Enantioselective (3+2) Cycloaddition *via* N-Heterocyclic Carbene-Catalyzed Addition of Homoenolate to Cyclic N-Sulfonyl Trifluoromethylated Ketimines: Synthesis of Fused N-Heterocycles γ-Lactams

Zhen-Zhen Zhang, Yongna Zhang,* Hui-Xin Duan, Zhuo-Fei Deng and You-Qing Wang*

Henan Provincial Key Laboratory of Polyoxometalate Chemistry, Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China. E-mail: zhangyongna@henu.edu.cn; wyouqing@hotmail.com

Supporting Information

Table of Contents.

1.	General Information	S1
2.	More results on the condition optimization of (3+2) cycloaddition reaction	
3.	Preparation of substrates 1 and NHC catalyst C-6	
4.	General procedure for NHC-catalyzed (3+2) cycloaddition reaction	
5.	Transformations of product 3a	S11-13
6.	X-ray structure for compound 3e	S13
7.	Copy of NMR, HRMS and HPLC for new compounds	S14

1. General information

General: ¹H and ¹³C NMR spectra were recorded on Bruker DRX-300 spectrometers, and ¹⁹F NMR spectra were recorded on Bruker DRX-400 spectrometers. The chemical shifts for ¹H NMR were recorded in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃, d 7.26 ppm). The chemical shifts for ¹³C NMR were recorded in ppm downfield using the central peak of deuterochloroform (77.0 ppm) as the internal standard. The *ee* values determination was carried out using chiral HPLC with Daicle chiral column on Agilent 1200. Flash column chromatography was performed on silica gel (200-300 mesh). TLC analysis was performed using glass-backed plates coated with 0.2 mm silica. The solvents were distilled from appropriate drying agents prior to use, unless otherwise noted. Cyclic imines were prepared according to the procedures reported in the literature.^[1]

2. More results on the condition optimization of (3+2) annulation reaction

Table S1 Effect of temperature and concentrations^a

^[1] (a) D. V. Sevenard, M. Vorobyev, V. Y. Sosnovskikh, H. Wessel, O. Kazakova, V. Vogel, N. E. Shevchenko, V. G. Nenajdenko, E. Lork and G.- E. Röschenthaler, *Tetrahedron*, 2009, **65**, 7538; (b) B. H. Brodsky and J. D. Bois, *J. Am. Chem. Soc.*, 2005, **127**, 15391; (c) M.-W. Chen, X. C. Mao, Y. Ji, J. j. Yuan, Z. H. Deng and Y. Y. Peng, *Tetrahedron Lett.*, 2019, **60**, 151280.

Entry	Concentration of 1a [mol/l]	T [°C]	Yield $[\%]^b$	dr ^c	$ee [\%]^d$
1	0.1	40	90	20:1	98
2	0.1	25	89	20:1	99
3	0.33	25	90	14:1	98
4	0.17	25	89	20:1	94
5	0.13	25	99	14:1	92
6	0.067	25	94	>20:1	99
7	0.05	25	96	>20:1	99

^{*a*} Reaction conditions: **1a** (0.05 mmol), **2a** (0.15 mmol). ^{*b*} Isolated yield. ^{*c*} Determined by ¹H NMR.

^{*d*} Determined by HPLC using a chiral column.

Scheme S1 Screening for catalysts

3. Preparation of substrates 1 and NHC catalyst C-6

The known cyclic imines $1a^{[1a]}$, $1d^{[1b]}$, $1e^{[1c]}$, $1g^{[1b]}$, $1h^{[1a]}$, $1j^{[1b]}$ were prepared according to the modified procedures in the literature.

3.1 Preparation of substrates 1

1) Preparation of 2,2,2-trifluoro-2'-hydroxyacetophenone

Typical procedure according to the modified procedure in the literature^[1b]: (1e as an example)

S-1e: To a solution of 2-bromo-5-chlorophenol (5.0 g, 25 mmol) and dihydropyran (3.8 mL, 42.5 mmol) in CH_2Cl_2 (15 ml) was added PPTS (628.2 mg, 2.5 mmol). The resulting mixture was stirred at room temperature for 18 h. The reaction was quenched with H_2O , and the product was extracted with CH_2Cl_2 . The combined organic layer was washed with brine, dried over Na_2SO_4 and evaporated. The crude mixture was purified by silica gel column chromatography to afford **S-1** (4.94g, 71% yield) as a colorless oil.

S-2e: 1) *n*-Butyllithium (2.5 M in hexanes, 8.2 mL, 21 mmol, 1.2 equiv) was added dropwise to a -78 °C solution of **S-1e** (5.0 g, 17 mmol) in 45 mL of THF. The resulting **S-1e** suspension was stirred at -78 °C for 20 min, then neat ethyl trifluoroacetate (4.0 mL, 34 mmol, 2.0 equiv) was added via syringe. The precipitate dissipated, and the homogenous solution was stirred for 1.5 h at -78 °C. The reaction was quenched at -78 °C by the addition of 20 mL of a 1/2 saturated aqueous NH₄Cl. The mixture was transferred to a separatory funnel, the organic layer was collected, and the aqueous layer was extracted with 3 x 15 mL of Et₂O. The combined organic extracts were washed with 15 mL saturated aqueous NaCl, dried over anhydrous MgSO₄, and concentrated under reduced pressure to afford an oily residue. 2) The unpurified material was dissolved in 20 mL of EtOH and to the solution was added PPTS (427.2 mg, 1.7 mmol). The resulting solution was reflux for 12 h. The mixture was concentrated under reduced pressure, and then was extracted with 3 x 30 mL of ether, dried over MgSO₄. Purification by chromatography on silica gel (Pentane) furnished the desired 2,2,2-trifluoro-2'-hydroxyacetophenone as a colorless oil. The determined purity of **S-2e** by nuclear magnetic internal standard method is 52%.

To an ice cold solution of 5-bromosalicylaldehyde **S-3** (1g, 5 mmol) and TMSCF₃ (853 mg, 6 mmol, 1.2 equiv) in 8 mL of THF was added 1 mL TBAF (1.0 M in THF, 20 mol%). The solution was reflux for 10 h. Following this time, a 4.4 M aqueous solution of HCl (10 mL) was slowly added. The mixture was stirred for 1 h then diluted with 10 mL of EtOAc, and solid Na₂CO₃ was cautiously added. Once effervescence had ceased, the solution was dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of this material by chromatography on silica gel afforded the desire product **S-4** (731.7 mg, 54%).

