Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Highly Enantioselective Electrosynthesis of C2-Quaternary Indolin-3-ones

Fo-Yun Lu₁, Yu-Jue Chen₁, Yuan Chen, Xuan Ding, Zhi Guan* and Yan-Hong He*

Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China Emails: guanzhi@swu.edu.cn (for Z. Guan); heyh@swu.edu.cn (for Y.-H. He) (these authors contributed equally to this work)

Contents

1.	Ge	eneral experimental details	2
2.	Exp	perimental procedures	2
2.1		General procedure for the synthesis of products 3	2
2.2	2.	General procedure for the synthesis of 2-arylindoles	3
2.3	3.	The synthesis of intermediate F.	4
3.	Ор	otimization of reaction conditions	4
4.	Me	echanistic study and proposed mechanism for the reaction without TEMPO	9
4.1		Cyclic voltammetry	9
4.2	2.	The radical-trapping experiments	11
5.	Cry	ystallographic data	13
6.	Ch	aracterization of products	32
7.	Re	ferences	75
8.	^{1}H	NMR and ¹³ C NMR spectra of the products	76
9.	HR	RMS of the products	105

1. General experimental details

The electrolysis instrument used is a dual display potentiostat (DJS-292B) (Shanghai Leici Chuang Yi Instrument Co., Ltd.) The anode electrode and cathode electrode used were all platinum electrodes (1.5 cm × 1.0 cm × 0.2 mm) (Gaoss Union). Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. Reactions were monitored by thin-layer chromatography (TLC) with GF 254 silica gel plates using UV light and vanillic aldehyde as visualizing agents. Flash column chromatography was performed using 200-300 mesh silica gel at increased pressure. ¹H NMR spectra and ¹³C NMR spectra were respectively recorded on 600 MHz and 150 MHz NMR spectrometers. Chemical shifts (δ) were expressed in ppm with TMS as the internal standard, and coupling constants (*J*) were reported in Hz. High-resolution mass spectra were obtained by using ESI ionization sources (Varian 7.0 T FTICR-MS). Melting points were taken on a melting-point apparatus and were uncorrected. The enantiomeric excess (e.e.) and diastereomeric ratio (d.r.) of products were determined by chiral HPLC analysis performed using Chiralpak AD-H, and Chiralpak IA (Daicel Chiral Technologies CO., LTD.)

Abbreviations

DMF = N,N-dimethylformamide, TFE = 2,2,2-trifluoroethanol, TBPA = tetrabutylammonium perchlorate, TEMPO = (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl, MeCN = acetonitrile, ACT = 4-acetamido-TEMPO, HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol, NMP = 1-methyl-2pyrrolidinone, DMA = N,N-dimethylacetamide, TFA = 2,2,2-trifluoroacetic acid, CP₂Fe = ferrocene.

2. Experimental procedures

2.1. General procedure for the synthesis of products 3

To an oven-dried, undivided electrochemical cell equipped with a magnetic stirring bar, a platinum net anode (1.0 cm × 1.5 cm × 0.2 mm) and a platinum net cathode (1.0 cm × 1.5 cm × 0.2 mm) were added 2-arylindole **1** (0.2 mmol, 1.0 equiv), TEMPO (0.02 mmol, 10 mol%, 0.1 equiv), L-proline (0.04 mmol, 20 mol%, 0.2 equiv), PhCO₂H (0.4 mmol, 2.0 equiv), Tetrabutylammonium perchlorate (TBPA) (0.05 M), DMF (3.0 mL), 2,2,2-trifluoroethanol (1.0 mL) and ketone **2** (1.0 mmol, 5.0 equiv). The resultant mixture was initiated at a constant current of 0.8 mA ($j \approx 0.53$ mA cm⁻², the distance between the cathode and the anode is about 1.0 cm) under the air atmosphere at RT. The reaction was monitored by TLC. After completion of the reaction, 20 mL of ethyl acetate was added, and washed with brine. The organic phase was dried over anhydrous Na₂SO₄, and filtered. The organic solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate: v/v, 20/1 - 5/1 as eluant) to give the product **3**.

2.2. General procedure for the synthesis of 2-arylindoles

Following the literature,¹ some modifications were made. A high pressure tube equipped with a magnetic stirring bar was charged with indole substrate **5** (15.0 mmol, 1.0 equiv.), norbornene (30.0 mmol, 2.0 equiv.), the base [30.0 mmol, 2 equiv. K_2CO_3 (**1b**, **1d**, **1f-o**) or 2 equiv. KHCO₃ (**1c**, **1e**)] and Pd(AcO)₂ (0.75 mmol, 5 mol %). A solution of water (0.5 M) in DMF (15.0 mL) was added via syringe, and then the aryl iodide **6** (30.0 mmol, 2.0 equiv.) was added via syringe. The reaction mixture was then placed in a preheated oil bath at 70 °C (**1b**, **1d**, **1f-o**) or 90 °C (**1c**, **1e**). Vigorous stirring was applied. The reaction was monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature, diluted with EtOAc, and filtered. The filtrate was washed with H_2O (3 times) and brine, the organic phase was concentrated in vacuum to remove the solvent. The residue was directly submitted to flash column chromatography to afford the 2-arylindole product (**1b-o**). Substrate **1p** was synthesized according to the literature method.²

2.3. The synthesis of intermediate F.

Following the literature,³ some modifications were made. A round-bottom flask was charged with methylene blue (MB, 82 mg, 0.25 mmol, 0.1 equiv.) and 2-phenylindole (1a, 483.1 mg, 2.5 mmol, 1.0 equiv.) in methanol solution (50 mL) and pyridine (2.0 mL), The resultant mixture was stirred at r.t. under irradiation of 2×32 W CFLs (Philips) under oxygen bubbling and monitored by TLC. After completion of the reaction, the reaction mixture was concentrated in *vacuo*, diluted with ether and washed with water. The ether layer was dried over Na₂S0₄, evaporated to dryness and heated at 100°C under reduced pressure for 5-10 min to afford a solid which was chromatographed over silica gel column, elution with petroleum ether - ethyl acetate gave the 2-phenyl-3*H*-indol-3-one (F). ¹H NMR (600 MHz, CDCl₃): δ 8.33 (d, *J* = 7.4 Hz, 2H), 7.51 – 7.38 (m, 5H), 7.34 (d, *J* = 7.2 Hz, 1H), 7.18 (t, *J* = 7.1 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 193.4, 161.1, 159.8, 136.7, 132.1, 130.1, 129.3, 128.8, 128.3, 124.6, 123.2, 121.9. HRMS (EI): m/z: calcd for C₁₄H₉NO (M+H)⁺: 208.0757, found: 208.0759.

3. Optimization of reaction conditions.

Table S1. Mediator screening ^a

	Ph + H - H	bline, TBPA ,precatalyst EtOH, Pt (+)-Pt (-) ndivided cell, Air, RT	O N N H
	1a 2a	;	Ba
Entry	Mediator	Yield (%)	ee (%)
1	ТЕМРО	16	97
2	CP ₂ Fe	trace	
3	KI	trace	
4	(4-BrPh) ₃ N	trace	
5	ACT	14	98
6		3	98

[a] Reaction conditions: 2-phenylindole **1a** (0.2 mmol, 1.0 equiv), cyclohexanone **2a** (1.0 mmol, 5.0 equiv), L-proline (0.04 mmol, 0.2 equiv), mediator (0.04 mmol, 0.2 equiv) and TBPA (0.1 mmol, 0.5 equiv) in EtOH (4.0 mL) under a constant current of 0.53 mA cm⁻² in an undivided cell at RT in air for 24 h. Yield refers to the isolated product after chromatography on silica gel. ee and d.r. were determined by HPLC analysis using a chiral column (IA). Diastereomeric ratio (d.r.) of 3a > 20:1.

Table S2. Effect of TEMPC) loading or	the reaction a
---------------------------	--------------	----------------

	$ \begin{array}{c} & O \\ & H \\ $	MPO, L-proline, TBPA EtOH, Pt (+)-Pt (-) ndivided cell, Air, RT	O N H 3a
Entry	TEMPO (mol %)	Yield (%)	ee (%)
1	5	13	98
2	10	23	97
3	20	16	97
4	50	16	96
5	100	14	97

[a] Reaction conditions: 2-phenylindole **1a** (0.2 mmol, 1.0 equiv), cyclohexanone **2a** (1.0 mmol, 5.0 equiv), L-proline (0.04 mmol, 0.2 equiv), TEMPO and TBPA (0.1 mmol, 0.5 equiv) in EtOH (4.0 mL) under a constant current of 0.53 mA cm⁻² in an undivided cell at RT in air for 24 h. Yield refers to the isolated product after chromatography on silica gel. ee and d.r. were determined by HPLC analysis using a chiral column (IA). Diastereomeric ratio (d.r.) of $3a \ge 20:1$.

Table S3. Effect of solvent on the reaction ^a

	$ \begin{array}{c} & O \\ & H \\ & H \\ & H \\ & 1a \\ & 2a \\ \end{array} $	MPO, L-proline, TBPA solvent, Pt (+)-Pt (-) Jndivided cell, Air, RT	O N H 3a
Entry	Solvent	Yield (%)	ee (%)
1	MeCN	14	92
2	THF	11	98
3	DCE	17	93
4	EtOH	23	97
5	DMF	41	97
6	DCM	4	98

[a] Reaction conditions: 2-phenylindole **1a** (0.2 mmol, 1.0 equiv), cyclohexanone **2a** (1.0 mmol, 5.0 equiv), L-proline (0.04 mmol, 0.2 equiv), TEMPO (0.02 mmol, 0.1 equiv) and TBPA (0.1 mmol, 0.5 equiv) in solvents (4.0 mL) under a constant current of 0.53 mA cm⁻² in an undivided cell at RT in air for 24 h. Yield refers to the isolated product after chromatography on silica gel. ee and d.r. were determined by HPLC analysis using a chiral column (IA). Diastereomeric ratio (d.r.) of $3a \ge 20:1$.

Table S4. Effect of electrolyte on the reaction ^a

N H 1a	$\rightarrow Ph + O = TE$ 2a	MPO, L-proline, electrolyte DMF, Pt (+)-Pt (-) Undivided cell, Air, RT	O N H 3a
Entry	Electrolyte	Yield (%)	ee (%)
1	n-Bu ₄ NBF ₄	23	
2	n-Bu ₄ NPF ₆	37	
3	n-Bu ₄ NClO ₄	41	97
4	Et ₄ NOTs	29	
5	LiClO ₄	34	
6		NR	

[a] Reaction conditions: 2-phenylindole **1a** (0.2 mmol, 1.0 equiv), cyclohexanone **2a** (1.0 mmol, 5.0 equiv), L-proline (0.04 mmol, 0.2 equiv), TEMPO (0.02 mmol, 0.1 equiv) and electrolytes (0.1 mmol, 0.5 equiv) in DMF (4.0 mL) under a constant current of 0.53 mA cm⁻² in an undivided cell at RT in air for 24 h. Yield refers to the isolated product after chromatography on silica gel. ee and d.r. were determined by HPLC analysis using a chiral column (IA). Diastereomeric ratio (d.r.) of 3a > 20:1.

Table S5. Effect of electrolyte loading on the reaction ^a

		TEMPO, L-proline, TBPA DMF, Pt (+)-Pt (-) Undivided cell, Air, RT	N H
	1a 2a		3a ິ
Entry	TBPA (mmol)	Yield (%)	ee (%)
1	0.1	41	97
2	0.2	46	97
3	0.4	43	95
4	0.6	40	
6		NR	

[a] Reaction conditions: 2-phenylindole **1a** (0.2 mmol, 1.0 equiv), cyclohexanone **2a** (1.0 mmol, 5.0 equiv), L-proline (0.04 mmol, 0.2 equiv), TEMPO (0.02 mmol, 0.1 equiv) and TBPA in DMF (4.0 mL) under a constant current of 0.53 mA cm⁻² in an undivided cell at RT in air for 24 h. Yield refers to the isolated product after chromatography on silica gel. ee and d.r. were determined by HPLC analysis using a chiral column (IA). Diastereomeric ratio (d.r.) of 3a > 20:1.

Table S6. Effect of molar ratio of substrates on the reaction ^a

	$ \begin{array}{c} & O \\ & N \\ & H \\ & H \\ & 1a \\ & 2a \\ & 1a \\ & 1a \\ & 2a \\ & 1a \\ & 1a \\ & 2a \\ & 1a \\ &$	EMPO, L-proline, TBPA DMF, Pt (+)-Pt (-) Undivided cell, Air, RT	O N H 3a
Entry	Molar ratio (1a:2a)	Yield (%)	ee (%)
1	0.2:0.4	29	
2	0.2:0.6	35	
3	0.2:1.0	46	97
4	0.2:1.6	26	

[a] Reaction conditions: 2-phenylindole **1a** (0.2 mmol, 1.0 equiv), cyclohexanone **2a**, L-proline (0.04 mmol, 0.2 equiv), TEMPO (0.02 mmol, 0.1 equiv) and TBPA (0.2 mmol, 1.0 equiv) in DMF (4.0 mL) under a constant current of 0.53 mA cm⁻² in an undivided cell at RT in air for 24 h. Yield refers to the isolated product after chromatography on silica gel. ee and d.r. were determined by HPLC analysis using a chiral column (IA). Diastereomeric ratio (d.r.) of 3a > 20:1.

Table S7. Effect of mixed solvent on the reaction ^a

2	3:1 DMF/TFE	54	98
3	3:1 DMF/H ₂ O	18	
4	3:1 DMA/TFE	21	
5	3:1 NMP/TFE	33	
6	2:2 DMF/HFIP	44	

[a] Reaction conditions: 2-phenylindole **1a** (0.2 mmol, 1.0 equiv), cyclohexanone **2a** (1.0 mmol, 5.0 equiv), L-proline (0.04 mmol, 0.2 equiv), TEMPO (0.02 mmol, 0.1 equiv) and TBPA (0.2 mmol, 1.0 equiv) in mixture of solvent (4.0 mL) under a constant current of 0.53 mA cm⁻² in an undivided cell at RT in air for 24 h. Yield refers to the isolated product after chromatography on silica gel. ee and d.r. were determined by HPLC analysis using a chiral column (IA). Diastereomeric ratio (d.r.) of 3a: > 20:1.

Table S8. Effect of electrode material on reaction ^a

	$\frac{1}{N} + \frac{1}{N}$	D TEMPO, L-proline DMF/TFE, X (- Undivided cell, 2a	e, TBPA +)-X (-) Air, RT 3a	р ,Ph ,'
Entry	Anode	Cathode	Yield (%)	ee (%)
1	Pt	Pt	54	98
2	С	Pt	messy	
3	RVC	Pt	40	97
4	Ti	Pt	31	
5	Pt net	Pt	32	
6	Pt	С	messy	

[a] Reaction conditions: 2-phenylindole **1a** (0.2 mmol, 1.0 equiv), cyclohexanone **2a** (1.0 mmol, 5.0 equiv), L-proline (0.04 mmol, 0.2 equiv), TEMPO (0.02 mmol, 0.1 equiv) and TBPA (0.2 mmol, 1.0 equiv) in DMF/TFE = 3:1 (4.0 mL) under a constant current of 0.53 mA cm⁻² in an undivided cell at RT in air for 24 h. Yield refers to the isolated product after chromatography on silica gel. ee and d.r. were determined by HPLC analysis using a chiral column (IA). Diastereomeric ratio (d.r.) of 3a > 20:1.

