMR tube for measurement. Mass spectra were recorded using AB Sciex, 4800 plus MALDI TOF/TOF.

Synthesis of 2:

AgSbF₆ (0.171g, 0.5 mmol) was dissolved in DCM and added to the solution of **1** (0.295g, 0.25 mmol) in toluene. It was stirred for overnight at room temperature. AgBr was precipitated out from the reaction mixture was filtered off and the volume was reduced to 15 mL and kept it at 0°C. The colorless, block shaped crystals suitable for x-ray analysis was observed after one day. Yield: 0.252g (61%). Mp: 134-139 °C. ¹H NMR (400 MHz, CDCl₃, 298K): δ 0.29 (*s*, 9H, Si*Me*₃), 0.41 (*s*, 9H, Si*Me*₃), 1.19 (*s*, 18H, C*Me*₃), 2.51 (*s*, 3H, C*H*_{3,toluene}), 7.32-7.38 (*m*, 2H, Ph), 7.46-7.53 (*m*, 4H, Ph), 7.55-7.60 (*m*, 3H, Ph), 7.66-7.70 (*m*, 1H, Ph) ppm. ¹³C {¹H} NMR (100.613 MHz, CDCl₃, 298 K): δ 4.56 (Si*Me*₃), 5.93 (Si*Me*₃), 21.62 (*C*H_{3,toluene}), 31.70 (C*Me*₃), 54.93 (*C*Me₃), 121.33, 121.62, 125.20, 125.41, 127.30, 127.48, 128.05, 128.12, 128.18, 129.16, 129.76, 131.21 (Ph-C), 170.01 (NCN) ppm. ²⁹Si {¹H} NMR (79.495 MHz, CDCl₃, 298 K): δ 7.52 (*Si*Me₃), 6.72 (*Si*Me₃), 2.28 (*Si*N(SiMe₃)₂) ppm. ¹⁹F {¹H} NMR (376.49 MHz, CDCl₃, 298): δ -162.88 ppm. MALDI: *m/z* [C₂₉H₅₂CuN₃Si₃]⁺: 482.20 [M-MeC₆H₅]. Anal Calcd: C, 42.15; H, 6.34; N, 5.09. Found: C, 42.24; H, 6.44; N, 5.27.

Synthesis of 3:

AgSbF₆ (0.171g, 0.5 mmol) was dissolved in DCM and added to the solution of **1** (0.295g, 0.25 mmol) in *m*-xylene. It was stirred overnight at room temperature. The solution was filtered to separate AgBr, concentrated to 10 mL and kept it at 0°C overnight to afford colorless crystals of 3. Yield: 0.280g (67%). Mp: 108-113 °C. ¹H NMR (400 MHz, CDCl₃, 298K): δ 0.29 (*s*, 9H, Si*Me*₃), 0.47 (*s*, 9H, Si*Me*₃), 1.25 (*s*, 18H, C*Me*₃), 2.28 (*s*, 6H, C*H*_{3,*m*-xylene}), 6.94-7.02 (*m*, 2H, Ph), 7.37-7.53 (m, 7H, Ph) ppm. ¹³C{¹H} NMR (100.613 MHz, CDCl₃, 298 K): δ 3.83 (Si*Me*₃), 5.22 (Si*Me*₃), 20.33 (*Me*₂C₆H₄), 30.86 (C*Me*₃), 53.80 (CMe₃), 125.58, 126.55, 127.23, 127.51, 127.71, 127.89, 128.16, 128.95, 129.23, 129.99, 130.35 (Ph-C), 167.68 (NCN) ppm. ²⁹Si{¹H} NMR (79.495 MHz, CDCl₃, 298 K): δ 7.49 (*Si*Me₃) (marched two SiMe₃ peak to give a broad peak), 2.80 (*Si*N(SiMe₃)₂) ppm. ¹⁹F{¹H} NMR (376.49 MHz, CDCl₃, 298): δ -178.35 (br) ppm. MALDI: *m*/*z* [C₃₀H₅₄CuN₃Si₃]⁺: 482.25 [M-Me₂C₆H₄]. Anal Calcd: C, 42.88; H, 6.48; N, 5.00. Found: C, 42.92; H, 6.62; N, 4.93.

Synthesis of 5:

AgSbF₆ (0.171g, 0.5 mmol) was dissolved in DCM and added to the solution of **4** (0.266g, 0.5 mmol) in toluene. Immediately AgBr was precipitaed out. After overnight stirring, AgBr was separated out from the reaction mixture by filtration and reduced the volume to 15 mL and kept it at 0°C. Colorless block shaped crystals suitable for X-ray analysis was observed after one day. Yield: 0.295g (74%). Mp: more than 200°C. ¹H NMR (400 MHz, CDCl₃, 298K): δ 1.23-1.26 (*m*, 24H, CH(CH₃)₂), 2.05 (*s*, 3H, CH₃,toluene), 2.40-2.50 (*m*, 4H, CH(CH₃)₂), 6.74-6.81 (*m*, 1H, Ph), 6.87-7.01 (*m*, 1H, Ph), 7.08-7.18 (*m*, 1H, Ph), 7.27 (*s*, 1H, Ph), 7.35-7.37 (*s*, 5H, Ph) 7.55-7.59 (*m*, 2H, Ph) ppm. ¹³C {¹H} NMR (100.613 MHz, CDCl₃, 298 K): δ 21.07, 23.99, 24.59, 28.72, 124.20, 124.45, 131.12, 133.83, 137.91, 145.40 ppm. ¹⁹F {¹H} NMR (376.49 MHz, CDCl₃, 298): δ -183.43

(br) ppm. MALDI: *m*/*z* [C₃₅H₄₇CuN₂]⁺: 451.02 [M-MeC₆H₅]. Anal Calcd: C, 52.87; H, 5.96; N,
3.52. Found: C, 52.72; H, 5.80; N, 3.57.

Synthesis of 6:

AgSbF₆ (0.171g, 0.5 mmol) was dissolved in DCM and added to the solution of **4** (0.266g, 0.5 mmol) in *m*-xylene. Immediately AgBr was precipitaed out. After overnight stirring, AgBr was separated out from the reaction mixture by filtration and reduced the volume to 10 mL and kept it at 0°C. Colorless block shaped crystals suitable for X-ray analysis was observed after one day. Yield: 0.315g (78%). Mp: 170°C (decomposed). ¹H NMR (400 MHz, CDCl₃, 298K): δ 1.20-1.22 (*m*, 24H, CH(CH₃)₂), 2.02 (*s*, 6H, CH_{3,m-xylene}), 2.25-2.41 (*m*, 4H, CH(CH₃)₂), 6.74-6.76 (*m*, 2H, Ph), 6.86-6.90 (*m*, 1H, Ph), 6.94 (*s*, 1H, Ph), 7.37 (*s*, 4H, *J*= 7.8Hz, Ph) 7.60 (*t*, 2H, *J*= 7.8Hz, Ph) ppm. ¹³C{¹H} NMR (100.613 MHz, CDCl₃, 298 K): δ 21.04, 24.07, 24.38, 28.65, 124.37, 124.44, 131.13, 134.03, 137.93, 145.43 ppm. ¹⁹F{¹H} NMR (376.49 MHz, CDCl₃, 298): δ -160.86 (br) ppm.MALDI: *m/z* [C₃₆H₄₉CuN₂]⁺: 451.35 [M-Me₂C₆H₄]. Anal Calcd: C, 53.44; H, 6.10; N, 3.46. Found: C, 53.42; H, 6.14; N, 3.57.