To a solution of S-4 (1.08 g, 4 mmol) in 15 mL of CH_2Cl_2 was added TEMPO (0.2 mmol, 31.2 mg) followed by PhI(OAc)₂ (2.56 g, 8 mmol). The mixture was stirred for 13 h and quenched by the addition of 1.0 M aqueous $Na_2S_2O_3$. The mixture was transferred to a separatory funnel and the organic layer was collected. The aqueous layer was extracted with 3 x 20 mL of CH_2Cl_2 . The combined organic fractions were dried over Na_2SO_4 , and concentrated under reduced pressure. Purification of crude product by chromatography on silica gel afforded the desired product S-2f (699.4 mg, 65%).

2) Preparation of cyclic N-sulfonyl trifluoromethylated ketimines 1:

ClSO₂NH₂ was prepared by HCOOH and ClSO₂NCO in situ: To an ice cold solution, anhydrous formic acid (1.38g, 30 mmol) was dropwise slowly to the flask of CISO₂NCO (4.24g, 30 mmol), then stirred at room temperature until there were no bubbles. The resulting solid was CISO₂NH₂, It is directly used in the follow reaction. To a solution of 2-trifluoroacetylphenol S-2 in DMA was quickly transferred solid H₂NSO₂Cl (3.0 equiv.). Caution: a mild exotherm was noted upon combining these reagents. After stirring for 12 h, the reaction was quenched by the addition of 3 mL of H₂O and transferred to a separatory funnel with 10 mL of Et₂O. The organic layer was separated, and the aqueous layer was extracted with 3 x 5 mL of Et₂O. The combined organic layers were washed successively with 2 x 3 mL of H₂O and 1 x 5 mL of brine, dried over MgSO₄, and concentrated under reduced pressure. Purification by chromatography on silica gel afforded the desired cyclic ketimines 1.

1b: 1.83 g, yield: 61%, colorless oil; ¹H NMR (300 MHz, CDCl₃): δ 7.64-7.58 (m, 2H), 7.45 (q, J = 4.3 Hz 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.2 (d, J = 249.1Hz), 151.1 (d, J = 2.5 Hz), 126.3 (d, J = 24.1 Hz), 121.5 (d, J = 8.1 Hz), 118.1 (q, J

= 279.6 Hz), 114.8 (q, J = 3.3 Hz), 114.5 (q, J = 3.3 Hz), 112.1 (d, J = 8.5 Hz); ¹⁹F NMR (376) MHz, CDCl₃): δ -67.39, -110.88; HRMS (ESI): m/z calculated for C₈H₄F₄NO₃S⁺ (M+H)⁺ 269.9843, found: 269.9833.

1c: 0.78 g, yield: 58%, m.p. 62.1-62.3 °C ¹H NMR (300 MHz, CDCl₃): δ 8.03-7.98 (m, 1H), 7.27-7.21 (m, 1H), 7.17-7.14 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 160.5, 157.8, 154.9 (d, J = 3.9 Hz), 139.6 (d, J = 11.5 Hz), 117.8 (q, J = 278.6 Hz),

115.6 (d, J = 3.7 Hz), 114.8 (d, J = 26.4 Hz), 103.5 (d, J = 17.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -70.31, -70.40, -98.02, -98.12; HRMS (ESI): m/z calculated for $C_8H_4F_4NO_3S^+$ (M+H)⁺ 269.9843, found 269.9852.

1f: 1.83 g, yield: 61%, m.p. 95.7-96.1 °C; ¹H NMR (300 MHz, CDCl3): δ 8.03 (s, 1H), 7.96 (d, J = 8.9 Hz, 1H), 7.33 (d, J = 8.9 Hz, 1H); ¹³C NMR (100 MHz, CF₃ CDCl3): δ 161.1 (q, J = 37.8 Hz), 153.9, 141.5, 130.8 (q, J = 3.5 Hz), 121.3, 119.7, 118.1 (q, J = 279.8 Hz), 112.8; ¹⁹F NMR (376 MHz, CDCl3): δ -67.04; HRMS (EI): m/z calculated for $C_8H_3BrF_3NO_3S^+(M)^+$ 328.8964, found: 328.8979.

1i: 1.39 g, yield: 41%, m.p. 60.1-60.3 °C ¹H NMR (300 MHz, CDCl₃):
$$\delta$$

7.90-7.87 (m, 2H), 7.36-7.33 (m, 1H), 1.37 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 162.4 (q, J = 37.1 Hz), 152.9, 150.3, 136.5, 124.7 (q, J = 3.3 Hz), 118.4 (q, J =

279.5 Hz), 119.1, 111.2, 35.0, 31.0; ¹⁹F NMR (376 MHz, CDCl₃): δ -66.84; HRMS (ESI): m/z calculated for $C_{12}H_{13}F_3NO_3S(M+H)^+$ 308.0563, found: 308.0567.

1k: 1.09 g, yield: 32%, m.p.109.2-109.4 °C ¹H NMR (300 MHz, CDCl₃): δ 7.41-7.36 (m, 2H), 7.33-7.32 (m, 1H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.0 (q, J = 37.3 Hz), 157.3, 148.9, 125.6, 120.6, 118.3 (q, J = 279.6 Hz),

CDCl₃):

112.0, 111.2 (q, J = 3.3 Hz), 56.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -67.14; HRMS (ESI): m/z calculated for $C_9H_7F_3NO_4S^+(M+H)^+$ 282.0042, found 282.0045.

m/z calculated for $C_{12}H_7F_3NO_3S^+$ (M+H)⁺ 302.0093, found 302.0096.