Table S9. Effect of additives on the reaction ^a

	$ \begin{array}{c} & O \\ & N \\ & H \\ & H \\ & 1a \\ & 2a \\ \end{array} $	Additive TEMPO, L-proline, TBPA DMF/TFE, Pt (+)-Pt (-) Undivided cell, Air, RT	O N H 3a
Entry	Additive	Yield (%)	ee (%)
1	2,6-lutidine	59	93
2	NaCO ₃	messy	
3	H_2O	46	92
4	TFA	trace	

5	CH ₃ CO ₂ H	61	98
6	p-CH ₃ C ₆ H ₄ CO ₂ H	49	97
7	C ₆ H ₅ CO ₂ H	67	98
8	m-NO ₂ C ₆ H ₄ CO ₂ H	29	

[a] Reaction conditions: 2-phenylindole **1a** (0.2 mmol, 1.0 equiv), cyclohexanone **2a** (1.0 mmol, 5.0 equiv), L-proline (0.04 mmol, 0.2 equiv), TEMPO (0.02 mmol, 0.1 equiv), TBPA (0.2 mmol, 1.0 equiv) and additives (0.4 mmol, 2.0 equiv) in DMF/TFE = 3:1 (4.0 mL) under a constant current of 0.53 mA cm⁻² in an undivided cell at RT in air for 24 h. Yield refers to the isolated product after chromatography on silica gel. ee and d.r. were determined by HPLC analysis using a chiral column (IA). Diastereomeric ratio (d.r.) of 3a: > 20:1.

Table S10. Effect of PhCO₂H loading on the reaction ^a

	$ \begin{array}{c} $	PhCO ₂ H EMPO, L-proline, TBPA DMF/TFE, Pt (+)-Pt (-) Undivided cell, Air, RT	O N H 3a
Entry	PhCO ₂ H (x mol %)	Yield (%)	ee (%)
1	20	48 (47) ^b	98 (97) ^b
2	100	42	98
3	150	62	98
4	200	67 (53) ^c	97 (98) ^c
5	300	40	98

[a] Reaction conditions: 2-phenylindole **1a** (0.2 mmol, 1.0 equiv), cyclohexanone **2a** (1.0 mmol, 5.0 equiv), L-proline (0.04 mmol, 0.2 equiv), TEMPO (0.02 mmol, 0.1 equiv), TBPA (0.2 mmol, 1.0 equiv) and benzoic acid in DMF/TFE = 3:1 (4.0 mL) under a constant current of 0.53 mA cm⁻² in an undivided cell at RT in air for 24 h. Yield refers to the isolated product after chromatography on silica gel. ee and d.r. were determined by HPLC analysis using a chiral column (IA). Diastereomeric ratio (d.r.) of 3a: > 20:1. [b] j = 0.47 mA cm⁻², t = 32 h. [c] The proportion of L-proline was 10 mol %.

4. Mechanistic study and proposed mechanism for the reaction without TEMPO

4.1. Cyclic voltammetry

The electrochemical measurements were carried out by a computer-controlled electrochemical analyzer. Cyclic voltammetry was performed in a three-electrode cell [volume 12 mL; DMF (9 mL) and TFE (3 mL as solvent, $nBu_4N^+ClO_4^-$ 0.05 M as the supporting electrolyte], 1 mM concentration of TEMPO, 2 mM concentration of **1a**, **3a** and L-

proline, glassy carbon (diameter 3 mm) as the working electrode, Pt wire as the auxiliary electrode, and Ag/AgCl (saturated aqueous KCl) as the reference electrode. The scan speed was 1 mV·s⁻¹. The potential ranges investigated for oxidations were +0.4 to +1.6 V vs Ag/AgCl (saturated aqueous KCl) for **1a**, TEMPO, **3a** and L-proline. As shown **Figure S1**, the oxidation potentials of **1a**, TEMPO, **3a**, and L-proline were determined as: **1a** [E_{ox} = +1.02 V vs Ag/AgCl (saturated aqueous KCl)], TEMPO [E_{ox} = +0.78 V vs Ag/AgCl (saturated aqueous KCl)], **3a** [E_{ox} = +1.24 V vs Ag/AgCl (saturated aqueous KCl)] and L-proline had an irreversible broad peak at +1.14 V vs Ag/AgCl (saturated aqueous KCl), which could be a result of slow electrode kinetics and/or decomposition of the resultant amine radical cation.

Figure S1. Cyclic voltammograms recorded in DMF/TFE (9:3) with 0.05 M $nBu_4N^+ClO_4^-$ as the supporting electrolyte. **1a** (2 mM). TEMPO (1 mM). 3a (2 mM). L-proline (2 mM).

In order to determine the redox potential of **2a** and the enamine intermediate, the electrochemical measurements were carried out by a computer-controlled electrochemical analyzer. Cyclic voltammetry was performed in a three-electrode cell [volume 12 mL; DMF (9 mL) and TFE (3mL) as solvent, $nBu_4N^+ClO_4^-$ 0.05 M as the supporting electrolyte], 0.02 M concentration of **2a**, **2a** (0.02 M) + L-proline (0.02 M) and **2a** (0.02 M) + L-proline (0.02 M) + benzoic acid (0.02 M) with glassy carbon (diameter 3 mm) as the working electrode, Pt wire as the auxiliary electrode, and Ag/AgCl (saturated aqueous KCl) as the reference electrode. The scan speed was 1 mV·s⁻¹. The potential ranges investigated for oxidations were 0 to +2.0 V vs Ag/AgCl (saturated aqueous KCl) for **2a**, **2a**+L-proline, **2a**+L-proline,

proline+benzoic acid were determined as: neither 2a, 2a+L-proline, 2a+L-proline+benzoic acid have obvious oxidation peaks. These results ruled out the possibility that radicals generated by oxidation of 2a or enamine may be intermediates of the reaction.

Figure S2. Cyclic voltammograms recorded in DMF/TFE (9:3) with 0.05 M $nBu_4N^+ClO_4^-$ as the supporting electrolyte. **2a** (0.02 M), **2a**+L-proline (0.02 M), **2a**+L-proline+benzoic acid (0.02 M).

4.2. The radical-trapping experiments

Scheme S1. Possible mechanism for the reaction without TEMPO.

A plausible mechanism without TEMPO is shown in Scheme S1. The 2-arylindole 1 is

oxidized directly to the radical cation **A** at the anode (Cyclic voltammetry experiments indicate: **1a** [Eox = +1.02 V vs Ag/AgCl], **3a** [Eox = +1.24 V vs Ag/AgCl], and L-proline has an irreversible broad peak at +1.14 V vs Ag/AgCl, **Figure S1**). The radical cation **A** deprotonates to produce radical **B**, and its resonance is C⁴. The addition of the radical C to O₂ produces the radical **D**. Hydrogen transfer between radical **D** and **1** to form intermediate **E**, which loses one molecule of water to produce the key intermediate **F**⁵. In the organic catalytic cycle, the electron-rich enamine (**I**)⁶, achieved by condensation of ketone **2** and L-proline, undergoes a nucleophilic addition to electrophile **F** to afford intermediate **II**. The hydrolysis of **II** regenerates L-proline and forms product **3**.

5. Crystallographic data

X-ray crystal structure analysis of 3a.

Crystallographic data (excluding structure factors) for the structures reported in this work have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. **CCDC 1916014**. Copy of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge DB21EZ, UK (fax:+ 44 (1223) 336033; e-mail: deposit@ccdc.cam.ac.uk).

3a

Table 1 Crystal data and stru	cture refinement for o
Identification code	ov_gz0325
Empirical formula	$C_{60}H_{57}N_3O_6$
Formula weight	916.08
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	9.94998(9)
b/Å	15.87830(14)
c/Å	31.7019(3)
α/°	90
β/°	90
γ/°	90
Volume/ų	5008.55(7)
Z	4
$\rho_{calc}g/cm^3$	1.215
µ/mm ⁻¹	0.621
F(000)	1944.0
Crystal size/mm ³	$0.2 \times 0.2 \times 0.2$

Table 1	Crystal	data and	l structure	refinement for	ov	_gz0325.
---------	---------	----------	-------------	----------------	----	----------

Radiati	on			CuKα (λ = 1.54184)		
20 collect	range ion/°	for	data	7.882 to 143.646		
Index r	anges			$-12 \le h \le 10, -18 \le k \le 19, -33 \le l \le 38$		
Reflections collected				21015		
Independent reflections				9026 [R _{int} = 0.0209, R _{sigma} = 0.0219]		
Data/restraints/parameters			ers	9026/0/622		
Goodn	ess-of-fit c	on F ²		1.052		
Final R	indexes [l	>=2ơ (I)]	$R_1 = 0.0380$, $wR_2 = 0.0969$		
Final R	indexes [a	ll data]		$R_1 = 0.0410$, $wR_2 = 0.0996$		
Largest	t diff. peak	/hole /	e Å⁻³	0.30/-0.23		
Flack p	arameter			0.06(7)		

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for ov_gz0325. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{ll}tensor.

Ato m	x	у	Z	U(eq)
01	-696(2)	-5450.8(12)	-397.3(5)	63.4(5)
02	-3703(3)	-4573.4(19)	-302.6(7)	91.8(8)
N1	-2178(2)	-3917.6(12)	-1052.5(6)	52.9(5)
C1	-1551(3)	-3443.3(16)	-751.4(8)	56.6(6)
C2	-1570(4)	-2567.8(18)	-701.3(10)	77.7(9)
C3	-811(6)	-2228(2)	-382.2(13)	106.5(15)
C4	-31(5)	-2716(2)	-111.2(12)	107.1(15)
C5	-30(4)	-3575(2)	-152.1(10)	85.1(10)
C 6	-811(3)	-3936.7(17)	-472.8(8)	59.6(7)
C7	-1083(3)	-4809.1(15)	-571.9(7)	50.5(5)
C8	-1936(3)	-4815.0(14)	-982.3(7)	45.9(5)
C9	-1006(3)	-5190.0(15)	-1313.6(7)	47.4(5)
C10	-184(3)	-4689.8(18)	-1561.4(8)	59.5(6)
C11	728(3)	-5047(2)	-1840.4(10)	74.4(8)
C12	839(3)	-5906(2)	-1875.4(10)	71.8(8)
C13	42(3)	-6409.4(19)	-1628.0(9)	65.0(7)
C14	-866(3)	-6060.9(16)	-1350.0(8)	57.1(6)
C15	-3271(3)	-5308.7(16)	-942.2(7)	51.6(6)
C16	-4156(3)	-4986(2)	-589.6(8)	65.5(7)
C17	-5609(4)	-5259(3)	-597.5(12)	96.0(12)
C18	-6229(4)	-5212(3)	-1028.8(12)	90.1(11)

C19	-5416(3)	-5720(2)	-1338.3(11)	77.3(9)
C20	-4006(3)	-5361.9(18)	-1369.7(8)	60.2(6)
03	-3280.4(18)	-7687.8(10)	-905.1(6)	56.4(4)
04	-5384.1(19)	-8510.2(13)	-1504.5(5)	58.9(5)
N2	-5150.6(17)	-8790.8(10)	-405.4(5)	34.5(3)
C21	-6186(2)	-8222.6(12)	-443.2(6)	37.1(4)
C22	-6940(2)	-7865.2(15)	-119.8(8)	49.5(5)
C23	-7931(3)	-7292.7(17)	-231.6(9)	60.6(7)
C24	-8175(3)	-7069.1(16)	-647.1(10)	59.6(6)
C25	-7434(2)	-7424.4(15)	-967.7(8)	51.5(5)
C26	-6451(2)	-8013.2(13)	-863.1(7)	39.7(4)
C27	-5556(2)	-8517.4(14)	-1123.5(6)	39.5(4)
C28	-4859(2)	-9146.0(12)	-821.5(6)	35.6(4)
C29	-5589(2)	-9991.2(14)	-883.2(6)	42.6(5)
C30	-6679(3)	-10204.2(16)	-633.5(8)	56.0(6)
C31	-7366(4)	-10955(2)	-686.3(11)	79.4(9)
C32	-6972(5)	-11497(2)	-995.6(15)	104.0(14)
C33	-5907(5)	-11297(3)	-1246.4(16)	120.5(19)
C34	-5230(4)	-10543(2)	-1199.8(11)	81.3(10)
C35	-3336(2)	-9202.9(13)	-902.8(6)	39.2(4)
C36	-2609(2)	-9781.1(15)	-587.8(8)	50.6(5)
C37	-1095(3)	-9814.7(16)	-666.6(10)	58.9(6)
C38	-475(3)	-8953.3(18)	-651.5(11)	67.9(7)
C39	-1152(3)	-8364.0(18)	-966.6(10)	65.4(7)
C40	-2664(2)	-8343.9(14)	-918.7(7)	43.8(5)
05	-5578.7(17)	-8289.0(11)	-3414.7(5)	49.0(4)
06	-5304.8(18)	-9558.0(12)	-2640.1(6)	61.8(5)
N3	-5258.6(18)	-7734.6(13)	-2340.4(6)	46.3(4)
C41	-3959(2)	-7756.2(15)	-2477.5(7)	47.0(5)
C42	-2797(3)	-7595(2)	-2245.3(11)	71.8(8)
C43	-1592(3)	-7613(3)	-2459.0(15)	96.0(13)
C44	-1504(3)	-7798(2)	-2885.5(15)	89.3(12)
C45	-2639(3)	-7963.7(18)	-3113.4(11)	62.5(7)
C46	-3869(2)	-7934.8(14)	-2908.1(7)	44.9(5)
C47	-5217(2)	-8097.1(13)	-3060.4(6)	38.0(4)
C48	-6181.6(19)	-7896.9(13)	-2688.6(6)	37.0(4)
C50	-7934(2)	-7107.2(16)	-3123.3(8)	48.1(5)
C51	-8542(3)	-6371.5(17)	-3259.1(9)	57.8(6)
C52	-8137(3)	-5607.8(17)	-3106.6(9)	56.3(6)
C53	-7101(3)	-5569.1(16)	-2820.8(9)	56.8(6)

C54	-6494(2)	-6297.9(15)	-2678.1(7)	47.6(5)
C55	-6906(2)	-7080.7(14)	-2824.8(6)	38.3(4)
C56	-7162(2)	-8617.6(14)	-2590.0(7)	41.9(5)
C57	-8066(2)	-8418.0(18)	-2210.1(8)	55.4(6)
C58	-8987(3)	-9153(2)	-2102.0(11)	72.4(8)
C59	-8174(4)	-9933(2)	-2007.0(13)	90.7(11)
C60	-7322(4)	-10176.4(19)	-2390.9(14)	84.8(10)
C61	-6455(2)	-9459.8(16)	-2542.4(8)	50.2(5)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for ov_gz0325. The Anisotropic displacement factor exponent takes the form: -2 π ²[$h^2a^{*2}U_{11}$ +2 $hka^*b^*U_{12}$ +···].