Synthesis of 7:

Acetonitrile (0.05 mL)was added into the solution of **2** (0.413g, 0.5 mmol) in 20 mL DCM. After overnight stirring, the reaction mixture was dried completely and crystallized in DCM/pentane mixture and kept it at 0°C. Cololess block shaped crystals suitable for X-ray analysis was observed after one day. Yield: 0.270g (47%). MP: 110°C.¹H NMR (400 MHz, CDCl₃, 298K): δ 0.32 (*s*, 6H, Si*Me*₃), 0.34 (*s*, 6H, Si*Me*₃), 0.37 (*s*, 6H, Si*Me*₃), 0.45 (*s*, 6H, Si*Me*₃), 0.47 (*s*, 6H, Si*Me*₃), 0.55 (*s*, 6H, Si*Me*₃), 1.24 (*s*, 12H, C*Me*₃), 1.26 (*s*, 12H, C*Me*₃), 1.30 (*s*, 12H, C*Me*₃), 2.21 (acetonitrile), 7.17-7.19 (*m*, 1H, Ph), 7.36-7.39 (*m*, 1H, Ph), 7.44-7.47 (*m*, 1H, Ph), 7.52-7.63 (*m*, 7H, Ph) ppm. ¹³C{¹H} NMR (100.613 MHz, CDCl₃, 298 K): δ 4.54, 4.69, 4.85, 5.69, 5.87, 5.92, 6.25, 31.66,

31.84, 31.88, 54.74, 54.81, 55.10, 116.88, 116.93, 125.28, 126.57, 127.64, 127.70, 127.83, 127.97, 128.21, 128.28, 128.48, 128.77, 129.03, 130.26, 130.53, 130.81, 131.02, 131.37 ppm. ²⁹Si{¹H} NMR (79.495 MHz, CDCl₃, 298 K): δ 10.22 (*Si*Me₃) (br), 7.09 (*Si*Me₃) (br), 5.53 (*Si*N(SiMe₃)₂),4.11 (*Si*N(SiMe₃)₂) ppm. Anal Calcd: C, 44.29; H, 7.26; N, 7.38. Found: C, 44.32; H, 7.21; N, 7.46.

Synthesis of 8:

IPr carbene (0.194g, 0.5 mmol) was dissolved in toluene and added to the solution of **2** (0.413g, 0.5 mmol) in toluene. After overnight stirring, the reaction mixture was filtered and dried completely. Futher the reaction mixture was crystallized in DCM/pentane mixture and kept it at 0°C. Cololess block shaped crystals suitable for X-ray analysis was observed after one day. Yield: 0.320g (58%). Mp: 185°C (decomposed). ¹H NMR (400 MHz, CDCl₃, 298K): δ 0.03 (*s*, 9H, Si*Me*₃), 0.21 (*s*, 9H, Si*Me*₃), 0.90 (*s*, 18H, C*Me*₃), 1.22 (*d*, *J*= 6.8, 12H, CH(C*H*₃)₂), 1.35 (*d*, *J*= 6.8, 12H, CH(C*H*₃)₂), 2.65-2.76 (*m*, 4H, C*H*(CH₃)₂), 6.90-6.97 (*m*, 1H, Ph), 7.25-7.26 (*m*, 1H, Ph), 7.32-7,35 (*m*, 5H, Ph), 7.43-7.59 (*m*, 6H, Ph) ppm. ¹³C {¹H} NMR (100.613 MHz, CDCl₃, 298 K): δ 4.81, 5.41, 24.53, 24.64, 28.82, 31.52, 54.19, 124.48, 124.94, 127.90, 128.29, 128.62, 129.99, 131.03, 131.30, 134.98, 145.38, 169.88 ppm. ²⁹Si {¹H} NMR (79.495 MHz, CDCl₃, 298 K): δ 4.24 (*SiMe*₃), 3.97 (*SiMe*₃), 3.60 (*Si*N(SiMe₃)₂) ppm. ¹⁹F {¹H} NMR (376.49 MHz, CDCl₃, 298): δ - 179.02 (br) ppm. MALDI: *m*/*z* [C₄₈H₇₇CuN₅Si₃]⁺: 871.60 [M]⁺. Anal Calcd: C, 52.05; H, 7.01; N, 6.32. Found: C, 52.24; H, 7.17; N, 6.39.

Synthesis of 9:

Acetonitrile (0.05 mL)was added into the solution of **5** (0.397g, 0.5 mmol) in 20 mL DCM. After overnight stirring, the reaction mixture was dried completely and crystallized in DCM/pentane mixture and kept it at 0°C. Cololess triangle shaped crystals suitable for X-ray analysis was

observed after one day. Yield: 0.260g (67%). Mp: 121°C. ¹H NMR (400 MHz, CDCl₃, 298K): δ 1.26 (dd, *J*= 6.8, 3.6, 24H, CH(CH₃)₂), 2.07 (*s*, 6H, CH_{3,acetonitrile}), 2.46-2.57 (*m*, 4H, CH(CH₃)₂), 7.16-7.21 (*m*, 2H, CH_{*lmidazole*}), 7.36 (*d*, 4H, *J*= 7.8 Hz, Ph), 7.57 (*t*, *J*= 7.8Hz, 2H, Ph) ppm. ¹³C {¹H} NMR (100.613 MHz, CDCl₃, 298 K): δ 21.46, 23.91, 24.69, 28.72, 123.78, 124.31, 125.29, 128.22, 129.03, 130.83, 137.87, 145.60 ppm. ¹⁹F {¹H} NMR (376.49 MHz, CDCl₃, 298): δ 179.39 (br) ppm. MALDI: *m/z* [C₃₁H₄₂CuN₄]⁺: 533.29 [M]⁺. Anal Calcd: C, 48.36; H, 5.50; N, 7.28. Found: C, 48.42; H, 5.34; N, 7.19.

Catalytic Reactions:

Synthesis of Azides:

Scheme S1. Schematic representation of the azides synthesis.

General reaction procedure for triazole synthesis: Catalyst (0.5 mol%) was taken in a catalysis tube inside the glove box and 2 mL dry toluene was added into this. Azide (0.2 mmol) and terminal acetylene substituted compound (0.2 mmol) were added into the catalysis tube and the reaction mixture was stirred at 25°C for 5 hours. After 5 hours, the solvent was evaporated by using rota and solid product was obtained.

	Catalyst (mol %)	Solvent	Temp.	Time	Conversion Yield (%) ^b
1.	1	THF	25	10	93
2.	0.5	THF	25	10	92
3.	1	Toluene	25	10	>98
4.	0.5	Toluene	25	10	98
5.	0.5	Toluene	25	5	98
6.	0.5	Toluene	25	3	82
7.	0.5	Toluene	25	1	60
8.	0.5	Toluene	50	3	>99
9.	0.5	Toluene	50	1	80

Table S1. Optimization of reaction conditions for CuAAC reaction using catalyst 2.^a

^{*a*}Reaction conditions for CuAAC reaction: benzyl azide (0.2 mmol), phenyl acetylene (0.2 mmol), solvent (2 mL), catalyst**2**, ^{*b*1}H NMR spectroscopy was used to determine the conversion yield of the products.

NMR spectroscopic data of the catalysis products:

I². ¹H NMR (400 MHz, CDCl₃): *δ* 5.58 (*s*, 2H),7.33-7.29 (*m*, 3H), 7.42-7.36 (*m*, 5H), 7.66 (*s*, 1H), 7.81-7.78 (*m*, 2H).

I⁵. ¹H NMR (400 MHz, CDCl₃): δ 5.55 (*s*, 2H), 7.33-7.30 (*m*, 5H), 7.39-7.35 (*m*, 3H), 7.67-7.65 (*m*, 2H), 7.75 (*s*, 1H).

1-benzyl-4-phenyl-1H-1,2,3-triazole

II². ¹H NMR (400 MHz, CDCl₃): δ5.55 (s, 2H), 7.30-7.28 (m, 2H), 7.42-7.34 (m, 5H), 7.56 (s, 1H), 7.65-7.64 (m, 1H).