3.2 Preparation of NHC catalyst C-6^[2]

The compound **8** (2.2 mmol) and the hydrazine hydrochloride (2.2 mmol) were dissolved in the mixed solvent of CH₂Cl₂ and MeOH (14 mL, v/v, 1/1) under the protection of argon. HCl (4 M in dioxane, 0.055 mL, 0.22 mmol) was added to the solution. The reaction mixture was stirrred at r.t. overnight. The mixture was evaporated to dryness to afford the crude product, which was directly used in the next step without further purification. The crude compound **9** was dissolved in chlorobenzene (6 mL) and then, HC(OEt)₃ (3.3 mL) and HCl (4 M in dioxane, 0.5 mL, 2 mmol) were added. The reaction mixture was heated at 110 °C for 0.5 h. The solvent was removed under reduced pressure and the product was purified via flash column chromatography on silica gel (CH₂Cl₂/MeOH = 15/1) to afford the triazolium salt as yellow solid 473 mg, 50% yield. R_f = 0.20 (DCM/MeOH, 20:1), ¹H NMR (300 MHz, CDCl₃) δ 12.55 (s, 1H), 8.32 (s, 1H), 8.13 (d, *J* = 8.2 Hz, 1H), 7.40 (d, *J* = 8.3 Hz, 1H), 7.12 (s, 3H), 5.21 (s, 1H), 5.04 (s, 2H), 3.55 (d, *J* = 17.4 Hz, 1H), 3.22 (d, *J* = 17.5 Hz, 1H), 3.15-2.86 (*m*, 1H), 2.64-2.44 (m, 1H), 2.10-1.90 (m, 1H), 1.37 -0.98 (m, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 153.5, 148.8, 147.8 (d, *J* = 7.7 Hz), 146.0, 145.6, 145.1, 138.3, 128.4, 126.0, 124.8, 122.7, 122.2, 119.7, 61.8, 60.3, 37.8, 34.5, 29.1, 28.6, 24.4, 24.1, 23.9, 23.7, 23.4; HRMS (ESI) m/z calcd for C₂₇H₃₃N₄O₃⁺ (M-Cl)⁺ 461.2547, found 461.2544.

4. General procedure for NHC-catalyzed (3+2) cycloaddition reaction

General procedure: The solution of DIPEA (0.02 mmol, 20 mol%) in DCM was added to the mixture of NHC cat. C-6 (0.02 mmol, 20 mol%) and *N*-sulfonyl ketimines 1 (0.1 mmol). Then the

^[2] (a) S.-X. Dong, M. Frings, H. C. Cheng, J. Wen, D. Zhang, R. Gerhard and B. Carsten, *J. Am. Chem. Soc.*, 2016, **138**, 2166; (b) X.-Y. Chen, Q. Liu, P. Chauhan, S. Li, A. Peuronen, K. Rissanen, E. Jafari and D. Enders, *Angew. Chem. Int. Ed.*, 2017, **56**, 6241.

DCM (2 ml) was added, the α,β -unsaturated aldehydes 2 (0.3 mmol) was added. The reaction bottle was sealed and then stirred at 25 °C in showed reaction time. Direct purification of the crude reaction mixture by column chromatography on a silica gel (PE/EA) gave the desired annulation products. The enantiomeric excess was determined by HPLC, dr was determined by ¹H NMR. Racemic samples for the standard of chiral HPLC spectra were prepared using racemic NHC precursor C-17 as the catalyst.

(1S,10bS)-1-phenyl-10b-(trifluoromethyl)-1,10b-dihydrobenzo[e]pyrrolo[1,2-c][

1,2,3]oxathiazin-3(2H)-one 5,5-dioxide (3a): R_f = 0.48 (PE/EA, 3:1); White solid, 34.3 mg, 89% yield, 99% ee, >20:1 dr, $\left[\alpha\right]^{28}$ = 54.7 (c 1.5, CHCl₃); m.p. 149.9-150.4 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.27 (m, 1H), 7.22-7.12 (m, 4H), 7.05-6.90 (m, 4H), 4.24 (d, J = 8.7 Hz, 1H), 3.41-3.52 (m, 1H), 2.65 (dd, J = 18.0, 2.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 149.4, 138.7, 131.6, 129.7 (d, *J* = 1.8 Hz), 129.4, 128.4, 127.1, 126.3, 124.5 (q, J = 286.7 Hz), 119.4, 118.7, 73.7 (q, J = 30.0 Hz), 45.4, 38.9 (q, J = 2.6 Hz); ¹⁹F NMR $(376 \text{ MHz, CDCl}_3) \delta$ -76.19, -112.64; HRMS (ESI) m/z calculated for C₁₇H₁₃F₃NO₄S⁺ (M+H)⁺ 384.0512, found 384.0513; HPLC (Chiralpak IC-H column, hexane/iPrOH = 85/15, 1.0 mL/min, 210 nm): $t_1 = 14.8 \text{ min (major)}, t_2 = 16.9 \text{ min}.$

(1S,10bS)-9-fluoro-1-phenyl-10b-(trifluoromethyl)-1,10b-dihydrobenzo[e]pyr rolo[1,2-c][1,2,3]oxathiazin-3(2H)-one 5,5-dioxide (3b): R_f = 0.44 (PE/EA, 3:1);

White solid, 32.3 mg, 80% yield, 94% *ee*, >20:1 dr, $[\alpha]_{D}^{28} = 36.1$ (*c* 1.5, CHCl₃); m.p. 203.0-203.5 °C; ¹H NMR (300 MHz, CDCl₃) & 7.25-7.17 (m, 3H), 7.17-7.07 (m, 1H), 7.08-6.95 (m, 3H), 6.69 (dd, J = 8.7, 2.8 Hz, 1H), 4.20 (d, J = 8.7 Hz, 1H), 3.46 (dd, J = 18.2, 8.7 Hz, 1H), 2.69 (d, J = 18.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 171.6, 159.7 (d, J = 247.5 Hz), 145.35 (d, J = 3.0 Hz), 138.2, 129.6, 128.8, 127.0, 124.3 (q, J = 286.7 Hz), 121.1 (d, J = 8.7 Hz), 120.4 (d, J = 8.5 Hz), 118.7 (d, J = 23.6 Hz) ,116.7 (d, J = 26.3 Hz), 73.7 (q, J = 32.3 Hz), 45.4, 38.7 (q, J = 2.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.19, -112.64; HRMS (ESI) m/z calculated for C₁₇H₁₂F₄NO₄S⁺ (M+H)⁺ 402.0417, found 402.0415; HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 85/15, 1.0 mL/min, 210 nm): t₁ = 12.3 min (major), t₂ = 13.4 min.