Ato m	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	90.2(14)	55.3(10)	44.8(8)	14.4(8)	-15.6(9)	3.8(10)
02	86.8(16)	125(2)	64.1(12)	-24.5(13)	9.0(12)	-19.0(15)
N1	68.0(13)	41.1(10)	49.7(10)	8.7(8)	-17.8(10)	0.1(10)
C1	71.6(16)	46.6(12)	51.6(12)	6.9(10)	-7.7(12)	-6.9(12)
C2	117(3)	45.6(14)	70.6(17)	6.6(12)	-13.9(18)	-6.2(16)
C3	175(5)	48.7(17)	96(2)	-1.2(17)	-27(3)	-27(2)
C4	161(4)	75(2)	85(2)	0.7(18)	-47(3)	-43(3)
C5	112(3)	74(2)	69.6(18)	9.3(15)	-39.7(19)	-26(2)
C6	74.9(18)	53.2(14)	50.5(13)	7.7(11)	-17.2(13)	-12.7(13)
C7	61.8(14)	49.8(12)	39.9(10)	10.5(9)	-8.7(10)	-4.1(12)
C8	56.5(13)	41.2(11)	40(1)	8.4(9)	-8.7(10)	-3.8(10)
C9	54.1(13)	49.6(12)	38.4(10)	7.9(9)	-10.2(10)	-4.8(11)
C10	66.3(16)	53.8(14)	58.5(14)	13.0(11)	-1.9(13)	-8.8(13)
C11	70.2(19)	85(2)	68.3(17)	14.5(16)	14.9(15)	-10.8(16)
C12	68.5(18)	84(2)	62.6(16)	-1.8(15)	6.1(14)	8.5(16)
C13	74.1(18)	61.0(16)	59.9(14)	-1.2(12)	-2.0(14)	6.7(15)
C14	68.2(16)	50.0(13)	53.1(13)	8.6(11)	-1.8(12)	-2.2(12)
C15	59.5(14)	47.0(12)	48.4(12)	9.1(10)	-4.8(11)	-8.3(11)
C16	69.5(17)	77.8(18)	49.2(13)	6.1(13)	0.7(13)	-10.4(15)
C17	72(2)	137(3)	80(2)	-1(2)	13.7(17)	-22(2)
C18	61.4(18)	113(3)	96(2)	7(2)	-2.4(18)	-14(2)
C19	69.0(19)	86(2)	77.0(19)	4.2(17)	-15.2(16)	-25.2(17)
C20	65.8(16)	62.1(15)	52.7(13)	4.0(11)	-11.2(12)	-14.1(14)
03	51.5(9)	41.7(8)	76.1(11)	10.9(8)	4.3(9)	0.9(8)
04	62.2(10)	83.5(12)	31.0(7)	7.9(8)	0.7(7)	6.8(10)
N2	39.9(9)	37.1(8)	26.4(7)	-1.7(6)	-0.4(6)	-0.5(7)
C21	36.4(10)	35.3(9)	39.7(9)	-4.2(8)	2.0(8)	-5.4(8)
C22	53.3(13)	48.9(12)	46.4(11)	-12.4(10)	6.4(10)	-0.4(11)

C23	51.2(14)	56.2(14)	74.6(17)	-21.1(13)	8.2(13)	5.9(12)
C24	41.9(12)	46.8(12)	90.2(19)	-6.2(13)	-4.7(13)	6.3(11)
C25	42.5(12)	48.2(12)	63.6(14)	5.5(11)	-7.5(11)	-0.9(10)
C26	35.1(10)	41.5(11)	42.5(10)	0.8(8)	-2.0(8)	-2.3(8)
C27	37.5(10)	49.0(11)	31.9(9)	1.9(8)	-1.0(8)	-4.1(9)
C28	39.9(10)	38(1)	28.9(8)	-1.4(7)	1.8(8)	-0.1(8)
C29	45.8(11)	42.3(11)	39.8(10)	-6.7(9)	0.0(9)	-3.7(9)
C30	59.3(14)	52.7(13)	56.0(13)	-12.2(11)	10.3(11)	-15.3(12)
C31	82(2)	70.8(18)	85(2)	-18.1(16)	17.6(18)	-32.8(17)
C32	108(3)	68(2)	136(3)	-44(2)	28(3)	-42(2)
C33	110(3)	92(3)	160(4)	-87(3)	45(3)	-34(3)
C34	75(2)	79(2)	90(2)	-47.7(18)	29.6(17)	-24.3(17)
C35	39.5(10)	41.5(10)	36.5(9)	-2.1(8)	4.4(8)	0.3(9)
C36	46.5(12)	43.1(11)	62.3(13)	8.8(10)	0.1(11)	2.7(10)
C37	45.7(13)	53.0(14)	78.0(17)	3.8(13)	-0.2(12)	11.1(11)
C38	40.8(13)	64.7(16)	98(2)	7.1(16)	-7.7(14)	1.2(12)
C39	43.4(13)	57.9(15)	95(2)	17.1(14)	7.8(14)	-3.9(12)
C40	43.6(11)	45.7(12)	42.1(10)	8.7(9)	3.5(9)	-1.6(9)
05	52.1(9)	55.4(9)	39.4(7)	-0.5(7)	-2.5(7)	0.0(7)
06	50.1(10)	58.9(11)	76.4(12)	15.6(9)	7.4(9)	8.0(8)
N3	39.5(9)	64.0(12)	35.3(8)	2.8(8)	-6.6(7)	-4.2(9)
C41	38.4(11)	48.4(12)	54.3(12)	6.4(10)	-12.1(10)	0.3(10)
C42	50.8(15)	77.5(19)	87(2)	-9.9(16)	-31.2(15)	4.4(14)
C43	36.4(14)	98(3)	154(4)	-30(3)	-31.7(19)	6.9(15)
C44	31.5(13)	88(2)	149(4)	-9(2)	9.1(17)	1.7(14)
C45	39.0(12)	61.6(15)	87.1(19)	7.3(14)	12.5(12)	3.6(11)
C46	34.7(10)	45.9(11)	54.0(12)	9.1(10)	-1.7(9)	0.5(9)
C47	37.2(10)	37.5(10)	39.4(10)	7.7(8)	-1.3(8)	1.1(8)
C48	31.2(9)	44.7(10)	35.1(9)	3.2(8)	-4.1(8)	-3.3(8)
C50	39.8(11)	49.7(12)	54.9(12)	0.1(10)	-6.9(10)	1.7(10)
C51	46.4(13)	60.4(15)	66.5(15)	8.8(12)	-9.8(11)	9.2(12)
C52	49.7(13)	51.5(13)	67.7(15)	12.1(12)	11.4(12)	13.4(11)
C53	58.3(15)	45.5(12)	66.5(15)	-1.3(11)	11.0(12)	-3.6(11)
C54	41.8(11)	50.1(12)	50.9(12)	-3(1)	-0.6(10)	-3.7(10)
C55	30.7(9)	45.3(10)	38.8(9)	1.4(8)	2.7(8)	-1.5(9)
C56	33.3(10)	47.7(11)	44.6(10)	5.8(9)	-2.0(8)	-3.2(9)
C57	40.4(12)	67.3(15)	58.6(13)	5.7(12)	8.9(10)	-6.7(12)
C58	50.4(15)	82(2)	84(2)	14.0(16)	21.1(14)	-12.7(15)
C59	70(2)	86(2)	116(3)	45(2)	23(2)	-8.6(18)
C60	71.0(19)	52.6(16)	131(3)	26.1(18)	19(2)	-3.9(15)

Table 4 Bo	ond Length	s for ov	gz0325.
------------	------------	----------	---------

Table	Table 4 Bond Lengths for ov_gz0325.					
Ato	Ato	l on ath / Å	Ato	Ato	l on ath /Å	
m	m	Length/A	m	m	Length/A	
01	C7	1.222(3)	C28	C35	1.539(3)	
02	C16	1.208(4)	C29	C30	1.385(3)	
N1	C1	1.367(3)	C29	C34	1.379(3)	
N1	C8	1.462(3)	C30	C31	1.385(4)	
C1	C2	1.399(4)	C31	C32	1.361(5)	
C1	C 6	1.391(4)	C32	C33	1.362(6)	
C2	C3	1.373(5)	C33	C34	1.381(5)	
C3	C4	1.392(6)	C35	C36	1.538(3)	
C4	C5	1.371(5)	C35	C40	1.520(3)	
C5	C6	1.402(4)	C36	C37	1.528(3)	
C6	C7	1.446(3)	C37	C38	1.501(4)	
C7	C8	1.554(3)	C38	C39	1.525(4)	
C8	C9	1.521(4)	C39	C40	1.513(3)	
C8	C15	1.547(3)	05	C47	1.218(3)	
C9	C10	1.385(4)	06	C61	1.196(3)	
C9	C14	1.395(3)	N3	C41	1.365(3)	
C10	C11	1.388(4)	N3	C48	1.459(3)	
C11	C12	1.373(5)	C41	C42	1.394(3)	
C12	C13	1.373(5)	C41	C46	1.397(3)	
C13	C14	1.378(4)	C42	C43	1.377(5)	
C15	C16	1.512(4)	C43	C44	1.386(6)	
C15	C20	1.543(3)	C44	C45	1.367(5)	
C16	C17	1.510(5)	C45	C46	1.387(3)	
C17	C18	1.502(5)	C46	C47	1.449(3)	
C18	C19	1.506(5)	C47	C48	1.553(3)	
C19	C20	1.517(4)	C48	C55	1.544(3)	
03	C40	1.210(3)	C48	C56	1.536(3)	
04	C27	1.220(2)	C50	C51	1.384(3)	
N2	C21	1.375(3)	C50	C55	1.394(3)	
N2	C28	1.464(2)	C51	C52	1.366(4)	
C21	C22	1.391(3)	C52	C53	1.373(4)	
C21	C26	1.397(3)	C53	C54	1.382(4)	
C22	C23	1.387(4)	C54	C55	1.389(3)	
C23	C24	1.386(4)	C56	C57	1.536(3)	
C24	C25	1.377(4)	C56	C61	1.519(3)	

C25	C26	1.393(3)	C57	C58	1.523(4)
C26	C27	1.454(3)	C58	C59	1.510(5)
C27	C28	1.547(3)	C59	C60	1.533(5)
C28	C29	1.539(3)	C60	C61	1.507(4)

Table 5 Bond Angles for ov_gz0325.

Ato	Ato	Ato	Angle /°	Ato	Ato	Ato	Angle/°
m	m	m	Aligie/	m	m	m	Angle/
C1	N1	C8	110.84(19)	C35	C28	C27	112.05(16)
N1	C1	C2	128.4(3)	C30	C29	C28	120.67(19)
N1	C1	C6	112.0(2)	C34	C29	C28	121.6(2)
C6	C1	C2	119.6(3)	C34	C29	C30	117.6(2)
C3	C2	C1	117.8(3)	C31	C30	C29	121.8(2)
C2	C3	C4	122.9(3)	C32	C31	C30	119.3(3)
C5	C4	C3	119.7(3)	C31	C32	C33	119.8(3)
C4	C5	C6	118.4(3)	C32	C33	C34	121.2(3)
C1	C6	C5	121.5(3)	C29	C34	C33	120.1(3)
C1	C6	C7	107.6(2)	C36	C35	C28	112.93(17)
C5	C6	C7	130.8(3)	C40	C35	C28	112.71(18)
01	C7	C6	129.9(2)	C40	C35	C36	110.49(18)
01	C7	C8	123.1(2)	C37	C36	C35	112.3(2)
C6	C7	C8	106.87(19)	C38	C37	C36	111.6(2)
N1	C8	C7	102.20(17)	C37	C38	C39	110.9(2)
N1	C8	C9	112.10(19)	C40	C39	C38	112.7(2)
N1	C8	C15	111.4(2)	03	C40	C35	123.3(2)
C9	C8	C7	104.4(2)	03	C40	C39	121.7(2)
C9	C8	C15	112.37(19)	C39	C40	C35	115.0(2)
C15	C8	C7	113.79(18)	C41	N3	C48	110.57(17)
C10	C9	C8	121.8(2)	N3	C41	C42	127.8(2)
C10	C9	C14	117.5(3)	N3	C41	C46	112.13(19)
C14	C9	C8	120.4(2)	C42	C41	C46	120.0(2)
C9	C10	C11	120.9(3)	C43	C42	C41	117.3(3)
C12	C11	C10	120.7(3)	C42	C43	C44	122.7(3)
C13	C12	C11	119.1(3)	C45	C44	C43	120.2(3)
C12	C13	C14	120.7(3)	C44	C45	C46	118.4(3)
C13	C14	C9	121.1(3)	C41	C46	C47	107.61(19)
C16	C15	C8	112.9(2)	C45	C46	C41	121.5(2)
C16	C15	C20	113.1(2)	C45	C46	C47	130.9(2)
C20	C15	C8	111.25(19)	05	C47	C46	128.7(2)
02	C16	C15	121.6(3)	05	C47	C48	124.65(19)

02	C16	C17	121.7(3)	C46	C47	C48	106.42(17)
C17	C16	C15	116.6(3)	N3	C48	C47	102.79(16)
C18	C17	C16	113.2(3)	N3	C48	C55	110.91(18)
C17	C18	C19	110.2(3)	N3	C48	C56	112.19(17)
C18	C19	C20	109.8(3)	C55	C48	C47	104.34(15)
C19	C20	C15	113.7(2)	C56	C48	C47	113.24(17)
C21	N2	C28	108.85(15)	C56	C48	C55	112.69(16)
N2	C21	C22	127.4(2)	C51	C50	C55	120.4(2)
N2	C21	C26	112.35(17)	C52	C51	C50	120.6(2)
C22	C21	C26	120.2(2)	C51	C52	C53	119.6(2)
C23	C22	C21	117.5(2)	C52	C53	C54	120.4(2)
C24	C23	C22	122.3(2)	C53	C54	C55	120.7(2)
C25	C24	C23	120.2(2)	C50	C55	C48	120.45(19)
C24	C25	C26	118.4(2)	C54	C55	C48	121.32(18)
C21	C26	C27	107.13(18)	C54	C55	C50	118.1(2)
C25	C26	C21	121.2(2)	C57	C56	C48	112.17(19)
C25	C26	C27	131.6(2)	C61	C56	C48	112.44(17)
04	C27	C26	130.0(2)	C61	C56	C57	112.02(19)
04	C27	C28	123.8(2)	C58	C57	C56	111.7(2)
C26	C27	C28	106.16(16)	C59	C58	C57	110.6(2)
N2	C28	C27	102.72(16)	C58	C59	C60	110.2(3)
N2	C28	C29	110.92(16)	C61	C60	C59	112.3(3)
N2	C28	C35	111.64(17)	06	C61	C56	122.2(2)
C29	C28	C27	105.79(17)	06	C61	C60	122.1(2)
C29	C28	C35	113.09(17)	C60	C61	C56	115.6(2)

Table 6 Hydrogen Atom Coordinates (Å \times 10⁴) and Isotropic Displacement Parameters (Å 2 \times 10³) for ov_gz0325.