H⁵.¹H NMR (400 MHz, CDCl₃): *δ*5.54 (*s*, 2H), 7.31-7.28 (*m*, 2H), 7.35-7.33 (*m*, 1H), 7.39-7.36 (*m*, 4H), 7.59-7.58 (*m*, 2H).

1-benzyl-4-(thiophen-3-yl)-1H-1,2,3-triazole

III². ¹H NMR (400 MHz, CDCl₃): δ 0.93-0.89 (t, 3H), 1.40-1.31 (m, 2H), 1.66-1.58 (m, 2H),
2.68 (t, 2H), 5.49 (s, 2H), 7.18 (s, 1H), 7.26-7.24 (m, 2H), 7.38-7.34 (m, 3H).
III⁵. ¹H NMR (400 MHz, CDCl₃): δ 0.90 (t, 3H), 1.39-1.30 (m, 2H), 1.65-1.57 (m, 2H), 2.67 (t,
2H), 5.48 (s, 2H), 7.18 (s, 1H), 7.25-7.21 (m, 2H), 7.38-7.31 (m, 3H).

1-benzyl-4-butyl-1H-1,2,3-triazole

IV². ¹H NMR (400 MHz, CDCl₃): *δ* 0.29 (*s*, 9H), 5.55 (*s*, 2H), 7.33-7.33 (*m*, 1H), 7.39-7.36 (*m*, 4H), 7.42 (*s*, 1H).

IV⁵. ¹H NMR (400 MHz, CDCl₃): δ 0.21 (*s*, 9H), 5.53 (*s*, 2H), 7.39-7.33 (*m*, 5H), 7.59 (*s*, 1H).

1-benzyl-4-(trimethylsilyl)-1H-1,2,3-triazole

V²**.** ¹H NMR (400 MHz, CDCl₃): *δ* 6.01 (*s*, 2H), 7.31-7.28 (*m*, 1H), 7.39-7.35 (*m*, 2H), 7.56-7.47 (*m*, 5H), 7.77-7.75 (*m*, 2H), 7.94-7.91 (*m*, 2H), 8.04-8.02 (*m*, 1H).

1-(naphthalen-1-ylmethyl)-4-phenyl-1H-1,2,3-triazole

VI². ¹H NMR (400 MHz, CDCl₃): δ 5.97 (*s*, 2H), 7.30-7.28 (*m*, 1H), 7.35-7.33 (*m*, 1H), 7.53-7.42 (*m*, 5H), 7.58-7.57 (*m*, 1H), 7.92-7.88 (*m*, 2H), 8.00-7.98 (*m*, 1H).

1-(naphthalen-1-ylmethyl)-4-(thiophen-3-yl)-1H-1,2,3-triazole

VII². ¹H NMR (400 MHz, CDCl3): *δ* 5.94 (*s*, 2H), 7.39-7.61 (*m*, 5H), 7.87-7.92 (*m*, 2H), 8.03-8.06 (*d*, 1H).

4-butyl-1-(naphthalen-1-ylmethyl)-1H-1,2,3-triazole

VIII².¹H NMR (400 MHz, CDCl3): *δ* 6.01 (*s*, 2H), 7.40-7.51 (*m*, 3H), 7.53-7.61 (*m*, 2H), 7.86-7.92 (*m*, 2H), 8.03-8.06 (*d*, 1H).

1-(naphthalen-1-ylmethyl)-4-(trimethylsilyl)-1H-1,2,3-triazole

IX².¹H NMR (400 MHz, CDCl3): δ2.36 (s, 3H), 5.52 (s, 2H), 7.18-7.22 (*m*, 4H), 7.29-7.32 (*m*, 1H), 7.37-7.41 (*m*, 2H), 7.64 (s, 1H), 7.78-7.80 (*d*, 2H).

1-(4-methylbenzyl)-4-phenyl-1H-1,2,3-triazole

X². ¹H NMR (400 MHz, CDCl3): *δ*2.35 (*s*, 3H), 5.51 (*s*, 2H), 7.17-7.21 (*m*, 4H), 7.33-7.35 (*m*, 1H), 7.40-7.41 (*m*, 1H), 7.54 (*s*, 1H), 7.63-7.64 (*d*, 1H).

1-(4-methylbenzyl)-4-(thiophen-3-yl)-1H-1,2,3-triazole

XI^{2.1}H NMR (400 MHz, CDCl3): *δ*5.69 (*s*, 2H), 7.38-7.44 (m, 2H), 7.47-7.49 (d, 1H), 7.54-7.56 (*d*, 1H), 7.79-7.81 (*d*, 2H), 8.19-8.23 (*m*, 4H).

1-(4-nitrobenzyl)-4-phenyl-1H-1,2,3-triazole

XII².¹H NMR (400 MHz, CDCl3): δ5.68 (*s*, 2H), 7.22-7.44 (*m*, 1H), 7.48-7.50 (*d*, 1H), 7.55-7.57 (d, 1H), 7.67-7.69 (*m*, 1H), 8.19-8.24 (*m*, 4H),

1-(4-nitrobenzyl)-4-(thiophen-3-yl)-1H-1,2,3-triazole

Scheme S2. Substrate scope for triazole synthesis using catalyst 5.^a ^{*a*}Reaction condition:azide (0.2 mmol), alkyne (0.2 mmol), toluene(2 mL) as solvent at room temperature ¹H NMR spectroscopy was used to determine the conversion yield of the producst; ^{*c*}heat the reaction at 50°C.

S2. Crystal Data and Structure Refinements for 2, 3, 5, 6, 8 and 9:

Crystal data for **3**, **4**, **5**, **6**, **8** and **9** were collected on a Bruker Smart Apex Duo diffractometer at 100 K using Mo K_{α} radiation ($\lambda = 0.71073$ Å). The absorption correction was done using multiscan method (SADABS). The structures were solved by direct methods and refined by full-matrix least-squares methods against F² (SHELXL-2014/6). Crystallographic data file (including structure factors) for the **2**, **3**, **5**, **6**, **8** and **9** have been deposited with the Cambridge Crystallographic Data Centre. 1896663 (2), 1896664 (3), 1896665(5), 1886948(6), 1896666(8), 1896670(9)

Table S2.

2	3	5

Chemical formula	$C_{28}H_{49}CuF_6N_3SbSi_3$	$C_{29}H_{51}CuF_6N_3SbSi_3$	$C_{34}H_{44}CuF_6N_2Sb$
Formula weight	811.26	825.29	780.00
Temperature	100(2)	100(2)	100(2)
Wavelength	0.71073	0.71073	0.71073
Crystal system	orthorhombic	monoclinic	monoclinic
Space group	P2 ₁ 2 ₁ 2 ₁	Pn	Сс
Unit cell dimentions	a=11.762(6) Å	a=9.226(7) Å	a=24.087(2) Å
	b=14.725(7) Å	b=11.541(9) Å	b=9.1915(9) Å
	c=21.300(9)Å	c=18.052(14) Å	c=19.165(3) Å
	α=90°	α=90°	α=90°
	β=90°	β=98.414(18)°	β=124.966(2)°
	γ=90°	γ=90°	γ=90°
Volume	3689(3) Å ³	1901(2) Å ³	3477.2(7) Å ³
Ζ	4	2	4
Density (calculated)	1.461 g/cm ³	1.442 g/cm ³	1.490 g/cm ³
Absorption coefficient	1.458 mm ⁻¹	1.416 mm ⁻¹	1.446 mm ⁻¹
F(000)	1656	844	1584
Theta range for data collection	2.22 to 25.25°	2.23 to 24.00°	2.20 to 25.25°
Reflections collected	81475	39863	43896
Independent reflections	6657[R(int)=0.0983]	5967[R(int)=0.2784]	6285[R(int)=0.1028]
Coverage of independent reflections	99.9%	99.9%	100%