> (1S,10bS)-8-fluoro-1-phenyl-10b-(trifluoromethyl)-1,10b-dihydrobenzo[e]pyrr olo[1,2-c][1,2,3]oxathiazin-3(2H)-one 5,5-dioxide (3c): R_f = 0.44 (PE/EA, 3:1);

White solid, 37.7 mg, 94% yield, 98% *ee*, 17:1 dr, $[\alpha]_{D}^{28} = 69.0$ (*c* 1.5, CHCl₃); m.p.117.6-118.1 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.25-7.14 (m, 3H), 7.09-6.99 (m, 2H), 6.98-6.84 (m, 2H), 6.78-6.67 (m, 1H), 4.21 (d, J = 8.8 Hz, 1H), 3.53-3.38 (m, 1H), 2.67 (dd, J = 18.1, 2.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 171.7, 164.8, 161.4, 150.0 (d, J = 11.9 Hz), 138.44, 131.03 (d, *J* = 9.7 Hz), 129.6, 128.6, 127.1, 124.4 (q, *J* = 286.4 Hz), 114.7 (d, *J* = 4.3 Hz), 114.0 (d, J = 21.9 Hz), 107.7 (d, J = 26.0 Hz), 73.5 (q, J = 30.3 Hz), 45.3, 38.7 (q, J = 2.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -70.41, -76.69, -105.04; HRMS (ESI) m/z calculated for $C_{17}H_{12}F_4NO_4S^+$ (M+H)⁺ 402.0418, found 402.0414. HPLC (Chiralpak IC-H column, hexane/iPrOH = 80/20, 1.0 mL/min, 210 nm): $t_1 = 10.1$ min (major), $t_2 = 11.5$ min.

(1S,10bS)-9-chloro-1-phenyl-10b-(trifluoromethyl)-1,10b-dihydrobenzo[e]pyr rolo[1,2-c][1,2,3]oxathiazin-3(2H)-one 5,5-dioxide (3d): R_f = 0.56 (PE/EA, 3:1); White solid, 39.1 mg, 93% yield, 98% *ee*, >20:1 dr, $[\alpha]_{D}^{28} = -35.0$ (*c* 1.5, CHCl₃); m.p. 188.0-188.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.51-7.32 (m, 5H), 7.24-7.18 (m, 2H), 7.11 (s, 1H), 4.37 (d, J = 8.7 Hz, 1H), 3.63 (dd, J = 18.1, 8.7 Hz, 1H), 2.88 (d, J = 18.1 Hz, 1H); ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3) \delta 171.5, 147.8, 138.1, 132.0, 131.6, 129.9-129.4 \text{ (m)}, 128.8, 127.1, 124.3 \text{ (q}, J = 10.1 \text{ m})$ 286.8 Hz), 120.7, 120.1, 73.6 (q, J = 30.1 Hz), 45.4, 38.5 (q, J = 2.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.08; HRMS (ESI) m/z calculated for C₁₇H₁₂ClF₃NO₄S⁺ (M+H)⁺ 418.0122, found 418.0123; HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 80/20, 1.0 mL/min, 210 nm): t₁ = 9.2 min(major), t₂ = 10.3 min.

(1*S*,10b*S*)-8-chloro-1-phenyl-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*]pyrr olo[1,2-c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (3e): $R_f = 0.34$ (PE/EA, 3:1);

^{F₃C^{*}} White solid, 37.1 mg 89% yield, 98% *ee*, >20:1 dr, $[\alpha]^{28}_{D} = 44.5$ (*c* 1.5, CHCl₃); m.p. 185.0-185.6 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.25-7.14 (m, 4H), 7.09-6.94 (m, 3H), 6.88 (d, J = 8.6 Hz, 1H), 4.21 (d, J = 8.8 Hz, 1H), 3.46 (dd, J = 18.2, 8.8 Hz, 1H), 2.67 (d, J = 18.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 171.6, 149.5, 138.4, 137.3, 130.4 (d, J = 2.0 Hz), 129.6, 128.7, 127.1, 126.7, 124.4 (q, J = 286.6 Hz), 120.2-119.8 (m), 117.2, 73.6 (q, J = 30.3 Hz), 45.32, 38.7 (q, J = 2.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.58; HRMS (ESI) m/z calculated for C₁₇H₁₂ClF₃NO₄S⁺ (M+H)⁺ 418.0122, found 418.0119; HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 80/20, 1.0 mL/min, 210 nm): t₁ = 9.4 min (major), t₂ = 10.7 min.

(1*S*,10b*S*)-9-bromo-1-phenyl-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*]pyr rolo[1,2-c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (3f): $R_f = 0.58$ (PE/EA, 3:1); White solid, 37.0 mg, 80% yield, 98% *ee*, >20:1 dr, $[\alpha]^{28}_{D} = -111.03$ (*c* 1.5, CHCl₃); m.p. 175.5-176.0 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.40 (dd, J = 8.7, 2.3 Hz, 1H), 7.27-7.18 (m, 3H), 7.10-6.95 (m, 4H), 4.20 (d, J = 8.8 Hz, 1H), 3.46 (dd, J = 18.3, 8.8 Hz, 1H), 2.71 (d, J = 18.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 171.6, 148.3, 138.1, 134.5, 132.6 (d, J = 2.0 Hz), 129.5, 128.8, 127.1, 124.3(q, J = 286.7 Hz), 121.0, 120.3, 119.3, 73.5 (q, J = 30.4 Hz), 45.3, 38.5 (q, J = 2.5 Hz); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -70.14, -76.13; HRMS (ESI) m/z calcd for C₁₇H₁₁BrF₃NO₄SNa⁺ (M+Na)⁺ 483.9437, found 483.9436; HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 80/20, 1.0 mL/min, 210 nm): t₁ = 14.1 min (major), t₂ = 16.0 min.