Ato m	x	у	Z	U(eq)
H1	-2650.6	-3715.53	-1255.79	63
H2	-2079.68	-2227.21	-878.38	93
H3	-818.2	-1647.1	-345.34	128
H4	486.15	-2459.19	96.57	128
H5	476.21	-3910.52	28.54	102
H10	-243.59	-4106.71	-1540.65	71
H11	1269.08	-4700.69	-2005.22	89
H12	1446.43	-6143.13	-2064.09	86
H13	114.7	-6991.86	-1648.32	78
H14	-1393.01	-6412.39	-1183.66	69
H15	-3025.85	-5887.1	-866.51	62

H17A -5669.57	-5833.49	-495.5	115
H17B -6119.16	-4904.51	-406.6	115
H18A -6265.71	-4629.79	-1120.48	108
H18B -7140.21	-5427.77	-1018.29	108
H19A -5842.91	-5705.28	-1613.2	93
H19B -5373.77	-6301.98	-1246.19	93
H20A -4055.23	-4802.07	-1491.24	72
H20B -3482.9	-5710.83	-1559.81	72
H2A -4741.24	-8916.92	-175.02	41
H22 -6785.62	-8004.92	160.88	59
H23 -8451.02	-7050.42	-20.13	73
H24 -8840.95	-6677.67	-709.61	72
H25 -7585.69	-7275.01	-1247.33	62
H30 -6957.66	-9832.34	-424.35	67
H31 -8087.67	-11088.47	-512.47	95
H32 -7429.13	-12001.24	-1035.47	125
H33 -5630.8	-11674.84	-1452.98	145
H34 -4531.18	-10407.17	-1382.25	98
H35 -3223.57	-9456.39	-1182.43	47
H36A -2771.33	-9579.75	-303.47	61
H36B -2976.36	-10345.28	-609.32	61
H37A -676.26	-10169.61	-455.08	71
Н37В -927.23	-10064.53	-940.87	71
H38A 476	-8994.09	-716.09	82
H38B -564.67	-8724.22	-369.23	82
H39A -800.45	-7799.26	-928.41	78
H39B -929.27	-8543.97	-1250.52	78
H3A -5500.02	-7638.67	-2084.43	56
H42 -2833.98	-7479.68	-1957.93	86
H43 -806.34	-7497.63	-2311.17	115
H44 -668.46	-7808.42	-3017.08	107
H45 -2588.43	-8092.92	-3399.09	75
H50 -8212.31	-7622.49	-3231.87	58
H51 -9233.57	-6397.38	-3456.07	69
H52 -8559.8	-5116.86	-3195.84	68
H53 -6806.89	-5048.89	-2722.72	68
H54 -5801.84	-6263.94	-2481.71	57
H56 -7757.68	-8669.3	-2834.94	50
H57A -7507.4	-8287.73	-1967.81	67
H57B -8606.14	-7925.3	-2272.83	67

H58A -9532	-9008.56	-1858.81	87
H58B -9585.45	-9262.6	-2337.26	87
H59A -8773.54	-10393.53	-1935.49	109
H59B -7593.18	-9829.12	-1766.98	109
H60A -6752.83	-10650.13	-2317.44	102
H60B -7911.26	-10353.08	-2618.02	102

Experimental

Single crystals of $C_{60}H_{57}N_3O_6$ [ov_gz0325] were []. A suitable crystal was selected and [] on a diffractometer. The crystal was kept at 293(2) K during data collection. Using Olex2 [1], the structure was solved with the SIR2004 [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D., Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [ov_gz0325]

Crystal Data for C₆₀H₅₇N₃O₆ (*M* =916.08 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), *a* = 9.94998(9) Å, *b* = 15.87830(14) Å, *c* = 31.7019(3) Å, *V* = 5008.55(7) Å³, *Z* = 4, *T* = 293(2) K, μ (CuK α) = 0.621 mm⁻¹, *Dcalc* = 1.215 g/cm³, 21015 reflections measured (7.882° $\leq 2 \Theta \leq$ 143.646°), 9026 unique (*R*_{int} = 0.0209, R_{sigma} = 0.0219) which were used in all calculations. The final *R*₁ was 0.0380 (I > 2 σ (I)) and *wR*₂ was 0.0996 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups, All C(H,H) groups, All N(H) groups

2.a Ternary CH refined with riding coordinates:

C15(H15), C35(H35), C56(H56)

2.b Secondary CH2 refined with riding coordinates:

C17(H17A,H17B), C18(H18A,H18B), C19(H19A,H19B), C20(H20A,H20B), C36(H36A,

H36B), C37(H37A,H37B), C38(H38A,H38B), C39(H39A,H39B), C57(H57A,H57B),

C58(H58A,H58B), C59(H59A,H59B), C60(H60A,H60B)

2.c Aromatic/amide H refined with riding coordinates:

N1(H1), C2(H2), C3(H3), C4(H4), C5(H5), C10(H10), C11(H11), C12(H12),

C13(H13), C14(H14), N2(H2A), C22(H22), C23(H23), C24(H24), C25(H25), C30(H30),

C31(H31), C32(H32), C33(H33), C34(H34), N3(H3A), C42(H42), C43(H43), C44(H44),

C45(H45), C50(H50), C51(H51), C52(H52), C53(H53), C54(H54)

X-ray crystal structure analysis of 4e

Crystallographic data (excluding structure factors) for the structures reported in this work

have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. **CCDC 1921830**. Copy of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge DB21EZ, UK (fax:+ 44 (1223) 336033; e-mail: deposit@ccdc.cam.ac.uk).

Table 1 Crystal data and structure refinement for gz190604_lfy. Identification code gz190604_lfy Empirical formula C20H17.27CINO2 Formula weight 339.07 Temperature/K 278(30) Crystal system orthorhombic Space group P212121 a/Å 10.00050(10) b/Å 15.08900(10) c/Å 23.6172(2) α **/° 90** β **/° 90** γ /° 90 Volume/Å3 3563.78(5) Ζ 8 ρ calcg/cm3 1.264 µ/mm-11.982

F(000) 1418.0 Crystal size/mm3 $0.2 \times 0.05 \times 0.05$ Radiation CuK α (λ = 1.54184) 20 range for data collection/° 6.952 to 143.762 Index ranges $\ \ \text{-12} \leqslant h \leqslant \text{11}, \text{-18} \leqslant k \leqslant \text{18}, \text{-18} \leqslant \textbf{|} \leqslant \text{28}$ Reflections collected 40048 Independent reflections 6958 [Rint = 0.0395, Rsigma = 0.0218] Data/restraints/parameters 6958/66/467 Goodness-of-fit on F2 1.050 Final R indexes $[I \ge 2\sigma (I)]$ R1 = 0.0376, wR2 = 0.1011 Final R indexes [all data] R1 = 0.0395, wR2 = 0.1034 Largest diff. peak/hole / e Å-3 0.21/-0.25 Flack parameter 0.005(5)

Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for gz190604_lfy. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

Ator	n x	У	Z	U(eq)			
Cl2	11276.4(8)	564	7.3(7)	6639	.3(4)	81.7	(3)
Cl1	8207.9(1	3)	835	1.4(6)	8659	.6(6)	107.	9(4)
01	7221(2)	4607	7.9(1	3)	8922	2.7(7)	59.5	(5)
04	5576.1(1	9)	5103	3.7(17	7)	6382	.7(7)	63.3(6)
N2	6982(2)	4872	2.5(1	4)	5028	8.7(7)	43.4	(4)
N1	6304(2)	5141	L.4(1	4)	7533	.0(7)	47.5	(5)
03	6274(3)	3360).4(1	6)	5771	8(11	L)	79.3(7)
02	8983(2)	4437	7.7(1	7)	7843	8.6(12	2)	78.6(7)
C21	8084(2)	5032	2.4(1	5)	5356	5.7(9)	41.2	(5)
C29	5122(2)	5939	9.5(1	6)	5224	.3(10))	42.2(5)
C8	6227(2)	4486	5.1(1	5)	7981	.2(8)	38.9	(5)
C26	7750(3)	5159	9.3(1	7)	5926	5.0(9)	45.0	(5)
C1	6709(2)	5934	4.4(1	7)	7736	5.1(10))	45.8(5)
C7	6931(2)	4966	5.3(1	6)	8477	'.8(9)	42.7	(5)
C27	6297(3)	5089	9.3(1	9)	5967	'.1(9)	46.3	(5)
C28	5765(2)	5036	5.3(1	7)	5352	.5(8)	40.2	(5)
C9	4777(2)	4321	L.0(1	8)	8172	.5(9)	45.5	(5)
C22	9425(3)	5073	8.4(1	8)	5187	'.4(11	L)	50.7(6)
C6	7097(3)	5880).4(1	6)	8303	8.6(10))	45.9(5)
C25	8721(3)	5330).4(1	9)	6332	.8(11	L)	52.1(6)
C15	6941(3)	3617	7.9(1	6)	7823	3.2(10))	44.2(5)
C2	6806(3)	6747	7.4(1	9)	7446	5.1(13	3)	59.1(7)
C10	3707(3)	4745	5(2)	7916	5.7(14	1)	59.8	(7)
C35	4737(3)	4286	5.1(1	7)	5275	5.1(11	L)	48.8(6)
C16	8434(3)	3742	2(2)	7748	3.1(12	2)	57.5	(6)

```
C30 5497(3) 6455.5(19)
                         4768.4(13)
                                       55.6(6)
C24 10023(3) 5385.5(18)
                          6154.7(13)
                                       55.0(6)
C20 6357(3) 3167(2) 7296.0(12)
                                  60.1(7)
C40 5298(3) 3402(2) 5469.9(15)
                                  63.9(7)
C23 10374(3) 5254.9(19)
                          5592.4(13)
                                       55.9(6)
C4 7645(3) 7399(2) 8311.8(16)
                                  67.6(8)
C5 7578(3) 6614.5(19)
                          8596.5(13)
                                       57.8(6)
C3 7263(3) 7467(2) 7745.0(17)
                                  69.8(9)
C34 4082(3) 6243(2) 5568.0(13)
                                  59.9(7)
C33 3454(3) 7039(2) 5454.3(18)
                                  76.7(9)
C14 4515(3) 3748(3) 8621.7(13)
                                  70.2(8)
C32 3840(4) 7541(2) 4996(2) 84.5(11)
C36 4177(4) 4267(3) 4667.4(16)
                                  77.7(9)
C11 2404(3) 4601(3) 8102.0(18)
                                  79(1)
C31 4858(4) 7250(2) 4659.4(18)
                                  78.3(10)
C12 2165(4) 4046(3) 8545.0(18)
                                  87.3(12)
C13 3207(4) 3617(3) 8803.1(16)
                                  92.3(13)
C17 9179(4) 2932(3) 7563(2) 98.1(14)
C39 4474(13) 2575(8) 5200(6) 76(2)
C19 7074(4) 2309(2) 7158.0(17)
                                  81.5(10)
C38 4014(11) 2682(7) 4588(5) 81.2(18)
C37 3287(15) 3522(8) 4502(5) 83.1(18)
C18 8543(5) 2480(3) 7056(2) 105.1(15)
COAA
        3276(18) 3379(10) 4661(6) 81.2(17)
C1AA
        4114(13) 2530(7) 4827(7) 78.2(19)
C0 4631(15) 2611(10) 5412(6) 74(2)
```

```
Table 3 Anisotropic Displacement Parameters (Å2×103) for gz190604_lfy. The Anisotropic
displacement factor exponent takes the form: -2\pi 2[h2a*2U11+2hka*b*U12+...].
Atom
         U11 U22 U33 U23 U13 U12
Cl2 56.5(4) 98.8(6) 89.9(6) -13.5(5) -24.6(4) -0.5(4)
Cl1 115.2(8) 54.8(4) 153.7(10)-32.6(5) 20.2(7) -20.3(5)
01 80.7(13) 65.2(11) 32.6(8) 2.3(7)
                                        -18.0(8) -5.5(10)
O4 49.7(10) 111.0(17) 29.2(7) 4.6(9)
                                        3.0(7)
                                                 8.6(11)
N2 45.5(11) 55.1(11) 29.6(8)
                               1.3(7)
                                        4.5(8)
                                                 1.4(9)
N1 58.3(12) 56.3(12) 27.9(8) 6.5(8)
                                        -7.6(8)
                                                 -7(1)
03 81.0(16) 67.5(14) 89.4(16) 25.0(12) 3.3(14)
                                                11.7(13)
02 44.9(11) 77.4(15) 113.6(19)-17.3(14) -1.6(11) -5.5(11)
C21 42.6(12) 39.6(11) 41.5(11) 4.2(9)
                                        2.4(9)
                                                 3.4(9)
C29 37.9(11) 48.5(12) 40.2(11) -2.1(9)
                                        -8.0(9)
                                                 -2.8(9)
C8 42.3(11) 47.7(12) 26.7(9) 1.4(8)
                                        -3.3(8)
                                                 -3(1)
C26 45.3(12) 52.0(13) 37.8(11) 4.1(9)
                                        -1.1(9)
                                                 5.4(10)
C1 40.6(12) 50.6(13) 46.1(12) 6.7(10) 3.6(10)
                                                3(1)
```

C7 46.3(12) 52.2(12) 29.5(10) -3.3(9) -2.0(9) -1.9(10) C27 45.6(12) 62.9(15) 30.3(10) 5.1(9) -0.3(9) 5.8(12) C28 39.8(11) 51.6(13) 29(1) 3.3(9) 1.3(8) -0.1(10)C9 45.0(13) 53.9(13) 37.6(11) -6(1)2.2(9) -2.8(11)C22 47.9(14) 53.2(14) 51.2(13) 3.1(11) 9.7(11) 4.1(11)C6 46.8(13) 48.5(13) 42.5(12) -3.7(10) 1.6(10) -0.3(10) C25 50.8(13) 63.2(15) 42.3(12) 0.9(11) -6.9(10) 9.7(12) C15 45.2(12) 48.1(12) 39.2(11) -0.8(9) 0.0(9) -2.8(11)C2 54.9(16) 57.7(15) 64.6(16) 18.7(13) 7.7(13) 5.5(13) C10 47.2(14) 59.4(16) 72.8(17) -4.4(13) -2.8(13) 3.8(13) C35 48.0(13) 51.6(14) 46.9(12) 3.1(10) 7.3(11) -5.4(11) C16 48.1(15) 64.4(16) 60.0(15) -7.6(13) -2.2(12) 2.4(13) C30 50.9(14) 52.7(15) 63.1(15) 11.3(12) -2.8(12) -4.3(12) C24 47.0(14) 52.4(14) 65.4(16) 0.3(12) -11.0(12) 5.5(11) C20 62.0(17) 62.2(16) 56.3(15) -16.7(13) -3.2(13) -7.0(14) C40 60.7(18) 55.1(16) 76.0(19) 7.8(14) 19.0(16) -5.3(14) C23 39.2(12) 54.9(15) 73.7(17) 0.9(13) 5.5(12) 2.6(11) C4 60.7(17) 45.0(14) 97(2) -11.8(15) 12.0(17) -3.0(12) C5 56.5(16) 53.1(14) 63.6(16) -12.3(12) 2.8(13) -1.8(12) C3 59.3(18) 46.2(14) 104(2) 16.3(15) 15.1(18) 3.1(13) C34 48.6(14) 71.3(18) 59.7(15) -2.4(14) 0.1(12) 9.7(13) C33 54.6(18) 72(2) 103(3) -12.6(19) -3.8(17) 17.7(16) C14 60.9(18) 96(2) 53.3(15) 13.5(16) 7.8(13) -10.7(17) C32 62(2) 50.2(16) 141(3) 4.2(19) -17(2) 6.7(15)C36 83(2) 85(2) 65.7(18) -8.4(17) -17.2(16) -30.6(19) C11 46.9(16) 88(2) 102(3) -20(2) 6.0(17) 5.8(16) C31 70(2) 57.9(18) 106(3) 28.0(18) -8(2)-4.6(15) C12 54.0(19) 115(3) 93(3) -27(2) 22.6(19) -14(2) C13 84(3) 126(3) 7(2) 25.1(19) -34(3) 66(2) C17 64(2) 93(3) 137(4) -34(3) 7(2) 20(2) C39 84(3) -9(4)-7(4)-20(3)59(2) 85(5) C19 95(3) 65.4(19) 84(2) -27.4(17) 5(2) -3.0(19) C38 87(3) 73(3) 83(4) -13(3) -9(4)-27(2)C37 87(3) 85(3) 77(4) -6(3)-17(3) -32(3) C18 95(3) 95(3) 125(3) -50(3) 23(3) 13(2) **COAA** 86(3) 78(3) 79(4) -6(3)-14(3)-30(3)C1AA 83(5) 87(3) 64(3) -6(4)-11(4)-21(3)C0 83(4) 56(3) 83(6) -5(4)-7(5)-19(3)

 Table 4 Bond Lengths for gz190604_lfy.