Data/	6657/24/392	5967/ 98/ 403	6285/ 8/ 406
restraints/			
parameters			
Goodness-of-fit	1.049	1.012	1.003
on F2			
$\Delta \sigma \max$	0.001	0.023	0.004
Final R indices	5034 data; [I>2σ(I)]	2797 data; [I>2σ(I)]	4635 data; $[I > 2\sigma(I)]$ R1=
	R1=0.0442, wR2=	R1=0.0841, wR2=	0.0449, wR2= 0.0735
	0.0931	0.1605	
	all data, R1= 0.0748,	all data, R1= 0.2138,	all data, R1= 0.0840, wR2=
	wR2= 0.1065	wR2= 0.2103	0.0860
Largest diff.	0.567 and -0.420 eÅ ⁻³	0.959 and -0.528 eÅ ⁻³	0.724 and -0.446 eÅ ⁻³
peak and hole			
R. M. S	0.073 eÅ ⁻³	0.111 eÅ ⁻³	0.085 eÅ ⁻³
deviation from			
mean			
1			

	6	8	9
Chemical formula	$C_{35}H_{46}CuF_6N_2Sb$	$C_{49}H_{79}Cl_2CuF_6N_5SbSi_3$	$C_{38}H_{50}CuF_6N_4Sb$
Formula weight	794.03	1192.63	862.11
Temperature	100(2)	100(2)	100(2)
Wavelength	0.71073	0.71073	0.71073
Crystal system	orthorhombic	monoclinic	orthorhombic
Space group	Pbca	$P2_1/n$	Pnma
Unit cell dimentions	a=18.355(3) Å	a= 21.510(7) Å	a=13.623(5) Å
	b=18.334(3) Å	b= 12.624(4) Å	b=14.768(5) Å
	c=42.496(6) Å	c= 21.590(7) Å	c=20.118(7) Å
	α= 90°	α=90°	α=90°
	β=90°	β= 96.299(9)°	β=90°
	γ=90°	γ=90°	γ=90°

Volume	14301(4) Å ³	5827(3) Å ³	4047(2) Å ³
Ζ	18	4	4
Density (calculated)	1.660 g/cm ³	1.359 g/cm ³	1.415 g/cm ³
Absorption coefficient	1.583 mm ⁻¹	1.037 mm ⁻¹	1.251 mm ⁻¹
F(000)	7272	2472	1760
Theta range for data collection	2.22 to 25.25	2.15 to 25.25°	2.27 to 25.24°
Reflections collected	177708	109049	139751
Independent reflections	12935 [R(int)= 0.1740]	10536 [R(int)= 0.0648]	3812 [R(int)= 0.1906]
Coverage of independent reflections	99.9%	99.9%	99.9%
Data/ restraints/ parameters	12935/ 0/ 831	10536/ 0/ 624	3812/ 0/ 250
Goodness-of-fit on F2	1.039	1.047	1.001
$\Delta \sigma$ max	0.002	0.058	0.001
Final R indices	7894 data; [I>2σ(I)] R1= 0.0479, wR2= 0.0681	8198 data; [I>2σ(I)] R1= 0.0531, wR2= 0.1267	2659 data; [I>2σ(I)] R1= 0.0394, wR2= 0.0588
	all data, R1= 0.1107, wR2= 0.0848	all data, R1= 0.0745, wR2= 0.1449	all data, R1= 0.0787, wR2= 0.0712
Largest diff. peak and hole	0.941 and -0.950 eÅ ⁻³	1.180 and -1.616 eÅ-3	0.751 and -0.651 eÅ ⁻³
R. M. S deviation from mean	0.100 eÅ ⁻³	0.138 eÅ ⁻³	0.092 eÅ ⁻³

S3. Hapticity Deduction of hapticities in 2, 3, 5 and 6.

The assignment of hapticity number for the complexes having low hapticities (η^1 - η^3), has always been a complicated task as the difference between M-C bond distances are very less. Therefore,

we used a method proposed by alvarez and coworkers to deduce the hapticity of the metal-arene complexes given in *Organometallics*, 2014, **33**, 6660-6668.

	M-C ^a	${ ho_1}^b$	$ ho_2{}^c$	η^d
	d_1 d_2 d_3			
2	2.23, 2.33, 2.43	1.044	1.089	3
3	2.16, 2.19, 2.57	1.013	1.189	2
5	2.06, 2.31, 2.32	1.121	1.126	3
6	2.19, 2.22, 2.42	1.013	1.105	2

Table S3. Deduction of hapticities in 2, 3, 5 and 6.

^{*a*} M (=Cu), $d_1 < d_2 < d_3$, ^{*b*} $\rho I = d_2/d_1$, ^{*c*} $\rho 2 = d_3/d_1$, if $\rho_1 \approx \rho_2 \gg 1$ then η^1 , if $\rho_2 > \rho_1 \approx 1$ then η^2 , and if $\rho_1 \approx \rho_2 \approx 1$ then η^3

S4. Computational Methodology

All the geometry optimizations were performed with Gaussian 09 program¹ using BP86² /def2-SVP basis set.³ Meta-GGA exchange correlation functional M06⁴ with def2-TZVPP basis set³ was used for the single point calculations on the optimized geometries and the energies were corrected by adding the zero point energies from the BP86/def2-SVP level of theory. The optimization of **2**, **3**, and **5** using metaGGA functional M06⁴ and GGA functional with D3BJ dispersion correction by Grimme (BP86-D3-BJ)⁵ also leads to the η^2 -coordination of the arene ring. The optimization of **6** using metaGGA functional M06⁴ leads to η^3 -coordination and GGA functional with D3BJ dispersion correction by Grimme (BP86-D3-BJ)⁵leads to the η^2 -coordination of the arene ring.Natural Bond Order (NBO)⁶ analysis was done at the same level of theory. The nature of Si/C–Cu as well as Cu–arene bonds were studied using EDA-NOCV method at the BP86/TZ2P level of theory using ADF 2014.01 program.⁷ Scalar relativistic effects were incorporated using Zeroth Order Regular Approximation (ZORA).⁸ The core electrons were treated by the frozencore approximations. Energy Decomposition Analysis (EDA)⁹ gives the instantaneous interaction energy (ΔE_{int}) between two fragents in the frozen geometry of the compound. The interaction energy can be divided into three parts:

 $\Delta E_{int} = \Delta E_{elstat} + \Delta E_{Pauli} + \Delta E_{orb}$

 ΔE_{elstat} gives the electrostatic interaction energy between the frozen charge densities of the two fragents. ΔE_{Pauli} is the result of repulsive interaction between two fragents, which are caused by the electrons of same spin. ΔE_{orb} is the lowering in energy due to the overlap of orbitals of the two fragents. Sum of ΔE_{int} and ΔE_{prep} (energy necessary to promote the fragents from their ground state geometry to the geometry in the compound) gives $-D_e$ (dissociation energy).

 $-D_e = \Delta E_{int} + \Delta E_{prep}$

In the EDA-NOCV analysis method, ΔE_{orb} term is decomposed into the contributions from different natural orbitals of chemical valence (NOCV).¹⁰ It provides the energy contributions for each specific orbital interaction between the fragents to the total bond energy.

Table S4. Charges by natural population analysis (M06/def2-TZVPP//BP86/def2-SVP) on atoms and groups of atoms in the optimized geometry of complexes **2** and **3** ($L^1L^2SiCu(L)^+$) as well as **5** and **6** (NHCCu(L)⁺), where $L^1 = N(SiMe_3)_2$, $L^2 = (Ph)C(Nt-Bu)_2$, NHC = *N*-heterocyclic carbene with (i-Pr)₂Phsubstituent on each N and L = Tol ($C_6H_5(CH_3)$) and m-Xyl (1,3 $C_6H_4(CH_3)_2$).