 $(15,10bS)-1-phenyl-9,10b-bis(trifluoromethyl)-1,10b-dihydrobenzo[e]pyrrol o[1,2-c][1,2,3]oxathiazin-3(2H)-one 5,5-dioxide (3g): R_f = 0.48 (PE/EA, 3:1); Light yellow solid, 16.4 mg, 37% yield, 97% ee, >20:1 dr, <math>[\alpha]^{28}_{D} = 16.0$ (c 1.0, CHCl₃); m.p. 199.2-200 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.56 (d, J = 8.5 Hz, 1H), 7.30-7.16 (m,

5H), 7.02 (s, 2H), 4.25 (d, J = 8.8 Hz, 1H), 3.49 (dd, J = 18.3, 8.8 Hz, 1H), 2.75 (d, J = 18.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 151.5, 138.0, 129.6, 129.0, 128.9, 128.6 (q, J = 3.7 Hz), 128.0 (q, J = 12.0 Hz), 127.3, 124.3 (q, J = 286.6 Hz), 122.5 (q, J = 271.0 Hz), 120.3, 119.6, 73.7 (q, J = 30.3 Hz), 45.5, 38.4 (q, J = 2.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.01, -76.10; HRMS (ESI) m/z calculated for C₁₈H₁₁F₆NO₄SNa⁺ (M+Na)⁺ 474.0205, found 474.0200; HPLC (Chiralpak IGX2-H column, hexane/*i*PrOH = 90/10, 1.0 mL/min, 210 nm): t₁ = 17.2 min, t₂ = 18.4 min (major).

(1S,10bS)-9-methyl-1-phenyl-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*]p yrrolo[1,2-c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (3h): $R_f = 0.34$ (PE/EA,

^{F₃C_{Ph} 3:1); White solid, 38.9 mg, 98% yield, 99% *ee*, >20:1 dr, $[\alpha]^{28}_{D} = 17.2$ (*c* 1.0, CHCl₃); m.p. 146.3-146.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.25-7.13 (m, 3H), 7.11-6.96 (m, 4H), 6.69 (s, 1H), 4.21 (d, *J* = 8.7 Hz, 1H), 3.51-3.38 (m, 1H), 2.73-2.56 (m, 1H), 2.06 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 172.2, 147.3, 138.9, 136.4, 132.0, 130.2, 129.3, 128.4, 127.2, 124.6 (q, *J* = 2.6 Hz), 119.0, 118.3, 73.7 (q, *J* = 29.7 Hz), 45.4, 38.8 (q, *J* = 2.6 Hz), 20.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -70.37, -76.76; HRMS (ESI) m/z calculated for C₁₈H₁₅F₃NO₄S⁺ (M+H)⁺ 398.0668, found 398.0670; HPLC (Chiralpak IC-H column, hexane/iPrOH = 80/20, 1.0 mL/min, 210 nm): t₁}

 $= 14.0 \text{ min} \text{ (major)}, t_2 = 15.6 \text{ min}.$

(1*S*,10*bS*)-9-(tert-butyl)-1-phenyl-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*i* $_{F_{SC}}$, *i* $_{Ph}$, *i* $_{S}$, *i* $_{Ph}$, *i* $_{S}$, *i* $_{Ph}$, *i* $_{S}$

(1*S*,10*bS*)-1,9-diphenyl-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*]pyrrolo[1,2-c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (3j): $R_f = 0.58$ (PE/EA, 3:1); White solid, 42.4 mg, 92% yield, 99% *ee*, 17:1 dr, $[\alpha]^{28}_{D} = -71.3$ (*c* 1.5, CHCl₃); m.p. 89.5-90.0 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.56-7.47 (m,1H), 7.45-7.37 (m, 3H), 7.36-7.27 (m, 4H), 7.17 (d, *J* = 7.2 Hz, 2H), 7.13-7.03 (m, 3H), 4.33 (d, *J* = 8.8 Hz, 1H), 3.64-3.45 (m, 1H), 2.80-2.62 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 172.1, 148.6, 140.0, 139.1, 138.6, 130.3, 129.6, 129.1, 128.9, 128.6, 128.2, 127.4, 127.0, 124.6(q, *J* = 286.6 Hz), 119.7, 119.0, 73.7 (q, *J* = 30.2 Hz), 45.5, 38.9 (q, *J* = 2.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -70.28, -76.98; HRMS (ESI) m/z calculated for C₂₃H₁₇F₃NO₄S⁺ (M+H)⁺ 460.0825, found 460.0826; HPLC (Chiralpak IG-H column, hexane/*i*PrOH = 90/10, 1.0 mL/min, 210 nm): t₁ = 17.3 min, t₂ = 19.6 min (major).

(1*S*,10*bS*)-9-methoxy-1-phenyl-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*] pyrrolo[1,2-c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (3*k*): $R_f = 0.25$ (PE/EA, 3:1); White solid, 40.5 mg, 98% yield, 99% *ee*, >20:1 *dr*, $[\alpha]^{28}_{D} = -17.4$ (*c* 1, CHCl₃); m.p. 156.5-157.2 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.24-7.17 (m, 3H), 7.13-7.00 (m, 3H), 6.81 (dd, *J* = 9.1, 2.9 Hz, 1H), 6.35 (d, *J* = 2.9 Hz, 1H), 4.22 (d, *J* = 8.7 Hz, 1H), 3.52-3.39 (m, 4H), 2.71-2.57 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 172.2, 157.1, 142.9, 139.0, 129.5, 128.5, 127.2, 124.5(q, *J* = 286.6 Hz) 120.3, 119.62 117.5, 114.7, 114.6, 73.7 (q, *J* = 30.1 Hz), 55.7, 45.4, 39.0 (q, *J* = 2.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -70.43, -76.95; HRMS (ESI) m/z calculated for. C₁₈H₁₅F₃NO₅S⁺ (M+H)⁺ 414.0618, found 414.0619; HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 90/10, 1.0 mL/min, 210 nm): t₁ = 24.5 min (major), t₂ = 26.2 min.