 Atom
 Atom
 Length/Å
 Atom
 Atom
 Length/Å

 Cl2
 C24
 1.743(3)
 C25
 C24
 1.370(4)

 Cl1
 C4
 1.748(3)
 C15
 C16
 1.514(4)

01	C7	1.217(3)	C15	C20	1.53	5(3)	
04	C27	1.218(3)	C2	C3	1.37	3(5)	
N2	C21	1.368(3)	C10	C11	1.39	2(5)	
N2	C28	1.458(3)	C35	C40	1.51	8(4)	
N1	C8	1.451(3)	C35	C36	1.54	1(4)	
N1	C1	1.351(3)	C16	C17	1.49	6(5)	
03	C40	1.210(4)	C30	C31	1.38	3(4)	
02	C16	1.207(4)	C24	C23	1.38	8(4)	
C21	C26	1.398(3)	C20	C19	1.51	5(5)	
C21	C22	1.401(3)	C40	C39	1.62	6(12)
C29	C28	1.537(3)	C40	C0	1.37	5(14)
C29	C30	1.381(4)	C4	C5	1.36	3(5)	
C29	C34	1.396(4)	C4	C3	1.39	6(5)	
C8	C7	1.548(3)	C34	C33	1.38	1(5)	
C8	C9	1.539(3)	C33	C32	1.37	6(6)	
C8	C15	1.538(3)	C14	C13	1.39	0(5)	
C26	C27	1.460(4)	C32	C31	1.36	5(6)	
C26	C25	1.391(4)	C36	C37	1.48	6(12)
C1	C6	1.398(3)	C36	C0A	A	1.61	4(15)
C1	C2	1.408(4)	C11	C12	1.36	1(6)	
C7	C6	1.449(3)	C12	C13	1.37	0(6)	
C27	C28	1.548(3)	C17	C18	1.51	8(6)	
C28	C35	1.541(3)	C39	C38	1.52	6(11)
C9	C10	1.385(4)	C19	C18	1.51	2(6)	
C9	C14	1.394(4)	C38	C37	1.47	4(15)
C22	C23	1.375(4)	C0A	A	C1A	A	1.581(18)
C6	C5	1.392(4)	C1A	A	C0	1.48	2(13)

Table 5 Bond Angles for gz190604_lfy.

Ator	n	Ator	n Ato	m A	ngl	e/°		Ator	n	Atom	A	Atom	Angle/°
C21	N2	C28	110.18(1	7)		C3	C2	C1	117	.5(3)			
C1	N1	C8	111.15(1	8)		C9	C10	C11	120	.9(3)			
N2	C21	C26	112.1(2)	С	28	C35	C36	111.	5(2)				
N2	C21	C22	128.1(2)	С	40	C35	C28	111.	2(2)				
C26	C21	C22	119.8(2)	С	40	C35	C36	113.	6(3)				
C30	C29	C28	122.7(2)	С	2	C16	C15	122.	3(3)				
C30	C29	C34	118.1(3)	С	2	C16	C17	122.	6(3)				
C34	C29	C28	119.2(2)	С	17	C16	C15	115.	1(3)				
N1	C8	C7	102.08(1	8)		C29	C30	C31	120	.6(3)			
N1	C8	C9	112.0(2)	С	25	C24	Cl2	119.	7(2)				
N1	C8	C15	112.25(1	8)		C25	C24	C23	121	.7(2)			
C9	C8	C7	106.39(1	8)		C23	C24	Cl2	118	.6(2)			
C15	C8	C7	111.77(1	9)		C19	C20	C15	111	.9(3)			

C15	C8	C9	111.8(2)	03	C40	C35	121.	5(3)		
C21	C26	C27	107.0(2)	03	C40	C39	126.	9(6)		
C25	C26	C21	121.5(2)	03	C40	C0	113.	9(7)		
C25	C26	C27	131.5(2)	C35	C40	C39	111.	6(5)		
N1	C1	C6	111.8(2)	C0	C40	C35	123.	6(7)		
N1	C1	C2	128.3(2)	C22	C23	C24	121.	3(2)		
C6	C1	C2	119.8(3)	C5	C4	Cl1	119.	8(3)		
01	C7	C8	123.7(2)	C5	C4	C3	121.	6(3)		
01	C7	C6	129.9(2)	C3	C4	Cl1	118.	6(3)		
C6	C7	C8	106.42(18)		C4	C5	C6	117.	6(3)	
04	C27	C26	129.9(2)	C2	C3	C4	121.	7(3)		
04	C27	C28	123.6(2)	C33	C34	C29	120.	7(3)		
C26	C27	C28	106.44(19)		C32	C33	C34	120.	3(3)	
N2	C28	C29	113.35(18)		C13	C14	C9	120.	0(3)	
N2	C28	C27	102.37(18)		C31	C32	C33	119.	4(3)	
N2	C28	C35	111.7(2)	C35	C36	COA,	Ą	103.	2(6)	
C29	C28	C27	106.42(19)		C37	C36	C35	118.	5(5)	
C29	C28	C35	110.38(19)		C12	C11	C10	120.	2(4)	
C35	C28	C27	112.24(19)		C32	C31	C30	121.	0(3)	
C10	C9	C8	121.7(2)	C11	C12	C13	119.	9(3)		
C10	C9	C14	118.2(3)	C12	C13	C14	120.	7(4)		
C14	C9	C8	120.1(2)	C16	C17	C18	112.	9(4)		
C23	C22	C21	118.1(2)	C38	C39	C40	116.	3(8)		
C1	C6	C7	107.2(2)	C18	C19	C20	110.	4(3)		
C5	C6	C1	121.7(2)	C37	C38	C39	111.	7(8)		
C5	C6	C7	131.0(2)	C38	C37	C36	108.	6(9)		
C24	C25	C26	117.6(2)	C19	C18	C17	110.	9(3)		
C16	C15	C8	112.4(2)	C1A	A	COA	Ą	C36	112.0(10)	
C16	C15	C20	109.6(2)	C0	C1A	Ą	C0A	Ą	110.4(10)	
C20	C15	C8	113.4(2)	C40	C0	C1A	Ą	109.	5(10)	

Table 6 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for gz190604_lfy.

Ator	n x	y z	U(eq)	
H2	7004.13	4700.	27 4681.71	52
H1	6117.63	5038.	59 7183.67	57
H22	9666.61	4980.	39 4811.78	61
H25	8496.1	5404.	84 6711.88	63
H15	6816.71	3208.	09 8140.73	53
H2A	6570.75	6795.	01 7066.43	71
H10	3861.98	5130.	97 7616.89	72
H35	3983.22	4423.	08 5525.59	59
H30	6185.72	6267.	08 4532.7	67

H20A 5416.39 3044.75 7358.8 72 H20B 6427.29 3566.58 6975.69 72 H23 11268.92 5290.95 5487.48 67 H5 7845.36 6571.32 8972.65 69 H3 7318.61 8014.31 7565.06 84 H34 3809.11 5905.32 5876.61 72 H33 2767.84 7235.56 5688.3 92 H14 5214.24 3453 8800.08 84 H32 3411.14 8073.76 4917.46 101 H36 3720(80) 4890(60) 4620(30) 93 H36A 4920(100) 4210(70) 4410(40) 93 H11 1695.34 4883.92 7922.71 95 H31 5125.71 7591.38 4351.71 94 H12 1295.18 3958.66 8672.52 105 H13 3037.96 3232.94 9102.84 111 H17A 9216.8 2516.11 7875.5 118 H17B 10088.82 3097.3 7467.81 118 H39A 5031.65 2050.56 5223.18 91 H39B 3691.4 2469.58 5433.66 91 H19A 6969.49 1896.07 7469.69 98 H19B 6679.31 2044.36 6823.02 98 H38A 4786.04 2666.8 4339.85 97 H38B 3435.98 2190.39 4487.66 97 H37A 2482.09 3528.97 4731.34 100 H37B 3029.63 3580.69 4107.81 100 8648.32 2850.92 6723.45 126 H18A H18B 8994.93 1921.82 6984.16 126 H0AA 2539.88 3447.7 4924.69 97 HOAB 2901.07 3298.35 4285.45 97 H1AA 3553.25 2007.23 4797.72 94 H1AB 4856.22 2461.02 4565.85 94 H0 4521.08 2191.32 5697.03 89

Table 7 Atomic Occupancy for gz190604_lfy.

Atom	Occupano	iy At	om Occi	upancy	Atom	Occupancy
H36 0.54	7(16)	H36A 0.4	453(16)	C39 0.547	7(16)	
H39A	0.547(16)	H39B	0.547(16)) C38	0.547(16)	
H38A	0.547(16)	H38B	0.547(16)) C37	0.547(16)	
H37A	0.547(16)	H37B	0.547(16)) COAA	0.453(16))
H0AA	0.453(16)	HOAB	0.453(16)) C1AA	0.453(16))
H1AA	0.453(16)	H1AB	0.453(16)) CO	0.453(16)	
H0 0.45	3(16)					
Experime	ntal					

Single crystals of C20H17.27ClNO2 [gz190604_lfy] were []. A suitable crystal was selected and [] on a SuperNova, Dual, Cu at home/near, EosS2 diffractometer. The crystal was kept at 278(30) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the ShelXL [3] refinement package using Least Squares minimisation.

Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8. Crystal structure determination of [gz190604_lfy]

Crystal Data for C20H17.27375ClNO2 (M =339.07 g/mol): orthorhombic, space group P212121 (no. 19), a = 10.00050(10) Å, b = 15.08900(10) Å, c = 23.6172(2) Å, V = 3563.78(5) Å3, Z = 8, T = 278(30) K, μ (CuK α) = 1.982 mm-1, Dcalc = 1.264 g/cm3, 40048 reflections measured (6.952° $\leq 2 \Theta \leq 143.762°$), 6958 unique (Rint = 0.0395, Rsigma = 0.0218) which were used in all calculations. The final R1 was 0.0376 (I > 2 σ (I)) and wR2 was 0.1034 (all data).

Refinement model description

Number of restraints - 66, number of constraints - unknown.

Details:

```
1. Fixed Uiso
 At 1.2 times of:
  All C(H) groups, All C(H,H) groups, All N(H) groups
2. Uiso/Uaniso restraints and constraints
C37 \approx C0AA \approx C38 \approx C1AA \approx C39 \approx C0 \approx C36; within 1.7A
with sigma of 0.004 and sigma for terminal atoms of 0.008
3. Others
 Sof(H36A)=Sof(C0AA)=Sof(H0AA)=Sof(H0AB)=Sof(C1AA)=Sof(H1AA)=Sof(H1AB)=Sof(C0)=
 Sof(H0)=1-FVAR(1)
 Sof(H36)=Sof(C39)=Sof(H39A)=Sof(H39B)=Sof(C38)=Sof(H38A)=Sof(H38B)=Sof(C37)=
 Sof(H37A)=Sof(H37B)=FVAR(1)
4.a Ternary CH refined with riding coordinates:
 C15(H15), C35(H35)
4.b Secondary CH2 refined with riding coordinates:
 C20(H20A,H20B), C17(H17A,H17B), C39(H39A,H39B), C19(H19A,H19B), C38(H38A,
 H38B), C37(H37A,H37B), C18(H18A,H18B), C0AA(H0AA,H0AB), C1AA(H1AA,H1AB)
4.c Aromatic/amide H refined with riding coordinates:
 N2(H2), N1(H1), C22(H22), C25(H25), C2(H2A), C10(H10), C30(H30), C23(H23),
 C5(H5), C3(H3), C34(H34), C33(H33), C14(H14), C32(H32), C11(H11), C31(H31),
```

C12(H12),

C0(H0)

6. Characterization of products

(S)-2-((S)-2-oxocyclohexyl)-2-phenylindolin-3-one (3a)^[5]

Yellow solid. 67 % yield. m.p. 206-207 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.57 – 7.55 (m, 3H), 7.43 (t, J = 7.6 Hz, 1H), 7.31 (t, J = 7.6 Hz, 2H), 7.26 – 7.24 (m, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.83 (t, J = 7.4 Hz, 1H), 5.18 (s, 1H), 3.50 (dd, J = 13.3, 5.3 Hz, 1H), 2.38 – 2.26 (m, 2H), 2.05 – 1.85 (m, 3H), 1.64 – 1.58 (m, 2H), 1.53 – 1.46 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 208.0, 200.7, 159.5, 137.5, 136.2, 128.8, 127.8, 125.6, 124.9, 121.4, 119.3, 111.8, 71.4, 58.6, 42.1, 28.4, 26.7, 25.2. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak IA, hexane/isopropanol = 91:9, flow rate 1.0 mL/min, λ = 254 nm), tRmajor = 19.701 min, tRminor = 25.190 min.

┝

TOUTHHAT BOAT				
No.	Retention Time	Area	Height	Concentration
1	19.853	17628975	348671	50.308
2	24.920	17413252	276737	49.692
总计		35042227	625408	

HPLC of 3a (chiral)

(S)-2-((S)-2-oxocyclohexyl)-2-(p-tolyl)indolin-3-one (3b)

Yellow solid. 62% yield. m.p. 91-92 °C. ¹**H** NMR (600 MHz, CDCl₃): δ 7.56 (d, J = 7.6 Hz, 1H), 7.47 – 7.41 (m, 3H), 7.12 (d, J = 8.1 Hz, 2H), 6.94 (d, J = 8.2 Hz, 1H), 6.81 (t, J = 7.4 Hz, 1H), 5.24 (s, 1H), 3.48 (dd, J = 13.3, 5.3 Hz, 1H), 2.40 – 2.23 (m, 5H), 2.04 – 1.85 (m, 3H), 1.66 – 1.44 (m, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 208.1, 200.9, 159.5, 137.5, 136.2, 134.4, 129.5, 125.5, 125.0, 121.4, 119.2, 111.8, 71.3, 58.5, 42.1, 28.4, 26.7, 25.2, 20.9. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm), tRmajor = 18.916 min, tRminor = 23.823 min. **HRMS** (EI): m/z: calcd for C₂₁H₂₁NO₂ (M+Na)⁺: 342.1465; found: 342.1472.

