Strongly emissive white-light-emitting silver iodide based inorganic-organic hybrid structures with comparable quantum efficiency to commercial phosphors

Fang Lin, ^a Wei Liu^{*,a} Hao Wang,^a and Jing Li^{*,b,a}

- a. Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, China
- b. Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA

Supporting information

Materials. Materials. AgI (99.99% metals basis, Aladdin), CuI (AR, \geq 99.5%, Aladdin), N,N-Dimethylformamide (DMF, AR,99.5%,Macklin),Dichloromethane (DMC, ACS, \geq 99.5%, Aladdin),4,4'-bipyridine, (4,4'-bpy, 98%, Aladdin), triphenylphosphine (tpp, GC,>99.0%, Aladdin).

Synthesis of 1D-Ag₂I₂(tpp)₂(4,4'-bpy) (1). The synthesis of 1 was carried out by a modified version of the reported method.^{1, 2} AgI (0.05 g, 0.2 mmol), tpp (0.13 g, 0.5 mmol), 4,4'-bpy (0.08 g, 0.5 mmol) was added into 8 ml DMF/DCM (v:v=1:1). The reaction mixture has been stirred under magnetic stirring at room temperature. Pure phase of powder sample was collected by filtration after 8 h of continuous stirring. Upon completion of reactions, powder samples were collected by filtration from the reaction solution and washed with a small amount of methanol three times. These samples were then dried in a vacuum oven overnight before other measurements were made. The yield is 68% based on Ag.

Synthesis of 1D-Ag_{2-x}Cu_xI₂(tpp)₂(4,4'-bpy) (2-5). The syntheses of substituted compounds 1D-Ag_{2-x}Cu_xI₂(tpp)₂(4,4'-bpy) (x<2) are similar as that of their parent structure **1**. A stock solution of 10⁻⁴ M CuI in DMF/DCM (v:v=1:1) was pre-made. The substituted structures obtained are 1D-Ag_{2-x}Cu_xI₂(tpp)₂(4,4'-bpy) (x = 0.001, **2**; x = 0.005, **3**; x = 0.01, **4**; x = 0.02, **5**). All products were collected by filtration and dried in vacuum oven for further characterization. The yield is ~70% based on Ag for **2-5**.

Synthesis of $1D-Cu_2I_2(tpp)_2(4,4'-bpy)$ (6).³ The synthesis of 6 is similar as that of 1 except using CuI instead of AgI.³ Pure phase of powder sample was collected by filtration after 8 h of continuous stirring and was dried in vacuum overnight. The yield is 83% based on Cu.

Powder X-ray diffraction (PXRD). PXRD analyses were carried out on a Bruker D8 Advance automated diffraction system using Cu K α radiation ($\lambda = 1.5406$ Å). The data were collected at room temperature in a 2 θ range of 3–50° with a scan speed of 1°/min. The operating power was 40 kV/40 mA.

Optical diffuse reflectance measurements. Optical diffuse reflectance spectra were measured at room temperature on a Shimadzu UV-3600 spectrophotometer. Data were collected in the wavelength range of 300-1200 nm. BaSO₄ powder was used as a standard (100% reflectance). A similar procedure as previously described was used to collect and convert the data using the Kubelka-Munk function. The scattering coefficient (S) was treated as a constant since the average particle size of the samples used in the measurements was significantly larger than 5 μ m.

Thermogravimetric (TG) analysis. TG analyses of the title compounds were performed on a computer-controlled TG 550 (TA Instrument). Pure powder samples were loaded into platinum pans and heated with a ramp rate of 10 °C/min from room temperature to 700 °C.

Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) measurements. The percentages of Cu present in the final samples were estimated by ICP-MS using an Agilent 7700 instrument.

Photoluminescence measurements. Excitation spectra were measured at room temperature on a FLS1000 spectrofluorometer (Edinburgh Instruments) monitored at

2

maximum of emission spectra. Steady-state photoluminescence spectra were obtained at room temperature on a FLS1000 spectrofluorometer.