(1*S*,10*bS*)-1-(4-fluorophenyl)-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*]pyrr olo[1,2-c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (4b): $R_f = 0.40$ (PE/EA, 3:1); White solid, 38.9 mg, 97% yield, 99% *ee*, 17:1 dr, $[\alpha]^{28}_{D} = 66.0$ (*c* 1.5, CHCl₃); m.p. 146.0-146.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.29 (m, 1H), 7.17 (d, *J* = 8.3 Hz, 1H), 7.07-6.98 (m, 3H), 6.95-6.80 (m, 3H), 4.25 (d, *J* = 8.7 Hz, 1H), 3.46 (dd, *J*

= 18.3, 8.8 Hz, 1H), 2.61 (d, J = 18.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 171.8, 162.2 (d, J = 249.0 Hz), 149.4, 134.6 (d, J = 3.6 Hz), 131.8, 129.6, 128.9, 126.4, 124.4 (q, J = 286.6 Hz), 119.6, 118.5, 116.5 (d, J = 21.6 Hz), 73.7 (q, J = 30.5 Hz), 44.7, 38.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -70.34, -76.61, -112.25; HRMS (ESI) m/z calculated for C₁₇H₁₂F₄NO₄S⁺ (M+H)⁺ 402.0418, found 402.0419; HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 85/15, 1.0 mL/min, 210 nm): t₁ = 14.5 min (major), t₂ = 16.4 min.

(1*S*,10*bS*)-1-(4-chlorophenyl)-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*]pyr rolo[1,2-c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (4c): $R_f = 0.40$ (PE/EA, 3:1);

White solid, 40.3 mg, 96% yield, 98% *ee*, 17:1 dr, $[\alpha]^{28}_{D} = 44.8$ (*c* 1.5, CHCl₃); m.p. 131.0-131.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.31 (m, 1H), 7.21-7.13 (m, 3H), 7.12-6.78 (m, 4H), 4.24 (d, *J* = 8.6 Hz, 1H), 3.46 (dd, *J* = 18.2, 8.7 Hz, 1H), 2.59 (dd, *J* = 18.0, 2.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 171.7, 149.3, 137.2, 134.4, 131.9, 129.6, 129.6, 128.5, 126.5, 124.4 (q, *J* = 286.8 Hz), 119.6, 118.4, 73.6 (q, *J* = 29.9 Hz), 44.8, 38.8 (q, *J* = 2.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -70.33, -76.71; HRMS (ESI) m/z calculated for C₁₇H₁₁ClF₃NO₄SNa⁺ (M+Na)⁺ 439.9942, found 439.9942; HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 85/15, 1.0 mL/min, 210 nm): t₁ = 13.9 min (major), t₂ = 16.5 min.

(1*S*,10*bS*)-1-(4-bromophenyl)-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*]pyr rolo[1,2-c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (4d): $R_f = 0.39$ (PE/EA, 3:1); White solid, 44.9 mg, 97% yield, 99% *ee*, 17:1 dr, $[\alpha]^{28}{}_{D} = 95.2$ (*c* 1.5, CHCl₃); m.p. 120.8-121.3 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.29 (m, 3H), 7.19 (d, *J* = 8.2 Hz, 1H), 7.06 (t, *J* = 7.7 Hz, 1H), 6.92 (d, *J* = 7.5 Hz, 3H), 4.22 (d, *J* = 8.7 Hz, 1H),

3.46 (dd, J = 18.1, 8.7 Hz, 1H), 2.59 (dd, J = 18.2, 2.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 171.7, 149.3, 137.7, 132.6, 131.9, 129.6 (d, J = 1.5 Hz), 128.7, 126.6, 124.3 (q, J = 286.7 Hz), 122.5, 119.6, 118.4, 73.5 (q, J = 30.1 Hz), 44.9, 38.7 (q, J = 2.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -70.32, -76.75; HRMS (ESI) m/z calculated for C₁₇H₁₂BrF₃NO₄S⁺ (M+H)⁺ 461.9617, found 461.9617; HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 85/15, 1.0 mL/min, 210 nm): t₁ = 14.4 min (major), t₂ = 17.7min.

(1*S*,10b*S*)-1-(p-tolyl)-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*]pyrrolo[1,2-c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (4e): $R_f = 0.44$ (PE/EA, 3:1); White solid, 38.7 mg, 97% yield, 99% *ee*, 20:1 dr, $[\alpha]^{28}_{D} = 76.7$ (*c* 1.5, CHCl₃); m.p. 134.0-134.7 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.27 (m, 1H), 7.15 (d, J = 8.3 Hz, 1H), 7.07-6.86 (m, 6H), 4.20 (d, J = 8.7 Hz, 1H), 3.44 (dd, J = 18.1, 8.7 Hz, 1H), 2.61 (d,

J = 18.1 Hz, 1H), 2.21 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 172.2, 149.4, 138.2, 135.7, 131.5, 130.0, 129.8, 127.0, 126.3, 124.6 (q, J = 286.4 Hz), 119.4, 118.8, 73.8 (q, J = 29.8 Hz), 45.1, 39.0 (q, J = 2.6 Hz), 21.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.72; HRMS (ESI) m/z calcd for C₁₈H₁₅F₃NO₄S⁺ (M+H)⁺ 398.0668, found 398.0669; HPLC (Chiralpak IG-H column, hexane/*i*PrOH = 92/8, 1.0 mL/min, 210 nm): t₁ = 23.2min, t₂ = 24.6 min (major).

(1*S*,10*bS*)-1-(4-methoxyphenyl)-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*]p yrrolo[1,2-c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (4f): $R_f = 0.40$ (PE/EA, 3:1); White solid , 37.4 mg, 90% yield, 99% *ee*, 20:1 dr, $[\alpha]_D^{28} = 70.0$ (*c* 1.5, CHCl₃); m.p. 60.0-60.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.30 (m, 1H), 7.15 (dd, J =

8.3, 1.2 Hz, 1H), 7.08-7.00 (m, 1H), 6.95 (d, J = 8.9 Hz, 3H), 6.70 (d, J = 8.5 Hz, 2H), 4.20 (d, J = 8.6 Hz, 1H), 3.70 (s, 3H), 3.52-3.37 (m, 1H), 2.68-2.53 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 172.3, 159.2, 149.3, 131.5, 130.7, 129.8, 128.3, 126.3, 124.5 (q, J = 286.7 Hz), 119.4, 118.8, 114.6, 73.83 (q, J = 29.7 Hz), 55.2, 44.7, 39.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -70.53, -76.65; HRMS (ESI) m/z calculated for C₁₈H₁₅F₃NO₅S⁺ (M+H)⁺ 414.0618, found 414.0612; HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 70/30, 1.0 mL/min, 230 nm): t₁ = 9.9 min (major), t₂ = 11.4 min.