HPLC of 3b (racemic)

四次四百百百 2041	1111			
No.	Retention Time	Area	Height	Concentration
1	19.308	50605560	1092289	49.980
2	24.883	50646261	951515	50.020
总计		101251822	2043804	1

HPLC of 3b (chiral)

(S)-2-(4-fluorophenyl)-2-((S)-2-oxocyclohexyl)indolin-3-one (3c)

Yellow solid. 62% yield. m.p. 90-93 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.56 (d, J = 7.6 Hz, 1H), 7.46 (d, J = 8.9 Hz, 2H), 7.42 (t, J = 7.6 Hz, 1H), 6.93 (d, J = 8.2 Hz, 1H), 6.84 – 6.80 (m, 3H), 5.20 (s, 1H), 3.75 (s, 3H), 3.44 (dd, J = 13.3, 5.2 Hz, 1H), 2.37 – 2.27 (m, 2H), 2.04 – 1.96 (m, 2H), 1.89 – 1.87 (m, 1H), 1.65 – 1.42 (m, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 208.2, 201.1, 159.5, 159.3, 136.2, 129.2, 126.8, 125.0, 121.4, 119.2, 114.2, 111.8, 70.9, 58.4, 55.3, 42.1, 28.3, 26.7, 25.2. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, $\lambda =$ 254 nm), tRmajor = 9.986 min, tRminor = 11.727 min. HRMS (EI): m/z: calcd for C₂₁H₂₁NO₃ (M+Na)⁺: 358.1414; found: 358.1419.

HPLC of 3c (racemic)
HPLC of 3c (chiral)

(S)-2-((S)-2-oxocyclohexyl)-2-(m-tolyl)indolin-3-one (3d)

Yellow solid. 71% yield. m.p. 200-201 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.57 (d, *J* = 7.6 Hz, 1H), 7.43 (t, *J*=7.7 Hz, 1H), 7.36 – 7.33 (m, 2H), 7.19 (t, *J* = 7.7 Hz, 1H), 7.06 (d, *J* = 7.4 Hz, 1H), 6.96 (d, *J* = 8.2 Hz, 1H), 6.83 (t, *J* = 7.4 Hz, 1H), 5.08 (s, 1H), 3.49 (dd, *J* = 13.3, 5.2 Hz, 1H), 2.39 – 2.22 (m, 5H), 2.07 – 1.86 (m, 3H), 1.67 – 1.57 (m, 2H), 1.53 – 1.43 (m, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 208.0, 200.8, 159.4, 138.4, 137.4, 136.2, 128.6, 128.6, 126.1, 125.0, 122.6, 121.5, 119.3, 111.8, 71.3, 58.7, 42.1, 28.4, 26.7, 25.2, 21.7. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, λ = 254 nm), tRmajor = 14.670 min, tRminor = 20.655 min. HRMS (EI): m/z: calcd for C₂₁H₂₁NO₂ (M+Na)⁺: 342.1465; found: 342.1467.

HPLC of 3d (racemic)

121 (四) AFA 2041	101				
No.	Retention Time	Area	Height	Concentration	
1	14.957	14647816	368772	50.070	1
2	20.775	14606898	318912	49.930	
总计		29254714	687684		1
					î

亚侧 쥼A 2041	161			
No.	Retention Time	Area	Height	Concentration
1	14.670	24850103	611838	98.279
2	20.655	435172	9063	1.721
总计		25285275	620901	

(S)-2-(2-methoxyphenyl)-2-((S)-2-oxocyclohexyl)indolin-3-one (3e)

Yellow solid. 58% yield. m.p. 190-191 °C. ¹**H NMR** (600 MHz, CDCl₃): δ 7.59 (d, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.29 – 7.25 (m, 1H), 7.17 – 7.16 (m, 2H), 6.97 (d, *J* = 8.2 Hz, 1H), 6.85 (t, *J* = 7.4 Hz, 1H), 6.82 – 6.80 (m, 1H), 5.16 (s, 1H), 3.81 (s, 3H), 3.51 (dd, *J* = 13.3, 5.3 Hz, 1H), 2.41 – 2.27 (m, 2H), 2.07 – 2.05 (m, 1H), 1.99 – 1.88(m, 2H), 1.68 – 1.59 (m, 2H), 1.56 – 1.45 (m, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 207.9, 200.6, 159.9, 159.4, 139.3, 136.2, 129.7, 124.9, 121.4, 119.3, 117.9, 112.6, 112.1, 111.8, 71.3, 58.7, 55.3, 42.0, 28.4, 26.7, 25.2. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, λ = 254 nm), tRmajor = 11.144 min, tRminor = 16.963 min. **HRMS** (EI): m/z: calcd for C₂₁H₂₁NO₃ (M+Na)⁺: 358.1414; found: 358.1418.

HPLC of 3e (racemic)

HPLC of 3e (chiral)

(S)-2-(4-fluorophenyl)-2-((S)-2-oxocyclohexyl)indolin-3-one (3f)

Yellow solid. 58% yield. m.p. 66-67 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.57 – 7.55 (m, 3H), 7.44 (t, J = 7.6 Hz, 1H), 6.99 (t, J = 8.6 Hz, 2H), 6.94 (d, J = 8.2 Hz, 1H), 6.83 (t, J = 7.4 Hz, 1H), 5.26 (s, 1H), 3.41 (dd, J = 13.4, 5.2 Hz, 1H), 2.38 – 2.28 (m, 2H), 2.04 – 1.89 (m, 3H), 1.65 – 1.55 (m, 2H), 1.51 – 1.43 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 208.1, 200.9, 163.3, 161.6, 159.4, 136.5, 133.3, 133.2, 130.1, 128.5, 127.6, 127.5, 125.0, 121.2, 119.4, 115.6, 115.5, 111.9, 70.8, 58.5, 42.1, 28.3, 26.7, 25.1. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, λ = 254 nm), tRmajor = 18.671 min, tRminor = 20.985 min. **HRMS** (EI): m/z: calcd for C₂₀H₁₈FNO₂(M+Na)⁺: 346.1214; found: 346.1215.

HPLC of 3f (racemic)

型 (内) 石百 A 20411	111				
No.	Retention Time	Area	Height	Concentration	
1	18.880	22516465	520454	47.576	
2	20.990	24810747	512944	52.424	
总计		47327211	1033398		

HPLC of 3f (chiral)

No.	Retention Time	Area	Height	Concentration
1	18.671	50511515	1077363	99.223
2	20.985	395515	9165	0.777

(S)-2-(4-chlorophenyl)-2-((S)-2-oxocyclohexyl)indolin-3-one (3g)

Yellow solid. 50% yield. m.p. 99-100 °C. ¹**H NMR** (600 MHz, CDCl₃): δ 7.57 – 7.53 (m, 3H), 7.44 (t, *J*=7.6 Hz, 1H), 7.28 (d, *J*=8.6 Hz, 2H), 6.94 (d, *J* = 8.2 Hz, 1H), 6.84 (t, *J* = 7.4 Hz, 1H), 5.23 (s, 1H), 3.41 (dd, *J* = 13.4, 5.2 Hz, 1H), 2.38 – 2.25 (m, 2H), 2.07 – 1.89 (m, 3H), 1.65 – 1.55 (m, 2H), 1.50 – 1.43 (m, 1H); ¹³**C NMR** (150 MHz, CDCl₃): δ 208.1, 200.6, 159.4, 136.5, 136.2, 133.9, 130.2, 128.8, 128.5, 127.3, 125.0, 121.2, 119.5, 111.9, 70.8, 58.4, 42.1, 28.3, 26.7, 25.1. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, λ = 254 nm), tRmajor = 21.317 min, tRminor = 25.576 min. **HRMS** (EI): m/z: calcd for C₂₀H₁₈CINO₂(M+Na)⁺: 362.0918; found: 362.0920.

HPLC of 3g (racemic)

 No.
 Retention Time
 Area
 Height
 Concentration

 1
 21.055
 93710632
 1679689
 49.554

 2
 26.138
 95396973
 1568777
 50.446

 总计
 189107605
 3248466
 189107605
 3248466

HPLC of 3g (chiral)

(S)-2-(4-bromophenyl)-2-((S)-2-oxocyclohexyl)indolin-3-one (3h)

Yellow solid. 48% yield. m.p. 109-111 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.56 (d, *J* = 7.6 Hz, 1H), 7.48 – 7.42 (m, 5H), 6.94 (d, *J* = 8.2 Hz, 1H), 6.84 (t, *J* = 7.4 Hz, 1H), 5.19 (s, 1H), 3.40 (dd, *J* = 13.4, 5.2 Hz, 1H), 2.39 – 2.25 (m, 2H), 2.05 – 1.89 (m, 3H), 1.65 – 1.56 (m, 2H), 1.50 – 1.43 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 208.0, 200.4, 159.3, 136.8, 136.5, 131.8, 127.7, 125.0, 122.0, 121.2, 119.5, 111.9, 70.8, 58.4, 42.1, 28.3, 26.7, 25.1. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 91:9, flow rate 1.0 mL/min, λ = 254 nm), tRmajor = 23.455 min, tRminor = 28.512 min. HRMS (EI): m/z: calcd for C₂₀H₁₈BrNO₂(M+Na)⁺: 406.0413; found: 406.0413.

HPLC of 3h (racemic)

TO THE POINT					
No.	Retention Time	Area	Height	Concentration	
1	23.713	121089393	1888011	49.341	
2	29.817	124323904	1720793	50.659	
总计		245413297	3608804		_
					_

HPLC of 3h (chiral)

methyl 4-((S)-3-oxo-2-((S)-2-oxocyclohexyl)indolin-2-yl)benzoate (3i)

Yellow solid. 43% yield. m.p. 88-90 °C. ¹**H** NMR (600 MHz, CDCl₃): δ 7.97 (d, J = 8.5 Hz, 2H), 7.68 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 6.97 (d, J = 8.2 Hz, 1H), 6.85 (t, J = 7.4 Hz, 1H), 5.29 (s, 1H), 3.89 (s, 3H), 3.49 (dd, J = 13.3, 5.1 Hz, 1H), 2.39 – 2.29 (m, 2H), 2.07 – 2.03 (m, 1H), 1.92-1.88 (m, 2H), 1.66 – 1.56 (m, 2H), 1.53 – 1.43 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 207.8, 200.1, 166.7, 159.4, 142.9, 136.6, 129.9, 129.7, 125.9, 125.0, 121.2, 119.6, 111.9, 71.4, 58.6, 52.1, 42.1, 28.4, 26.7, 25.1. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), tRmajor = 12.475 min, tRminor = 16.209 min. HRMS (EI): m/z: calcd for C₂₂H₂₁NO₄ (M+Na)⁺: 386.1363; found: 386.1362.

HPLC of 3i (racemic)

HPLC of 3i (chiral)

751568

64890164

24164

1968816

O CI	
N H O	

2

总计

(S)-2-(3-chlorophenyl)-2-((S)-2-oxocyclohexyl)indolin-3-one (3j)

Yellow solid. 50% yield. m.p. 215-217 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.58 -7.56 (m, 2H), 7.51 (d, J = 7.2 Hz, 1H), 7.45 (t, J = 7.4 Hz, 1H), 7.27 – 7.23 (m, 2H), 6.95 (d, J = 8.2 Hz, 1H), 6.85 (t, J = 7.4 Hz, 1H), 5.20 (s, 1H), 3.42 (dd, J = 13.4, 5.1)Hz, 1H), 2.39 – 2.23 (m, 2H), 2.06 – 1.89 (m, 3H), 1.67 – 1.57(m, 2H), 1.51 – 1.43 (m, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 207.9, 200.3, 159.3, 140.0, 136.5, 134.7, 129.9, 128.0, 126.0, 125.0, 124.1, 121.2, 119.6, 112.0, 70.9, 58.6, 42.1, 28.4, 26.7, 25.1. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, λ = 254 nm), tRmajor = 8.763 min, tRminor = 13.293 min. HRMS (EI): m/z: calcd for $C_{20}H_{18}CINO_2$ (M+Na)⁺: 362.0918; found: 362.0920.

HPLC of 3j (racemic)

HPLC of 3j (chiral)

检测器A 254m	m			
No.	Retention Time	Area	Height	Concentration
1	8.763	59578717	1978120	98.748
2	13.293	755257	25716	1.252
总计		60333974	2003836	

(S)-5-fluoro-2-((S)-2-oxocyclohexyl)-2-phenylindolin-3-one (3k)

Yellow solid. 50% yield. m.p. 86-87 °C. ¹**H NMR** (600 MHz, CDCl₃): δ 7.53 (d, J = 7.6 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.27 (d, J = 7.2 Hz, 1H), 7.24 – 7.17 (m, 2H), 6.92 (dd, J = 8.7, 3.7 Hz, 1H), 5.10 (s, 1H), 3.52 (dd, J = 13.2, 5.1 Hz, 1H), 2.40 – 2.19 (m, 2H), 2.06 – 2.03 (m, 1H), 1.92 – 1.82 (m, 2H), 1.67 – 1.56 (m, 2H), 1.53 – 1.43 (m, 1H). ¹³**C NMR** (150 MHz, CDCl₃): δ 208.0, 200.4, 200.4, 157.7, 156.1, 155.9, 137.2, 128.9, 127.9, 125.4, 123.9, 123.7, 122.2, 122.2, 112.9, 112.9, 110.2, 110.0, 72.5, 59.0, 42.0, 28.4, 26.7, 25.1. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, $\lambda =$ 254 nm), tRmajor = 12.051 min, tRminor = 17.650 min. **HRMS** (EI): m/z: calcd for C₂₀H₁₈FNO₂ (M+Na)⁺: 346.1214; found: 346.1212.

HPLC of 3k (racemic)

HPLC of 3k (chiral)

(S)-5-chloro-2-((S)-2-oxocyclohexyl)-2-phenylindolin-3-one (31)

Yellow solid. 46% yield. m.p. 224-226 °C. ¹**H** NMR (600 MHz, CDCl₃): δ 7.52 – 7.46 (m, 3H), 7.37 (dd, J = 8.6 Hz, 2.1 Hz, 1H), 7.32 (t, J = 7.6 Hz, 2H), 7.27 (d, J = 7.3 Hz, 1H), 6.90 (d, J = 8.6 Hz, 1H), 5.21 (s, 1H), 3.51 (dd, J = 13.3, 5.1 Hz, 1H), 2.40 – 2.29 (m, 2H), 2.06 – 1.88 (m, 3H), 1.64 – 1.58 (m, 2H), 1.51 – 1.43 (m, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 207.9, 199.5, 157.7, 136.9, 136.0, 128.9, 128.0, 125.4, 124.6, 124.4, 122.6, 113.0, 72.2, 58.9, 42.0, 28.4, 26.6, 25.1. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, λ = 254 nm), tRmajor = 10.939 min, tRminor = 14.670 min. HRMS (EI): m/z: calcd for C₂₀H₁₈ClNO₂ (M+Na)⁺: 362.0918; found: 362.0917.