$L^{1}L^{2}SiCu(L)^{+}$	L^1	L ²	Si	Cu	L
2	-0.53	-0.36	1.43	0.27	0.18
3	-0.53	-0.35	1.43	0.29	0.16
NHCCu(L)+	NHC	C7	Cu	L	
5	0.33	0.10	0.52	0.16	
6	0.32	0.10	0.51	0.17	

Figure S1: Plot of deformation density (BP86/TZ2P) for a) the donation of π -electrons from toluene to the vacant sp-hybrid orbital on Cu (Toluene \rightarrow Cu) in complex **2**, b) the donation from the filled d-orbital of Cu to π^{**} -MO of toluene in complex **2**, c) the donation of π -electrons from toluene to the vacant sp-hybrid orbital on Cu (Toluene \rightarrow Cu) incomplex **5** and d) the donation from the d-orbital of Cu to π^{**} -MO of toluene in complex **5** and d) the donation from the d-orbital of Cu to π^{**} -MO of toluene in complex **5**. The direction of charge flow is from red to blue. The isosurface value for the plot is 0.0003. The associated energy (Δ E) is given in kcal/mol.

Table S5. EDA-NOCV results (BP86/TZ2P) for the interaction of (a) L^1L^2Si fragment with $Cu(Xyl)^+$ in 3 ($L^1L^2SiCu(Xyl)^+$) and (b) $L^1L^2SiCu^+$ fragment with $Xylin 3 (L^1L^2SiCu(Xyl)^+)$ and (c) NHC fragment with $Cu(Xyl)^+$ in6 (NHCCu(m-Xyl)^+)and (d) NHCCu^+ fragment with Tol in 6 (NHCCu(m-Xyl)^+), where $L^1 = N(SiMe_3)_2$ and $L^2 = (Ph)C(Nt-Bu)_2$, m-Xyl = 1,3 $C_6H_4(CH_3)_2$ and NHC = N-heterocyclic carbene with (i-Pr)₂Ph substituent on each N. Energies are in kcal/mol.

	(a)	(b)	(c)	(d)
	L ¹ L ² Si&Cu(Xyl) ⁺	L ¹ L ² SiCu ⁺ &(Xyl)	NHC&Cu(Xyl) ⁺	NHCCu ⁺ &(Xyl)
ΔE _{int}	-92.9	-29.1	-93.0	-37.6
ΔE_{Pauli}	103.2	77.0	110.3	73.3
$\Delta E_{elstat}{}^a$	-127.5 (65.0%)	-59.9 (56.5%)	-141.1 (69.4%)	-60.5 (54.6%)
$\Delta E_{orb}{}^a$	-68.6 (35.0%)	-46.2 (43.5%)	-62.2 (30.6%)	-50.4 (45.4%)
$\Delta E_{m-Xyl \rightarrow Cu}{}^{b}$		-22.7 (49.1%)		-25.2 (50.0%)
$\Delta E_{Cu \rightarrow m-Xyl}^{b}$		-10.4 (32.3%)		-9.2 (27.6%)

$\Delta E_{Si/NHC \rightarrow Cu}^{b}$	-44.4 (64.7%)		-28.5 (45.8%)	
$\Delta E_{Cu \rightarrow Si/NHC}^{b}$	-4.6 (6.7%)		-9.5 (15.3%)	
$\Delta E_{rest}{}^{b,c}$	-19.6	-13.1	-24.2	-16.0
$\Delta \mathbf{E}_{prep}{}^d$	7.6	3.5	4.8	4.7
$-\mathbf{D}_{\mathbf{e}}^{d}$	85.3	25.6	-88.2	-32.9

^{*a*}Values in parentheses give the percentage contribution to the total attractive interactions, $\Delta E_{orb} + \Delta E_{elstat}$. ^{*b*}Values in parentheses give the percentage contribution to the orbital interactions, ΔE_{orb} . ^{*c*} $\Delta E_{rest} = \Delta E_{orb} - (\Delta E_{M\rightarrow L} + \Delta E_{L\rightarrow M})$. ^{*d*} ΔE_{prep} and De represent the preparatory and dissociation energy respectively.

Figure S2. a) Experimental and b) optimized (BP86/def2-SVP) geometry of $2(L^1L^2SiCu(Tol)^+)$ and $3(L^1L^2SiCu(m-Xyl)^+)$, where $L^1 = N(SiMe_3)_2$, $L^2 = (Ph)C(Nt-Bu)_2$, $Tol = C_6H_5(CH_3)$, m- $Xyl = 1,3 C_6H_4(CH_3)_2$.

Figure S3. Plot of deformation density (BP86/TZ2P) for the interaction of a) donation of lone pair on silylene to Cu (Si \rightarrow Cu) in 3andd) back donation from Cu to silylene in3. The direction of charge flow is from red to blue. The isosurface value for the plot is 0.0003. The associated energy (ΔE) is given in kcal/mol.

Figure S4. Plots of deformation density (BP86/TZ2P) for a)donation from xylene ring to Cu (Xyl \rightarrow Cu) in **3** and b) donation from Cu to xylene in **3**. The direction of charge flow is from red to blue. The isosurface value for the plot is 0.0003. The associated energy (Δ E) is given in kcal/mol.

Figure S5. a) Experimental geometry as well asb) optimized (BP86/Def2-SVP) geometry of 5 (**NHCCu(Tol)**⁺), **6** (**NHCCu(m-Xyl)**⁺), whereNHC= N-heterocyclic carbene with (i-Pr)₂Phsubstituent on each N, Tol = $C_6H_5(CH_3)$, m-Xyl = 1,3 $C_6H_4(CH_3)_2$. H atoms on NHC are hided for clarity.

Figure S6. Plots of deformation density (BP86/TZ2P) for the interaction of a) donation of lone pair on NHC to Cu (NHC \rightarrow Cu) in **6** andb) back donation from Cu to NHC in **6**. The direction of charge flow is from red to blue. The isosurface value for the plot is 0.0003. The associated energy (ΔE) is given in kcal/mol.

Figure S7. Plots of deformation density (BP86/TZ2P) for the interactiona) donation of xylene ring to Cu (Xylene \rightarrow Cu) in**6** and b) donation from Cu to Xylene in **6**. The direction of charge flow is from red to blue. The isosurface value for the plot is 0.0003. The associated energy (Δ E) is given in kcal/mol.

Table S6.Optimized geometry (BP86/def2-SVP), Cartesian coordinates, electronic energy E^{el}_{M06} (M06/def2-TZVPP//BP86/def2-SVP), zero-point energy ZPE_{BP86} (BP86/def2-SVP) and total energy E (E^{el}_{M06} + ZPE_{BP86}) of **2** ($L^{1}L^{2}SiCu(Tol)^{+}$), **3**($L^{1}L^{2}SiCu(m-Xyl)^{+}$), **5** (NHCCu(Tol)⁺)and6(NHCCu(m-Xyl)⁺)where $L^{1} = N(SiMe_{3})_{2}$, $L^{2} = (Ph)C(Nt-Bu)_{2}$, Tol = $C_{6}H_{5}(CH_{3})$, m-Xyl = 1,3 $C_{6}H_{4}(CH_{3})_{2}$ using Gaussian09 program package. The energies are given in a.u.