(1*S*,10*bS*)-1-(4-nitrophenyl)-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*]pyrrol o[1,2-c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (4g): $R_f = 0.25$ (PE/EA, 3:1); Light yellow solid, 35.6 mg 83% yield, 99% *ee*, >20:1 dr, $[\alpha]_D^{28} = 55.2$ (*c* 1.5, CHCl₃); m.p. 246.0-246.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (d, *J* = 8.4 Hz, 2H), 7.38 (t, *J* =

7.9 Hz, 1H), 7.31-7.18 (m, 3H), 7.05 (t, J = 7.7 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 4.39 (d, J = 8.7

Hz, 1H), 3.52 (dd, J = 18.2, 8.7 Hz, 1H), 2.62 (d, J = 18.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 171.1, 149.3, 147.5, 145.7, 132.3, 129.2, 128.3, 126.8, 124.6, 124.3 (q, J = 286.5 Hz),119.9, 118.0, 73.30 (q, J = 30.4 Hz), 45.0, 38.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.73; C₁₇H₁₂F₃N₂O₆S⁺ (M+H)⁺ 429.0363, found 429.0366; HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 70/30, 1.0 mL/min, 254 nm): t₁ = 19.5 min (major), t₂ = 22.2 min.

(1*S*,10*bS*)-1-(3-chlorophenyl)-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*]p yrrolo[1,2-c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (4h): $R_f = 0.50$ (PE/EA, 3:1); White solid, 18.1 mg, 43% yield, 99% *ee*, >20:1 dr, $[\alpha]^{28}_{D} = 68.6$ (*c* 1.5, CHCl₃); m.p. 157.5-158.0 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.32 (m, 1H),

7.23-7.02 (m, 5H), 6.95 (d, J = 8.0 Hz, 1H), 6.88 (d, J = 7.5 Hz, 1H), 4.21 (d, J = 8.7 Hz, 1H), 3.52-3.39 (m, 1H), 2.71-2.55 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 171.5, 149.4, 140.6, 135.1, 131.9, 131.0, 129.4, 128.7, 128.0, 126.5, 124.4 (q, J = 286.5 Hz), 124.6, 119.7, 118.4, 73.6 (q, J =30.4 Hz), 45.1, 38.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.62; HRMS (ESI) m/z calculated for C₁₇H₁₂ClF₃NO₄S⁺ (M+H)⁺ 418.0122, found 418.0120; HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 80/20, 1.0 mL/min, 210 nm): t₁ = 10.4 min (major), t₂ = 11.2 min.

(1*S*,10*bS*)-1-(naphthalen-2-yl)-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*]pyr rolo[1,2-c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (4j): $R_f = 0.53$ (PE/EA, 3:1); Light yellow solid, 42.6 mg, 98% yield, 99% *ee*, >20:1 dr, $[\alpha]^{28}_{D} = 120.1$ (*c* 1.5, CHCl₃); m.p. 161.5-162.0 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.77-7.67 (m, 2H),

7.68-7.57 (m, 2H), 7.53-7.40 (m, 2H), 7.25-7.19 (m, 1H), 7.15 (d, J = 8.2 Hz, 1H), 7.11-6.95 (m, 2H), 6.87 (t, J = 7.7 Hz, 1H), 4.43 (d, J = 8.7 Hz, 1H), 3.54 (dd, J = 18.1, 8.8 Hz, 1H), 2.69 (d, J = 18.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 172.1, 149.4, 136.1, 133.0, 132.6, 131.6, 129.8, 129.7, 127.8, 127.7, 126.9, 126.7, 126.4, 124.6 (q, J = 286.6 Hz), 119.4, 118.7, 73.6 (q, J = 29.5 Hz), 45.6, 39.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.89; HRMS (ESI) m/z calculated for C₂₁H₁₅F₃NO₄S⁺ (M+H)⁺ 434.0668, found 434.0668; HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 80/20, 1.0 mL/min, 210 nm): t₁ = 14.0 min (major), t₂ = 15.3 min.

(1*R*,10b*S*)-1-(furan-2-yl)-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*]pyrrolo[1 ,2-c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (4k): $R_f = 0.38$ (PE/EA, 3:1); Light yellow solid, 34.8 mg, 93% yield, 95% *ee*, >20:1 dr, $[\alpha]^{28}_{D} = -41.0$ (*c* 1.5, CHCl₃); m.p. 122.7-123.2 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.32 (m, 1H), 7.26 (s, 1H),

7.21-7.08 (m, 3H), 6.17-6.07 (m, 2H), 4.40 (d, J = 8.6 Hz, 1H), 3.44-3.26 (m, 1H), 2.71 (dd, J = 17.8, 2.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 170.9, 150.0, 149.1, 142.8, 131.6, 128.0 (d, J = 2.0 Hz), 126.4, 124.2 (d, J = 287.5 Hz), 119.4, 118.01, 110.5, 108.9, 73.2 (q, J = 29.9 Hz), 39.6, 36.2 (d, J = 2.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.20; HRMS (ESI) m/z calcd for C₁₅H₁₁F₃NO₅S⁺ (M+H)⁺ 374.0305, found 374.0306; HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 80/20, 1.0 mL/min, 210 nm): t₁ = 13.7 min (major), t₂ = 15.8 min.

(1*R*,10b*S*)-1-ethyl-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*]pyrrolo[1,2-c][1, 2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (41): $R_f = 0.36$ (PE/EA, 3:1); colorless oil,

27.6 mg, 82% yield, 95% *ee*, >20:1 dr, $[\alpha]^{28}{}_{D}$ = -96.9 (*c* 1.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.65-7.48 (m, 1H), 7.45 (d, *J* = 4.6 Hz, 2H), 7.28 (d, *J* = 2.0 Hz, 1H), 3.15-2.89 (m, 2H), 2.63-2.44 (m, 1H), 1.57-1.38 (m, 1H), 1.20-0.97 (m, 1H), 0.89 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.1, 149.8, 131.9, 127.9 (q, *J* = 2.4 Hz), 126.9, 124.6 (q, *J* = 289.0 Hz), 120.0, 117.5, 74.2 (q, *J* = 29.4 Hz), 40.3, 34.06 (q, *J* = 2.7 Hz), 23.2, 10.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.54, -73.56; HRMS (ESI) m/z calculated for C₁₃H₁₃F₃NO₄S⁺ (M+H)⁺ 336.0512,

found 336.0512; HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 80/20, 1.0 mL/min, 210 nm): t₁ = 13.6 min (major), t₂ = 19.8 min.