Internal quantum yield measurements. Internal quantum yields of samples in powder form were measured on a C9920-03 absolute quantum yield measurement system (Hamamatsu Photonics) with a 150 W xenon monochromatic light source and 3.3 inch integrating sphere.

Time-resolved photoluminescence. Time-resolved emission data were collected at room temperature using the FLS100 spectrofluorometer. The dynamics of emission decay were monitored by using the FLS1000's time-correlated single-photon counting capability (1024 channels; 10 μ s window) with data collection for 10,000 counts. Excitation was provided by an Edinburgh EPL-360 picosecond pulsed diode laser.

DFT Calculations. First-principle calculations of the band structure (BS) and density of states (DOS) of compounds 1 were carried out using the CASTEP code implemented in the Material studio 5.0 package. Generalized gradient approximations (GGA) with Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional (xc) were used in all calculations. The plane-wave basis set energy cutoff was set at 10.0 eV, ultrasoft pseudopotentials were used for all chemical elements and the total energy tolerance was set to be 1×10^{-5} eV/atom.

Fabrication of LED bulbs. Selected phosphors **2-4** (0.5 g) was added into 2 mL binder solution and well dispersed by stirring. The solution mixture was then applied onto the surface of a 1 cm 360 nm LED chip and allowed to dry in open air. This process was then repeated three times to ensure uniform coating.

Compound	Theoretical	Experimental	
2	0.05%	0.07%	
3	0.25%	0.33%	
4	0.5%	0.68%	
5	1.0%	1.48%	

Table S1. Theoretical Cu-Ag ratio and experimental ratio determined by ICP-MS

Compound		С %	Н%	N %
1	Calculated	48.0	3.3	2.4
	Experimental	47.6	3.2	2.5
2	Calculated	48.0	3.3	2.4
	Experimental	48.1	3.2	2.4
3	Calculated	48.0	3.3	2.4
	Experimental	47.9	3.2	2.3
4	Calculated	48.0	3.3	2.4
	Experimental	47.8	3.4	2.3
5	Calculated	48.0	3.3	2.4
	Experimental	47.6	3.2	2.4
6	Calculated	52.0	3.6	2.6
	Experimental	51.6	3.5	2.5

Table S2. Elemental analysis results for compounds 1-6.

Table S3. The cost of the raw materials compared with commercial phosphor YAG. The price of the chemical species has been estimated from Alibaba.com.

Chemical Species	Price (\$/Kg)
AgI	~400
CuI	~30
triphenylphosphine	~10
4,4'-bipyridine	~200
YAG: Ce	~1000

Figure S1. PXRD patterns of compounds 1-6 compared to simulated patterns. From bottom to top: simulated 1, as made 1, as made 2, as made 3, as made 4, as made 5, as made 6, simulated 6.

Figure S2. TGA plots of 1 (black), 4 (red) and 6 (blue).

Figure S3. Calculated band structure for 1.

Figure S4. Excitation spectra of 1 (black, $\lambda_{em} = 460$ nm), 4 (red, $\lambda_{em} = 460$ nm) and 6 (blue, $\lambda_{em} = 550$ nm).

Figure S5. Emission spectra of 2 under various excitation energies.

Figure S6. Luminescence decay spectra of 4 at 460 nm (black) and 550 nm (red). $\lambda_{ex} = 360$ nm.

References

- 1. W. Liu, Y. Fang, G. Z. Wei, S. J. Teat, K. Xiong, Z. Hu, W. P. Lustig and J. Li, *Journal of the American Chemical Society*, 2015, **137**, 9400-9408.
- 2. J. T. Sampanthar and J. J. Vittal, *Cryst. Eng.*, 2000, **3**, 117-133.
- 3. R.-Z. Li, D. Li, X.-C. Huang, Z.-Y. Qi and X.-M. Chen, *Inorg. Chem. Commun.*, 2003, **6**, 1017-1019.