 E^{el}_{M06} = -3769.271366 ZPE_{BP86} = 0.692187 E (E^{el}_{M06} + ZPE_{BP86}) = -3768.579179

С	-2.974274000	-2.903213000	-1.182685000
Н	-3.416854000	-2.536777000	-2.123827000
С	-1.713264000	-3.565917000	-1.207536000
Н	-1.174750000	-3.675988000	-2.161930000
С	-1.202192000	-4.161003000	-0.030694000
Н	-0.240554000	-4.695360000	-0.058013000
С	-1.942605000	-4.084552000	1.162818000
Н	-1.556809000	-4.555375000	2.080247000
С	-3.177530000	-3.408639000	1.193963000
Н	-3.745196000	-3.357920000	2.136813000
С	-3.726378000	-2.817893000	0.028932000
Cu	-1.595921000	-1.425820000	-0.437121000
Si	-0.264071000	0.370462000	-0.046010000
Si	-0.032063000	3.533563000	0.191681000
Si	-2.781685000	1.979445000	0.040044000
Ν	1.312285000	0.255161000	-1.075944000
Ν	1.206186000	0.038330000	1.082464000
С	1.363574000	-0.293684000	2.525458000
С	1.586104000	0.096722000	-2.533550000

Н	-5.203425000	-1.390775000	-0.703893000
Н	-5.371718000	-1.809462000	1.037496000
С	-3.373214000	1.243908000	-1.608292000
Н	-3.004068000	0.202517000	-1.744411000
Н	-3.008608000	1.840414000	-2.470668000
Н	-4.482993000	1.222425000	-1.654801000
С	-3.547001000	3.702334000	0.185987000
Н	-3.177305000	4.437580000	-0.555257000
Н	-3.435902000	4.137166000	1.198790000
Н	-4.636310000	3.576125000	0.003376000

L¹L²SiCu(m-Xyl)⁺

 E^{el}_{M06} = -3808.5719326 ZPE_{BP86} = 0.718221 E (E^{el}_{M06} + ZPE_{BP86}) = -3807.8537116

С	3.442936000	-1.194979000	-0.017386000
С	3.457667000	-2.601640000	-0.151221000
Н	2.511549000	-3.155080000	-0.253489000
С	4.678587000	-3.297569000	-0.152380000
Н	4.681164000	-4.393616000	-0.257628000
С	5.890893000	-2.598657000	-0.019184000
Н	6.846032000	-3.146358000	-0.019898000
С	5.881248000	-1.198893000	0.115070000
Н	6.828113000	-0.646759000	0.219378000
С	4.664995000	-0.496632000	0.115214000
Н	4.659857000	0.599472000	0.215732000
С	2.156397000	-0.432044000	-0.018737000
С	-4.598274000	-1.982517000	0.182983000
Н	-5.565009000	-1.496445000	0.395812000
С	-3.893545000	-2.593547000	1.250303000
С	-2.663547000	-3.225582000	0.964044000
Н	-2.107872000	-3.729425000	1.770340000
С	-2.159015000	-3.262001000	-0.359485000
Н	-1.254065000	-3.849081000	-0.585035000
С	-2.876638000	-2.628606000	-1.413178000
Н	-2.531332000	-2.731635000	-2.455033000
С	-4.121448000	-1.984044000	-1.143982000
С	1.767686000	-0.068882000	-2.558557000
С	1.441900000	-1.519838000	-2.983184000

С	3.422944000	-0.645948000	0.034599000
С	2.811010000	0.933488000	-2.962138000
Н	2.668773000	2.005212000	-2.715750000
Н	2.951648000	0.854440000	-4.059242000
н	3.742025000	0.579688000	-2.478452000
Ν	-0.959458000	1.970509000	0.084527000
C	5 014845000	-2 498000000	0.073999000
н	5 213446000	-3 581042000	0.076224000
Ċ	2 020652000	-0 127944000	0.070224000
c	2.020032000	-0.127344000	0.013147000
ц	3.000300000	2.053785000	0.042200000
с С	£ 092279000	1 594776000	0.014971000
	0.065576000	-1.584776000	0.102872000
П	7.121334000	-1.951047000	0.130263000
C	5.823594000	-0.202928000	0.096468000
Н	6.656651000	0.516582000	0.121399000
С	4.500929000	0.268163000	0.060440000
н	4.299882000	1.350271000	0.065690000
С	2.701284000	0.226160000	3.092250000
Н	2.816768000	1.314979000	2.915985000
Н	3.574330000	-0.295396000	2.656283000
Н	2.723797000	0.057423000	4.187907000
С	1.252582000	-1.822010000	2.730704000
Н	2.100987000	-2.355074000	2.257665000
Н	0.305663000	-2.203547000	2.295728000
Н	1.262401000	-2.067193000	3.812663000
С	0.331744000	0.621114000	-3.261888000
Н	0.139078000	1.685311000	-3.018874000
Н	-0.566726000	0.032824000	-2.976536000
Н	0.460477000	0.535144000	-4.358993000
С	1.799908000	-1.390104000	-2.897490000
н	1.887471000	-1.504912000	-3.997240000
н	0.939246000	-2.002150000	-2.554717000
н	2.724581000	-1.796239000	-2.443047000
С	1.832354000	3.241075000	0.340514000
н	2.250069000	2.715970000	-0.540032000
н	2.104750000	2.677159000	1.254138000
н	2.319352000	4.237656000	0.402465000
С	0.196667000	0.403437000	3.254213000
н	-0.783478000	0.048885000	2.871939000
н	0.241321000	1.503294000	3.125946000
н	0 236158000	0 179837000	4 338720000
C	-0 535097000	4 513215000	1 732371000
н	-0 446516000	3 897648000	2 652092000
н	-1 563683000	1 919615000	1 690280000
ц	-1.303083000	5 277620000	1.050280000
с С	2 456526000	0.066609000	1.040371000
L L	-3.430330000	1 404741000	2.460050000
п u	-3.120103000	1.404/41000	2.400930000
п u	-3.11/229000		1 405525000
п	-4.30/404000	0.970341000	1.40/323UUU
с µ	-0.5045/4000	4.331000000	-1.30301000
г1 	0.095934000	4.024033000	-2.2/4021000
п	0.234900000	J.J19403000	-1.50050/000
П	-1.309/30000	4.784315000	-1.581153000
	-5.105581000	-2.200099000	0.038/58000
н	-5.861643000	-2.9/9601000	-0.221249000

Н	1.494084000	-1.623776000	-4.086316000
Н	0.415789000	-1.792618000	-2.655692000
Н	2.157347000	-2.241669000	-2.541578000
С	1.471153000	-0.565693000	2.483221000
С	2.529987000	2.933120000	0.336056000
Н	2.831132000	2.521059000	-0.647032000
Н	2.749612000	2.181585000	1.118862000
Н	3.163839000	3.823359000	0.536672000
С	0.794677000	0.898699000	-3.262945000
Н	0.985214000	1.949456000	-2.965818000
Н	-0.260574000	0.654087000	-3.018643000
Н	0.911136000	0.823630000	-4.362320000
С	-4.940908000	-1.400911000	-2.268711000
Н	-5.588877000	-2.187322000	-2.714313000
Н	-4.305019000	-1.003190000	-3.084033000
Н	-5.606656000	-0.589474000	-1.915678000
С	2.807498000	-0.118866000	3.113871000
Н	2.941669000	0.979047000	3.033844000
Н	3.676640000	-0.615691000	2.641664000
Н	2.814756000	-0.381833000	4.191119000
С	0.430948000	4.272363000	2.078303000
Н	0.670557000	3.548873000	2.886030000
Н	-0.609913000	4.617475000	2.235837000
Н	1.095514000	5.152163000	2.215957000
С	3.215806000	0.292951000	-2.949276000
н	3.473902000	1.320474000	-2.621632000
н	3.318762000	0.253709000	-4.052659000
н	3.954478000	-0.409609000	-2.519324000
С	0.566281000	4.812542000	-0.998519000
Н	0.665916000	4.354217000	-2.004929000
н	1.388870000	5.551511000	-0.888330000
н	-0.385800000	5.376366000	-0.972300000
С	0.305446000	0.138287000	3.206347000
Н	-0.672302000	-0.175960000	2.784242000
н	0.383589000	1.240082000	3.117136000
н	0.309904000	-0.122919000	4.283110000
С	1.300777000	-2.096018000	2.617931000
н	2.145604000	-2.643641000	2.156691000
н	0.356820000	-2.424001000	2.135227000
н	1.259031000	-2.383289000	3.688583000
С	-2.888176000	1.846919000	-1.679646000
Н	-2.403593000	2.394312000	-2.515150000
н	-3.982929000	2.022017000	-1.750154000
н	-2.706113000	0.761369000	-1.834537000
С	-3.099107000	1.529208000	1.410962000
Н	-2.727648000	1.876742000	2.397701000
н	-2.935901000	0.431796000	1.351409000
Н	-4.194420000	1.711760000	1.375080000
C	-2.701059000	4.271816000	0.134353000
Н	-2.406367000	4.862970000	-0.755183000
Н	-2.317972000	4.783718000	1.038875000
Н	-3.810997000	4.302741000	0.190536000
C	-4.456296000	-2.565730000	2.650075000
Н	-4.512351000	-1.525054000	3.034997000
Н	-3.841462000	-3.157988000	3.354854000