HPLC of 3l (racemic)

THE PARTY AND AND AND					
No.	Retention Time	Area	Height	Concentration	
1	11.025	6416894	220876	49.335	
2	14.688	6590003	199849	50.665	
总计		13006897	420725		
		5	0		

HPLC of 3l (chiral)

No.	Retention Time	Area	Height	Concentration	
1	10.939	26389203	882108	99.314	
2	14.670	182386	5583	0.686	
总计	5	26571589	887690		
22 You 22 X					_

(S)-5-bromo-2-((S)-2-oxocyclohexyl)-2-phenylindolin-3-one (3m)^[5]

Yellow solid. 41% yield. m.p. 174-175 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.66 (d, *J* = 1.8 Hz, 1H), 7.52 – 7.49 (m, 3H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.28 – 7.26 (m, 1H), 6.85 (d, *J* = 8.6 Hz, 1H), 5.17 (s, 1H), 3.50 (dd, *J* = 13.3, 5.0 Hz, 1H), 2.39 – 2.29 (m, 2H), 2.05 – 1.88 (m, 3H), 1.66 – 1.56 (m, 2H), 1.50 – 1.44 (m, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 207.9, 199.3, 158.0, 138.6, 136.9, 128.9, 128.0, 127.5, 125.4, 123.1, 113.4, 111.4, 72.0, 58.9, 42.0, 28.4, 26.7, 25.1. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, λ = 254 nm), tRmajor = 15.497 min, tRminor = 22.319 min.

HPLC of 3m (racemic)

HPLC of 3m (chiral)

(S)-5-methyl-2-((S)-2-oxocyclohexyl)-2-phenylindolin-3-one (3n)

Yellow solid. 47% yield. m.p. 187-188 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.54 (d, *J* = 7.5 Hz, 2H), 7.37 (s, 1H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.28 – 7.23 (m, 2H), 6.89 (d, *J* = 8.2 Hz, 1H), 4.99 (s, 1H), 3.51 (dd, *J* = 13.3, 5.2 Hz, 1H), 2.39 – 2.29 (m, 2H), 2.27 (s, 3H), 2.05 – 2.02 (m, 1H), 1.94 – 1.85 (m, 2H), 1.66 – 1.57 (m, 2H), 1.54 – 1.47 (m, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 208.0, 200.9, 157.9, 137.7, 137.5, 128.9, 128.8, 127.7, 125.5, 124.5, 121.6, 111.8, 71.8, 58.6, 42.1, 28.4, 26.7, 25.2, 20.6. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, λ = 254 nm), tRmajor = 16.390 min, tRminor = 18.930 min. HRMS (EI): m/z: calcd for C₂₁H₂₁NO₂ (M+Na)⁺: 342.1465; found: 342.1468.

HPLC of 3n (racemic)

HPLC of 3n (chiral)

检测器A 254n	m			
No.	Retention Time	Area	Height	Concentration
1	16.390	42592503	886776	99.855
2	18.930	62023	3358	0.145
总计		42654527	890134	

(S)-6-fluoro-2-((S)-2-oxocyclohexyl)-2-phenylindolin-3-one (30)

White solid. 43% yield. m.p. 130-133 °C. ¹**H** NMR (600 MHz, CDCl₃): δ 7.56 – 7.53 (m, 3H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.27 (d, *J* = 7.3 Hz, 1H), 6.61 – 6.59 (m, 1H), 6.54 – 6.51 (m, 1H), 5.29 (s, 1H), 3.48 (dd, *J* = 13.4, 5.2 Hz, 1H), 2.40 – 2.22 (m, 2H), 2.07 – 1.88 (m, 3H), 1.67 – 1.57 (m, 2H), 1.50 – 1.43 (m, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 208.1, 198.8, 169.7, 168.0, 160.9 (d, *J* = 13.7 Hz), 137.2, 133.6, 130.2, 128.8, 128.5, 127.9, 127.1 (d, *J* = 12.2 Hz), 125.5, 117.8, 107.6 (d, *J* = 24.3 Hz), 98.4 (d, *J* = 26.0 Hz), 72.0, 58.5, 42.1, 28.4, 26.7, 25.1. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 95:5, flow rate 1.0 mL/min, λ = 254 nm), tRmajor = 48.089 min, tRminor = 54.705 min. HRMS (EI): m/z: calcd for C₂₀H₁₈FNO₂ (M+Na)⁺: 346.1214; found: 346.1217.

HPLC of 30 (racemic)

HPLC of 30 (chiral)

(R)-2-((S)-2-oxocyclohexyl)-2-(thiophen-2-yl)indolin-3-one (3p)

Gray solid. 37% yield. m.p. 161-163 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.61 (d, J = 7.5 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 5.0, 1H), 7.11 – 7.10 (m, 1H), 6.95 – 6.92 (m, 2H), 6.87 (t, J = 7.4 Hz, 1H), 5.19 (s, 1H), 3.35 (dd, J = 12.9, 5.1 Hz, 1H), 2.39 – 2.19 (m, 3H), 2.07 – 1.93 (m, 2H), 1.70 – 1.55 (m, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 208.1, 199.5, 159.3, 142.6, 136.5, 127.3, 125.2, 124.9, 124.2, 120.7, 119.7, 112.1, 70.1, 59.0, 42.1, 28.4, 26.9, 25.1. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 95:5, flow rate 1.0 mL/min, $\lambda =$ 254 nm), tRmajor = 45.098 min, tRminor = 54.322 min. HRMS (EI): m/z: calcd for C₁₈H₁₇NO₂S (M+Na)⁺: 334.0872; found: 334.0876.

HPLC of 3p (racemic)

LUCITER LOTI	1111				
No.	Retention Time	Area	Height	Concentration	
1	45.447	40658749	358833	50.906	
2	54.009	39211092	292996	49.094	
总计		79869841	651829		

检测器A 254r	ım			
No.	Retention Time	Area	Height	Concentration
1	45.098	40117380	351500	99.101
2	54.322	364009	3505	0.899
总计		40481389	355005	

(S)-2-((S)-4-oxotetrahydro-2H-thiopyran-3-yl)-2-phenylindolin-3-one (3q)

Yellow solid. 67% yield. m.p. 103-105 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.59 – 7.55 (m, 3H), 7.46 (t, J = 7.6 Hz, 1H), 7.34 (t, J = 7.4 Hz, 2H), 7.29 – 7.27 (m, 1H), 6.98 (d, J = 8.1 Hz, 1H), 6.86 (t, J = 7.4 Hz, 1H), 5.25 (s, 1H), 3.83 (t, J = 7.9 Hz, 1H), 2.97 – 2.86 (m, 2H), 2.83 (d, J = 8.1 Hz, 2H), 2.77 – 2.70 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) : δ 205.3, 199.5, 159.3, 136.5, 129.1, 128.2, 125.6, 125.2, 121.0, 119.8, 111.9, 71.5, 60.3, 44.3, 30.5, 29.4. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, λ = 254 nm), tRmajor = 26.790 min, tRminor = 29.713 min. HRMS (EI): m/z: calcd for C₁₉H₁₇NO₂S (M+Na)⁺: 346.0872; found: 346.0876.

HPLC of 3q (racemic)

HPLC of 3q (chiral)

(2S)-2-((1S)-5-methyl-2-oxocyclohexyl)-2-phenylindolin-3-one (3r)

Yellow solid. 60% yield. m.p. 190-192 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.57 – 7.51 (m, 3H), 7.44 (t, J = 7.6 Hz, 1H), 7.31 (t, J = 7.6 Hz, 2H), 7.26 – 7.24 (m, 1H), 6.96 (d, J = 8.2 Hz, 1H), 6.83 (t, J = 7.4 Hz, 1H), 5.14 (s, 1H), 3.72 (dd, J = 13.2, 5.5 Hz, 1H), 2.51 – 2.45 (m, 1H), 2.25 – 2.13 (m, 2H), 1.90 – 1.74 (m, 3H), 1.68 – 1.65 (m, 1H), 1.15 (d, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 208.5, 200.7, 159.6, 137.4, 136.3, 128.9, 127.8, 125.4, 125.0, 121.4, 119.4, 111.8, 71.5, 53.3, 37.5, 33.5, 31.6, 26.8, 17.5. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), tRmajor = 8.290 min, tRminor = 10.052 min. HRMS (EI): m/z: calcd for C₂₁H₂₁NO₂ (M+Na)⁺: 342.1465; found: 342.1465.

HPLC of 3r (racemic)

MUNITARA LUTI	1111			
No.	Retention Time	Area	Height	Concentration
1	8.034	1359993	63437	50.721
2	10.024	1321315	62361	49.279
总计		2681307	125798	
				29

HPLC of 3r (chiral)

检测器A 254n	m			
No.	Retention Time	Area	Height	Concentration
1	8.290	25800373	1064084	99.563
2	10.052	113355	4939	0.437
总计		25913728	1069023	

(S)-2-((S)-2-oxocyclopentyl)-2-(p-tolyl)indolin-3-one (3s)

Yellow solid. 50% yield. m.p. 79-80 °C. ¹**H** NMR (600 MHz, CDCl₃): δ 7.61 (d, J = 7.5 Hz, 1H), 7.45 – 7.40 (m, 3H), 7.12 (d, J = 8.0 Hz, 2H), 6.93 (d, J = 8.2 Hz, 1H), 6.83 (t, J = 7.4 Hz, 1H), 5.77 (s, 1H), 3.13 – 3.10 (m, 1H), 2.29 – 2.19 (m, 5H), 2.05 – 1.92 (m, 2H), 1.83 – 1.70 (m, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 215.9, 199.5, 158.8, 136.6, 135.8, 133.0, 128.3, 125.1, 124.2, 119.8, 118.4, 111.1, 99.0, 69.8, 55.0, 37.8, 24.9, 19.9, 19.7. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 97:3, flow rate 1.0 mL/min, $\lambda =$ 254 nm), tRmajor = 78.841 min, tRminor = 83.310 min. HRMS (EI): m/z: calcd for C₂₀H₁₉NO₂ (M+Na)⁺: 328.1308; found: 328.1310.

HPLC of 3s (racemic)

HPLC of 3s (chiral)

(S)-2-(2-oxopropyl)-2-phenylindolin-3-one (3t)^[5]

Yellow solid. 49% yield. m.p. 103-104 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.55 – 7.53 (m, 3H), 7.48 (t, J = 7.7 Hz, 1H), 7.31 (t, J = 7.7 Hz, 2H), 7.26 – 7.23 (m, 1H), 6.95 (d, J = 8.3 Hz, 1H), 6.80 (t, J = 7.4 Hz, 1H), 6.10 (s, 1H), 3.72 (d, J = 17.4 Hz, 1H), 2.72 (d, J = 17.4 Hz, 1H), 2.10 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 206.7, 200.3, 160.1, 137.9, 137.7, 128.7, 127.7, 125.6, 125.4, 119.0, 118.3, 112.0, 69.0, 49.5, 31.4. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm), tRmajor = 25.577 min, tRminor = 21.759 min

HPLC of 3t (racemic)

THE HE HE HE THE				
No.	Retention Time	Area	Height	Concentration
1	22.323	46844303	1288015	49.828
2	26.441	47167532	1151008	50.172
总计		94011835	2439023	

检测器A 254m	m			
No.	Retention Time	Area	Height	Concentration
1	21.759	5012228	150776	6.907
2	25.577	67559714	1631292	93.093
总计		72571941	1782067	

(S)-2-(3-oxobutan-2-yl)-2-phenylindolin-3-one (3u)^[5]

Yellow solid. 64% yield. m.p. 127-129 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.65 (d, *J* = 7.4 Hz, 2H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.28 – 7.26 (m, 1H), 6.97 (d, *J* = 8.2 Hz, 1H), 6.82 (t, *J* = 7.4 Hz, 1H), 5.35 (s, 1H), 3.73 (q, *J* = 7.2 Hz, 1H), 2.10 (s, 3H), 1.05 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 208.7, 201.1, 160.5, 137.7, 137.3, 128.7, 127.9, 125.9, 125.1, 120.7, 119.7, 112.7, 72.68, 53.2, 30.5, 12.2. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, λ = 254 nm), tRmajor = 9.293 min, tRminor = 13.654 min.

HPLC of 3u (racemic)

HPLC of 3u (chiral)

No.	Retention Time	Area	Height	Concentration
1	9.293	44224869	1498729	99.150
2	13.654	379076	10557	0.850
总计		44603944	1509287	

(R)-2-((R)-2-oxocyclohexyl)-2-phenylindolin-3-one (4a)

Yellow solid. 56% yield. ¹**H NMR** (600 MHz, CDCl₃): $\delta7.59 - 7.55$ (m, 3H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.26 - 7.24 (m, 1H), 6.96 (d, *J* = 8.2 Hz, 1H), 6.84 (t, *J* = 7.3 Hz, 1H), 5.08 (s, 1H), 3.50 (dd, *J* = 13.3, 5.0 Hz, 1H), 2.39 - 2.30 (m, 2H), 2.05 - 2.03 (m, 1H), 1.97 - 1.87 (m, 2H), 1.67 - 1.57 (m, 2H), 1.53 - 1.47 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 208.0, 200.7, 159.4, 137.5, 136.2, 128.78, 127.8, 125.6, 125.0, 121.4, 119.4, 111.8, 71.3, 58.6, 42.1, 28.4, 26.7, 25.2. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak IA, hexane/isopropanol = 91:9, flow rate 1.0 mL/min, λ = 254 nm), tRmajor = 25.153 min, tRminor = 20.213 min.

HPLC of 4a (racemic)

No.	Retention Time	Area	Height	Concentration	
1	19.645	18044003	296994	49.611	
2	25.195	18326675	224361	50.389	
总计		36370678	521355		
					_

HPLC of 4a (chiral)

检测器A 254n	m			
No.	Retention Time	Area	Height	Concentration
1	20.213	482659	9555	0.870
2	25.153	55024282	738793	99.130
总计		55506941	748349	

(R)-2-((R)-2-oxocyclohexyl)-2-(p-tolyl)indolin-3-one (4b)

Yellow solid. 62% yield. ¹H NMR (600 MHz, CDCl₃): δ 7.56 (d, J = 7.6 Hz, 1H), 7.43 – 7.41 (m, 3H), 7.11 (d, J = 8.0 Hz, 2H), 6.94 (d, J = 8.2 Hz, 1H), 6.82 (t, J = 7.4 Hz, 1H), 5.00 (s, 1H), 3.47 (dd, J = 13.3, 5.1 Hz, 1H), 2.38 – 2.29 (m, 5H), 2.04 – 1.87 (m, 3H), 1.66 – 1.46 (m, 3H). ¹³C NMR (150 MHz, CDCl3): δ 208.1, 200.8, 159.5, 137.6, 136.2, 134.4, 129.5, 125.5, 125.0, 121.5, 119.3, 111.8, 71.2, 58.5, 42.1, 28.4, 26.7, 25.2, 20.9. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm), tRmajor = 22.910 min, tRminor = 17.401 min.