Н	-5.489607000	-2.970511000	2.671165000
Ν	1.380510000	-0.150627000	1.055074000
Ν	1.531450000	0.098293000	-1.097292000
Ν	-0.434253000	2.137987000	0.089532000
Cu	-1.555391000	-1.171978000	-0.417539000
Si	-0.009469000	0.450748000	-0.069888000
Si	0.727205000	3.511639000	0.368138000
Si	-2.228660000	2.445557000	-0.004019000

NHCCu(Tol)⁺ $E^{el}_{M06} = -3071.379097$ $ZPE_{BP86} = 0.678888$ $E (E^{el}_{M06} + ZPE_{BP86}) = -3070.700209$

29	-0.141282000	-0.384437000	1.233596000
7	-1.342328000	0.526170000	-1.268285000
7	0.819408000	0.654353000	-1.416002000
6	2.944334000	-0.598525000	-1.454030000
6	-0.189535000	0.284966000	-0.563519000
6	-1.060824000	1.032520000	-2.533600000
1	-1.849479000	1.288284000	-3.248556000
6	2.856592000	1.708378000	-0.502967000
6	-3.273404000	-0.975950000	-0.938824000
6	2.103166000	3.005807000	-0.205163000
1	1.017499000	2.799693000	-0.316419000
6	0.306866000	1.113494000	-2.626452000
1	0.955295000	1.451387000	-3.440962000
6	4.321601000	-0.636074000	-1.150466000
1	4.905876000	-1.534512000	-1.404246000
6	4.236510000	1.611245000	-0.227654000
1	4.755695000	2.464493000	0.235858000
6	4.961263000	0.452830000	-0.542506000
1	6.038964000	0.402792000	-0.321040000
6	-4.557066000	-1.175029000	-0.389657000
1	-5.054536000	-2.148844000	-0.517660000
6	-2.674788000	0.297167000	-0.741933000
6	2.072488000	-0.426104000	3.431390000
1	3.019218000	0.097641000	3.633876000
6	-5.216130000	-0.151122000	0.305473000

1	-6.220155000	-0.329337000	0.721456000
6	2.095373000	-1.777392000	3.031659000
1	3.062146000	-2.296230000	2.934750000
6	2.322551000	3.498547000	1.239318000
1	2.046743000	2.719021000	1.978786000
1	1.702567000	4.396666000	1.439587000
1	3.378481000	3.784822000	1.426195000
6	-0.367922000	-0.435001000	3.339129000
1	-1.332943000	0.047246000	3.564751000
6	-2.565607000	-2.108509000	-1.684575000
1	-1.708387000	-1.665782000	-2.235021000
6	2.235456000	0.582166000	-1.107432000
6	0.851388000	0.253398000	3.582337000
1	0.830700000	1.299233000	3.924243000
6	0.904363000	-2.485835000	2.759046000
6	-3.326182000	1.363349000	-0.065203000
6	-2.672429000	2.732829000	0.128271000
1	-1.811471000	2.797391000	-0.570950000
6	2 282994000	-1 791065000	-2 146440000
1	1 208248000	-1 550707000	-2 287223000
6	-4 609083000	1.103469000	0.460002000
1	-5 146877000	1.901908000	0.994046000
6	-0 336195000	-1 792277000	2 903240000
1	-1 282209000	-2 346405000	2 787449000
6	-3 471185000	-2 791009000	-2 729477000
1	-4 316342000	-3 334879000	-2 258434000
1	-2 891130000	-3 535418000	-3 312974000
1	-3 898333000	-2 056926000	-3 442673000
6	2 475554000	4 101540000	-1 230010000
1	1 891016000	5.026622000	-1.044654000
1	2 276587000	3 776232000	-2 271682000
1	2.270387000	4 363866000	-2.271082000
т 6	-2 610220000	2 000620000	-0.212058000
1	-4 470702000	3.900029000	0.212938000
1 1	-4.470702000	3.909944000	1 225126000
1	-2.072515000	4 864986000	-0.158808000
т 6	-3.073313000	4.804980000	2 400785000
1	1.017651000	-3.952781000	2.409783000
1	1.917651000	-4.284944000	2.005527000
1	0.175308000	-4.197795000	1.625499000
T	0.657351000	-4.560189000	3.303/44000
6	2.886123000	-2.036209000	-3.546850000
T	3.958107000	-2.318253000	-3.486544000
1	2.814059000	-1.1340/4000	-4.1882/9000
1	2.353552000	-2.863526000	-4.0601/4000
ь 4	-1.982469000	-3.134/86000	-0.68/992000
1	-1.2/5052000	-2.642263000	0.014196000
1	-1.432438000	-3.93/2/7000	-1.222169000
1	-2.784896000	-3.613467000	-0.087585000

6	-2.104308000	2.864878000	1.558559000
1	-2.909194000	2.792668000	2.320431000
1	-1.594032000	3.841091000	1.694426000
1	-1.364920000	2.060526000	1.762688000
6	2.350057000	-3.061728000	-1.273882000
1	1.829795000	-3.905557000	-1.772848000
1	1.869259000	-2.894812000	-0.288068000
1	3.398057000	-3.379709000	-1.091762000

NHCCu(Xyl)⁺

 $E^{el}_{M06} = -3110.68268$ ZPE_{BP86} =0.705869 E (E^{el}_{M06} + ZPE_{BP86}) = -3109.976811

29	0.031193000	-0.259362000	1.218286000
7	-0.995077000	0.055431000	-1.560790000
7	1.173449000	0.024486000	-1.489214000
6	0.821202000	0.143137000	-2.830568000
1	1.569944000	0.197881000	-3.627096000
6	3.206842000	1.218250000	-0.763927000
6	2.538930000	-0.013329000	-1.000702000
6	0.060302000	-0.033390000	-0.687237000
6	4.478992000	-1.280483000	-0.314137000
1	4.990732000	-2.240742000	-0.146070000
6	-2.392551000	0.043228000	-1.171959000
6	-0.550472000	0.162690000	-2.875863000
1	-1.243028000	0.236405000	-3.720194000
6	4.530593000	1.150295000	-0.281104000
1	5.083870000	2.083203000	-0.090601000
6	-3.055840000	-1.208716000	-1.067046000
6	-2.352083000	-2.538764000	-1.344462000
1	-1.389839000	-2.311397000	-1.850577000
6	0.994261000	-0.102940000	3.250531000
6	2.567228000	2.576775000	-1.057147000
1	1.494957000	2.403757000	-1.289024000
6	-4.410986000	-1.189451000	-0.675869000

1	-4.959554000	-2.139382000	-0.582666000	6	1.971767000	-3.256535000	0.230224000
6	-1.590661000	1.102805000	3.303304000	1	2.834191000	-3.502189000	0.885192000
1	-2.583812000	1.577346000	3.341220000	1	1.417146000	-4.196932000	0.031622000
6	-3.159570000	-3.447922000	-2.293247000	1	1.296525000	-2.573549000	0.791556000
1	-4.107883000	-3.793682000	-1.831775000	6	-2.742812000	-1.163199000	3.260517000
1	-2.572760000	-4.354310000	-2.548497000	1	-3.239669000	-1.077047000	4.250528000
1	-3.414758000	-2.929075000	-3.239638000	1	-2.513891000	-2.232513000	3.090904000
6	3.156761000	-1.277795000	-0.805274000	1	-3.478069000	-0.837882000	2.496399000
6	-3.043156000	1.285085000	-0.941863000	6	-2.347846000	2.631836000	-1.147896000
6	5.158359000	-0.082240000	-0.050937000	1	-1.262463000	2.435723000	-1.279004000
1	6.193593000	-0.109319000	0.323933000	6	-0.197007000	-0.900398000	3.209842000
6	2.436710000	-2.598110000	-1.086502000	1	-0.109180000	-1.998677000	3.268277000
1	1.524029000	-2.365871000	-1.675497000	6	-2.492294000	3.564770000	0.071218000
6	-1.499893000	-0.307438000	3.229067000	1	-1.917166000	4.499972000	-0.089200000
6	3.287592000	-3.568770000	-1.930510000	1	-2.112166000	3.082353000	0.994685000
1	4.184914000	-3.921442000	-1.380857000	1	-3.547925000	3.858418000	0.248819000
1	3.632480000	-3.097512000	-2.873275000	6	-0.430969000	1.898566000	3.344580000
1	2.694615000	-4.468291000	-2.195559000	1	-0.522105000	2.993903000	3.411200000
6	-4.400137000	1.239565000	-0.559287000	6	2.617428000	3.525465000	0.157507000
1	-4.940684000	2.181310000	-0.376704000	1	3.658736000	3.783540000	0.442217000
6	-2.012499000	-3.263558000	-0.024153000	1	2.123727000	3.073871000	1.042175000
1	-1.368245000	-2.627120000	0.620076000	1	2.097218000	4.477633000	-0.074669000
1	-1.470824000	-4.212113000	-0.220291000	6	2.358795000	-0.740000000	3.381734000
1	-2.932156000	-3.510326000	0.546985000	1	3.117759000	-0.211398000	2.771027000
6	-5.075709000	0.018709000	-0.419840000	1	2.349938000	-1.805485000	3.082496000
1	-6.136484000	0.009242000	-0.123621000	1	2.693113000	-0.692269000	4.440699000
6	3.211797000	3.226632000	-2.302521000	6	-2.855961000	3.315545000	-2.437711000
1	4.286433000	3.446566000	-2.131581000	1	-3.938595000	3.551256000	-2.367344000
1	2.707785000	4.184014000	-2.549487000	1	-2.713957000	2.670959000	-3.329340000
1	3.145590000	2.566748000	-3.191848000	1	-2.314888000	4.268047000	-2.615940000
6	0.845170000	1.310612000	3.297690000				

References:

1

1.745881000

1.942879000

3.341360000

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken,

V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V.
G.; Voth, G. A.; Salvador, P.; Dannenberg, J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.Gaussian 09 (Revision B.01),
Gaussian, Inc., Wallingford CT, **2010**.

- (a) A. D. Becke, *Phys. Rev. A*1988, **38**, 3098–3100.(b) J. P. Perdew, *Phys. Rev. B* 1986, **33**, 8822–8824; (c) J. P. Perdew, *Phys. Rev. B*1986, **34**, 7406–7406.
- 3. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297 3303.
- 4. Y.Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
- (a) S.Grimme, J.Antony, S.Ehrlich, H.Krieg, *J. Chem. Phys.*, 2010,132, 154104-154119.(b)
 S. Grimme, S.Ehrlich, L. Goerigk, *J. Comp. Chem*.2011, 32, 1456–1465.
- 6. (a) A. E. Reed, L. A. Curtiss, F. Weinhold, *Chem. Rev.* 1988, 88, 899 –926.(b) E. D.Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO Version 5.9.
- ADF 2013.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, http://www.scm.com; G.teVelde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A.van Gisbergen, J. G. Snijders, T.Ziegler J. Comput. Chem. 2001, 22, 931–967.
- (a) C.Chang, M. Pelissier, P.Durand, *Phys. Scr.* 1986, 34, 394–404.(b) J. -L. Heully, I.Lindgren, E.Lindroth, S. Lundquist, A.-M.Martensson- Pendrill, *J. Phys. B*1986, 19, 2799–2815.(c) E.van Lenthe, E. J. Baerends, J. G. Snijders, *J. Chem. Phys.* 1993, 99, 4597– 4610.(d) E.van Lenthe, J. G. Snijders, E. J. Baerends, *J. Chem. Phys.* 1996, 105, 6505– 6516.(e) E.van Lenthe, R.van Leeuwen, E. J. Baerends, J. G. Snijders, *Int.J. Quantum Chem.* 1996, 57, 281–293.
- 9. (a) K.Morokuma, J. Chem. Phys. 1971, 55, 1236-1244.(b)T. Zeigler, A.Rauk, Inorg. Chem. 1979, 18, 1755-1759.(c) T. Zeigler, A.Rauk, Inorg. Chem. 1979, 18, 1558-1565.(d) M. V.Hopffgarten, G. Frenking, WIREs Comput. Mol. Sci. 2012, 2, 43-62.
- (a) M. Mitoraj, A. Michalak, Organometallics2007, 26, 6576-6580.(b) M. Mitoraj, A. Michalak, J. Mol. Model.2007, 13, 347-355.(c) M. Mitoraj, A. Michalak, T.Zeigler, J. Phys. Chem. A2008,112, 1933-1939.(d) M. Mitoraj, A. Michalak.J. Mol. Model.2008, 14, 681-687. (e) M. Mitoraj, A. Michalak, T.Ziegler, J. Chem. Theory Comput.2009, 5, 962-975. (f) T. A. N.Nguyen, G. Frenking, Chem. Eur. J.2012, 18, 12733-12748. (g) M. Mousavi, G.Frenking, Organometallics2013, 32, 1743-1751.

S5. ¹H NMR spectrum of the catalysis products:

¹H NMR (400.31 MHz, CDCl₃) of compound I².

* = Toluene peak, ** = H_2O peak, # = Grease peak.

¹H NMR (400.31 MHz, CDCl₃)of compound I⁵.

* = Toluene peak, ** = H_2O peak, # = Grease peak, s = Starting material peak.

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 fl (ppm)

¹H NMR of(400.31 MHz, CDCl₃) compound II⁵.

* = Toluene peak, ** = H_2O peak, # = Grease peak, s = Starting material peak.

¹H NMR (400.31 MHz, CDCl₃)of compound III².

* = Toluene peak, ** = H_2O peak, # = Grease peak, s = Starting material peak.

¹H NMR (400.31 MHz, CDCl₃)of compound III⁵.

= Grease peak.

¹H NMR(400.31 MHz, CDCl₃) of compound IV².

* = Toluene peak, ** = H_2O peak, # = Grease peak, s = Starting material peak.

¹H NMR (400.31 MHz, CDCl₃)of compound IV⁵.

* = Toluene peak, ** = H_2O peak, # = Grease peak, s = Starting material peak.

¹H NMR (400.31 MHz, CDCl₃)of compound V².

¹H NMR (400.31 MHz, CDCl₃)of compound VI².

* = Toluene peak, # = Grease peak, s = Starting material peak.

¹H NMR (400.31 MHz, CDCl₃)of compound VII².

= Grease peak

¹H NMR (400.31 MHz, CDCl₃) of compound VIII².

¹H NMR (400.31 MHz, CDCl₃) of compound IX².

= Grease peak

¹H NMR (400.31 MHz, CDCl₃) of compound X².

¹H NMR (400.31 MHz, CDCl₃)of compound XI².

= Grease peak, s = Starting material peak.

¹H NMR (400.31 MHz, CDCl₃)of compound XII².

** = H_2O peak, # = Grease peak