HPLC of 4b (racemic)

HPLC of 4b (chiral)

(R)-2-(4-bromophenyl)-2-((R)-2-oxocyclohexyl)indolin-3-one (4c)

Yellow solid. 54% yield. ¹H NMR (600 MHz, CDCl₃): δ 7.56 (d, J = 7.6 Hz, 1H), 7.48 – 7.42 (m, 5H), 6.93 (d, J = 8.2 Hz, 1H), 6.83 (t, J = 7.3 Hz, 1H), 5.24 (s, 1H), 3.39 (dd, J = 13.3, 5.1 Hz, 1H), 2.38 – 2.24 (m, 2H), 2.09 – 1.88 (m, 3H), 1.65 – 1.55 (m, 2H), 1.50 – 1.43 (m, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 208.0, 200.5, 159.4, 136.8, 136.5, 131.8, 127.6, 125.0, 122.0, 121.2, 119.5, 111.9, 70.9, 58.4, 42.1, 28.3, 26.7, 25.1. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 91:9, flow rate 1.0 mL/min, $\lambda = 254$ nm), tRmajor = 27.287 min, tRminor = 22.542 min.

HPLC of 4c (racemic)

No.	Retention Time	Area	Height	Concentration	
1	21.538	123665438	1990971	49.394	
2	27.908	126699888	1788153	50.606	Î
总计		250365326	3779125		

HPLC of 4c (chiral)

(R)-2-((R)-2-oxocyclohexyl)-2-(m-tolyl)indolin-3-one (4d)

Yellow solid. 61% yield. ¹**H NMR** (600 MHz, CDCl₃): δ 7.57 (d, J = 7.6 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.36 – 7.33 (m, 2H), 7.19 (t, J = 7.7 Hz, 1H), 7.06 (d, J = 7.3 Hz, 1H), 6.96 (d, J = 8.2 Hz, 1H), 6.83 (t, J = 7.4 Hz, 1H), 5.08 (s, 1H), 3.50 (dd, J = 13.3, 5.2 Hz, 1H), 2.39 – 2.29 (m, 5H), 2.04 – 2.02 (m, 1H), 1.94 – 1.88 (m, 2H), 1.66 – 1.57 (m, 2H), 1.53 – 1.46 (m, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 208.1, 200.9, 159.5, 138.5, 137.4, 136.2, 128.6, 128.6, 126.1, 125.0, 122.6, 121.5, 119.3, 111.8, 71.4, 58.8, 42.1, 28.4, 26.7, 25.2, 21.7. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm), tRmajor = 18.433 min, tRminor = 12.861 min.

HPLC of 4d (racemic)

1911月1月11 2041	1111				
No.	Retention Time	Area	Height	Concentration	
1	12.776	14059500	347515	49.855	
2	18.261	14141008	275257	50.145	
总计		28200507	622772		

HPLC of 4d (chiral)

No.	Retention Time	Area	Height	Concentration
1	12.861	784491	19771	1.872
2	18.433	41124616	778284	98.128
总计		41909107	798054	

(R)-5-chloro-2-((R)-2-oxocyclohexyl)-2-phenylindolin-3-one (4e)

Yellow solid. 45% yield. ¹**H NMR** (600 MHz, CDCl₃): δ 7.52 – 7.51 (m, 3H), 7.37 (dd, J = 8.6 Hz, 2.0 Hz, 1H), 7.32 (t, J = 7.6 Hz, 2H), 7.27 (d, J = 7.3 Hz, 1H), 6.90 (d, J = 8.6 Hz, 1H), 5.18 (s, 1H), 3.52 (dd, J = 13.3, 5.1 Hz, 1H), 2.39 – 2.29 (m, 2H), 2.05 – 2.03 (m, 1H), 1.91 – 1.88 (m, 2H), 1.66 – 1.57 (m, 2H), 1.51 – 1.44 (m, 1H). ¹³**C NMR** (150 MHz, CDCl₃): δ 208.0, 199.6, 157.7, 136.9, 136.0, 128.9, 128.0, 125.4, 124.6, 124.4, 122.6, 113.0, 72.2, 58.9, 42.0, 28.4, 26.7, 25.1. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, $\lambda = 254$ nm), tRmajor = 13.368 min, tRminor = 9.987 min

HPLC of 4e (racemic)

过仍沿台A 2041				
No.	Retention Time	Area	Height	Concentration
1	10.048	10306695	379298	50.736
2	13.499	10007725	285536	49.264
总计		20314420	664833	

HPLC of 4e (chiral)

No.	Retention Time	Area	Height	Concentration
1	9.987	480681	16013	0.891
2	13.368	53481587	1352850	99.109
总计		53962268	1368862	

(R)-5-methyl-2-((R)-2-oxocyclohexyl)-2-phenylindolin-3-one (4f)

Yellow solid. 50% yield. ¹**H** NMR (600 MHz, CDCl₃): δ 7.54 (d, J = 7.7 Hz, 2H), 7.37 (s, 1H), 7.30 (t, J = 7.7 Hz, 2H), 7.28 – 7.23 (m, 2H), 6.89 (d, J = 8.2 Hz, 1H), 4.93 (s, 1H), 3.51 (dd, J = 13.3, 5.2 Hz, 1H), 2.38 – 2.88 (m, 2H), 2.27 (s, 3H), 2.04 – 2.02 (m, 1H), 1.94 – 1.87 (m, 2H), 1.66 – 1.56 (m, 2H), 1.54 – 1.47 (m, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 208.1, 201.0, 157.9, 137.7, 137.6, 128.9, 128.8, 127.7, 125.5, 124.5, 121.6, 111.8, 71.8, 58.6, 42.1, 28.4, 26.7, 25.2, 20.6. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm), tRmajor = 19.490 min, tRminor = 17.006 min.

HPLC of 4f (racemic)

tention Time	Area	Height	Concentration
16.957	19260171	389722	49.019
19.435	20030925	360928	50.981
	39291095	750650	
	tention Time 16.957 19.435	tention Time Area 16.957 19260171 19.435 20030925 39291095	tention Time Area Height 16.957 19260171 389722 19.435 20030925 360928 39291095 750650

HPLC of 4f (chiral)

(2R)-2-((1R)-5-methyl-2-oxocyclohexyl)-2-phenylindolin-3-one (4g)

Yellow solid. 62% yield. ¹H NMR (600 MHz, CDCl₃): δ 7.57 – 7.51 (m, 3H), 7.43 (t, J = 7.5 Hz, 1H), 7.32 – 7.30 (m, 2H), 7.27 – 7.24 (m, 1H), 6.96 (d, J = 8.1 Hz, 1H), 6.83 (t, J = 7.4 Hz, 1H), 5.18 (s, 1H), 3.73 (dd, J = 13.2, 5.5 Hz, 1H), 2.51 – 2.45 (m, 1H), 2.24 – 2.12 (m, 2H), 1.90 – 1.64 (m, 4H), 1.15 (d, J = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 208.6, 200.8, 159.6, 137.4, 136.3, 128.9, 127.8, 125.4, 125.1, 121.3, 119.4, 111.8, 71.5, 53.4, 37.5, 33.5, 31.6, 26.8, 17.5. The Enantiomeric excess (ee) was determined by HPLC (Daicel Chiralpak AD-H, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, $\lambda = 254$ nm), tRmajor = 9.301 min, tRminor = 7.382 min.

HPLC of 4g (racemic)

PERSIANT DO IN						
No.	Retention Time	Area	Height	Concentration		
1	7.422	1329384	54699	50.738		
2	9.398	1290694	50746	49.262		
总计		2620078	105445		Ī	
					-	

HPLC of 4g (chiral)

No.	Retention Time	Area	Height	Concentration
1	7.382	234800	12368	0.485
2	9.301	48217904	1693016	99.515
总计		48452703	1705384	

7. References

- Gao, Y.-D.; Zhu, W.-Y.; Yin, L.; Dong, B.; Fu, J.-J.; Ye, Z.-W.; Xue, F.-T.; Jiang, C. Palladium-catalyzed direct C2-arylation of free (N-H) indoles via norbornenemediated regioselective CH activation. *Tetrahedron Lett.* 2017, *58*, 2213 - 2216.
- (2) Cheng, Y.-N.; Xie, G.-Y.; Sun, S.-J.; You, X.-F. A Practical Synthesis of 3-{[4-(2,6-Dichlorophenyl)piperidin-1-yl]-methyl}-2-(thiophen-2-yl)-1H-indole as a New Ligand for Opioid Receptor Like 1 Receptor. *Chinese Journal of Organic Chemistry*. 2013, 33, 630 633.
- (3) Ling, K.-Q. Facile Synthesis of 2-Aryl-3H-indol-3-ones via Singlet Oxygenation of 2-Arylindoles. *Synth. Commun.* **1995**, *25*, 3831 3835.
- (4) Huang, H.; Cai, J.; Ji, X.; Xiao, F.; Chen, Y.; Deng, G.-J. Internal Oxidant-Triggered Aerobic Oxygenation and Cyclization of Indoles under Copper Catalysis. *Angew. Chem., Int. Ed.* 2016, 55, 307 – 311.
- (5) Ding, X.; Dong, C.-L.; Guan, Z.; He, Y.-H. Concurrent Asymmetric Reactions Combining Photocatalysis and Enzyme Catalysis: Direct Enantioselective Synthesis of 2,2-Disubstituted Indol-3-ones from 2-Arylindoles. *Angew. Chem. Int. Ed.* **2019**, *58*, 118 - 124.
- (6) (a) List, B.; Lerner, R. A.; Barbas III, C. F. Proline-Catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc. 2000, 122, 2395 2396. (b) List, B. Enamine Catalysis Is a Powerful Strategy for the Catalytic Generation and Use of Carbanion Equivalents. Acc. Chem. Res. 2004, 37, 548 557.

8. ¹H NMR and ¹³C NMR spectra of the products

¹H NMR Spectrum (CDCl₃) of 3a

¹³C NMR Spectrum (CDCl₃) of 3a

¹³C NMR Spectrum (CDCl₃) of 3b

¹³C NMR Spectrum (CDCl₃) of 3c

¹H NMR Spectrum (CDCl₃) of 3d

¹³C NMR Spectrum (CDCl₃) of 3d

¹³C NMR Spectrum (CDCl₃) of 3e

¹³C NMR Spectrum (CDCl₃) of 3f

¹³C NMR Spectrum (CDCl₃) of 3g

¹³C NMR Spectrum (CDCl₃) of 3h

¹³C NMR Spectrum (CDCl₃) of 3i

¹³C NMR Spectrum (CDCl₃) of 3j

¹³C NMR Spectrum (CDCl₃) of 3k

¹³C NMR Spectrum (CDCl₃) of 31

¹³C NMR Spectrum (CDCl₃) of 3m

¹³C NMR Spectrum (CDCl₃) of 3n

¹³C NMR Spectrum (CDCl₃) of 30

¹³C NMR Spectrum (CDCl₃) of 3p

¹³C NMR Spectrum (CDCl₃) of 3q

¹³C NMR Spectrum (CDCl₃) of 3r

¹³C NMR Spectrum (CDCl₃) of 3s

¹³C NMR Spectrum (CDCl₃) of 3t

¹³C NMR Spectrum (CDCl₃) of 3u

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR Spectrum (CDCl₃) of 4c

¹³C NMR Spectrum (CDCl₃) of 4e

¹³C NMR Spectrum (CDCl₃) of 4f

¹³C NMR Spectrum (CDCl₃) of 4g

¹H NMR Spectrum (CDCl₃) of 2-phenyl-3H-indol-3-one

9. HRMS of the products

HRMS-3f

HRMS-3g

HRMS-3h

HRMS-31

HRMS-3n

HRMS-30

HRMS-3q

HRMS-3r

HRMS-3s

HRMS-2-phenyl-3H-indol-3-one

HRMS-G

HRMS-¹⁸O-3a (H₂¹⁸O):

Mass Spectrum SmartFormula Report													
Analysis Info							Acquisition Date 7/8/2019 10:12:10 AM						
Analysis Name Method Sample Name Comment	ysis Name D:\Data\2019\guanzhi\LFY-02.d nod DirectInfusion - MS - positive.m uple Name iment							Operator Demo User Instrument impact II 1825265.1					
Acquisition Para	amet	ter	CT-SM-5		100	P			1105		111210		
Source Type Focus Scan Begin Scan End	ESI Not active 50 m/z 1300 m/z		Ion Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona		Posi 4500 -500 2000 0 nA	Positive 4500 V -500 V 2000 V 0 nA		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater			0.4 Bar 180 °C 5.0 l/min Source 0 °C		
Intens. x10 ⁵ 1.0-								1 328.	LFY-02.d + 1309	l: +MS,	0.2-0.3min	#13-18	
0.8-													
0.6		1+ 306.1491				1+							
0.4		1+ 304.3000			32	0.1040							
0.2	2 5				. 1						335.02	95	
0.0-	ś	305		315		320	32		330		335	m/z	
Meas. m/ 306.149 328.130	z # 1 1 9 1	Ion Formula C20H20NO2 C20H19NNaO2	Sum Formula C20H19NO2	m/z 306.1489 328.1308	Adduct M+H M+Na	err [ppm -0. -0.	n] z n 7 1+ 3 1+	nSigma 33.2 27.9	Score 100.00 100.00	rdb 12.0 12.0	N-Rule ok ok	e ^C Conf even even	

HRMS-¹⁸O-3a (¹⁸O₂)

Mass Spectrum SmartFormula Report													
Analysis Info							Acquisition Date 6/27/2019 11:57:47 AM						
Analysis Name Method Sample Name Comment	D:\Data\2019\guanzhi\LYF-01.d DirectInfusion - MS - positive.m							Operator Demo User Instrument impact II			1825265.10221		
Acquisition Para	meter	r											
curce Type ESI ocus Not active can Begin 50 m/z can End 1300 m/z		z	Ion Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona		Positive 4500 V -500 V 2000 V 0 nA		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater			0.4 Bar 180 °C 4.0 l/min Source 0 °C			
Intens. x10 ⁵										LYF-01.d: +N	IS, 0.1-0.2mi	n #3-11	
1.0-									330	1350			
0.8-										1			
0.6-		308,	1530										
0.4-										1			
0.2	306.14	487						328	1307				
0.0	305	-,4,	310	315	# <u></u>	320		325	3	30	335	m/z	
Meas. m/z 306.148 308.153 328.130 330.1350	z # 7 1 0 1 7 1 0 1	lon f C20F C20F C20F C20F	Formula H20NO2 H20NO^18O H19NNaO2 H19NNaO^18O	Sum Formul C20H19NO2 C20H19NO ¹ C20H19NO2 C20H19NO ¹	la 180 300 320 180 33	m/z 6.1489 8.1531 8.1308 0.1350	Adduct M+H M+H M+Na M+Na	err [ppm] 0.6 0.3 0.3 0.0	Z 1+ 1+ 1+ 1+	mSigma 759.8 n.a. 760.6 n.a.	l 8474 59887 14509 104146		