(1*R*,10b*S*)-1-propyl-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*]pyrrolo[1,2c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (4m): $R_f = 0.36$ (PE/EA, 3:1); White solid, 34.7 mg, 99% yield, 94% *ee*, >20:1 dr, $[\alpha]^{28}_{D} = -122.5$ (*c* 1.5, CHCl₃); m.p. 104.0-104.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.62-7.51 (m, 1H), 7.50-7.40 (m,

2H), 7.28 (d, J = 2.9 Hz, 1H), 3.13-2.97 (m, 2H), 2.58-2.42 (m, 1H), 1.46-1.14 (m, 3H), 1.13-0.95 (m, 1H), 0.84 (t, J = 6.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.1, 149.8, 131.9, 127.9 (d, J = 2.5 Hz), 126.9, 124.6 (q, J = 289.1 Hz), 120.0, 117.5, 74.2 (q, J = 29.4 Hz), 38.8, 34.5 (q, J = 2.6 Hz), 32.0, 18.8, 13.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -73.51; HRMS (ESI) m/z calculated for C₁₄H₁₅F₃NO₄S⁺ (M+H)⁺ 350.0668, found 350.0669. HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 80/20, 1.0 mL/min, 210 nm): t₁ = 12.6min (major), t₂ = 18.8 min.

(1*S*,10*bS*)-1-isopropyl-10*b*-(trifluoromethyl)-1,10*b*-dihydrobenzo[*e*]pyrrolo[1,2 -c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (4n): $R_f = 0.36$ (PE/EA, 3:1); White solid, 34.6 mg, 99% yield, 96% *ee*, >20:1 dr, $[\alpha]_D^{28} = -41.3$ (*c* 1.5, CHCl₃); m.p. 124.0-124.6 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.62-7.53 (m, 1H), 7.52-7.38 (m,

2H), 7.28 (s, 1H), 3.07-2.86 (m, 2H), 2.53 (dd, J = 17.4, 2.4 Hz, 1H), 2.11-1.94 (m, 1H), 0.96 (d, J = 6.9 Hz, 3H), 0.58 (d, J = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.8, 149.7, 131.9, 128.0 (q, J = 2.6 Hz), 126.7, 124.6 (q, J = 287.9 Hz), 120.0, 116.7, 73.8 (q, J = 28.9 Hz), 42.9, 30.1 (q, J = 2.7 Hz), 27.7, 21.2, 13.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -73.88; HRMS (ESI) m/z calcd for C₁₄H₁₅F₃NO₄S⁺ (M+H)⁺ 350.0668, found 350.0668; HPLC (Chiralpak IG-H column, hexane/*i*PrOH = 92/8, 1.0 mL/min, 210 nm): t₁ = 20.6 min (major), t₂ = 22.0 min.

(1*R*,10b*S*)-1-heptyl-10b-(trifluoromethyl)-1,10b-dihydrobenzo[*e*]pyrrolo[1, 2-c][1,2,3]oxathiazin-3(2*H*)-one 5,5-dioxide (4o): $R_f = 0.55$ (PE/EA, 3:1); White solid, 33.9 mg, 84% yield, 95% *ee*, >20:1 *dr*, $[\alpha]^{28}_{D} = -44.7$ (*c* 1.5, CHCl₃); m.p. 84.5-85.0 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.61-7.52 (m, 1H),

7.50-7.39 (m, 2H), 7.28 (d, J = 2.1 Hz, 1H), 3.13-2.95 (m, 2H), 2.59-2.43 (m, 1H), 1.43-1.00 (m, 12H), 0.86 (t, J = 6.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.1, 149.9, 131.9, 127. 9 (q, J = 2.4 Hz), 126.9, 124.6 (d, J = 289.0 Hz), 120.0, 117.6, 74.2 (q, J = 29.2 Hz), 38.9, 34.6 (q, J = 2.4 Hz), 31.5, 30.0, 29.0, 28.9, 25.5, 22.5, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -73.51; HRMS (ESI) m/z calculated for C₁₈H₂₃F₃NO₄S⁺ (M+H)⁺ 406.1294, found 406.1292; HPLC (Chiralpak IG-H column, hexane/*i*PrOH = 95/5, 1.0 mL/min, 210 nm): t₁ = 17.6 min (major), t₂ = 19.4 min.

5. Transformations of product 3a

(4*S*,5*S*)-5-(2-hydroxyphenyl)-4-phenyl-5-(trifluoromethyl)pyrrolidin-2-one (5): The compound 5 was synthesized according to reported literature. To a suspension of LiAlH₄ (1.0 mmol) in THF (5 mL), **3a** (0.2 mmol) was added dropwise at 0 $^{\circ}$ C. The reaction mixture was stirred at room temperature for 1 hour, TLC showed one spot. Water was added to destroy the lithium aluminum hydride, the aqueous layer was extracted with EtOAc three times, the combined organic layers were dried and concentrated to provide the crude product. Purification by

chromatography on silica (PE/EA = 5:1) gave the product as white solid (61.7 mg, 55% yield, 98% *ee*). $R_f = 0.30$ (PE/EA, 3:1); $[\alpha]^{25}{}_{D} = -21.3$ (*c* 1.0, CHCl₃); m.p. 52.1-52.6 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.41 (d, *J* = 8.1 Hz, 1H), 7.35-7.23 (m, 3H), 7.20-7.11 (m, 3H), 7.02-6.93 (m, 1H), 6.87 (dd, *J* = 8.1, 1.5 Hz, 1H), 3.79-3.57 (m, 2H), 3.42 (td, *J* = 9.7, 4.3 Hz, 1H), 2.38-2.19 (m, 1H), 2.16-2.04 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 150.5, 135.5, 130.9, 129.7, 128.3, 128.0, 127.5 (d, *J* = 3.1 Hz), 125.8, 124.7 (q, *J* = 287.0 Hz), 119.7, 118.6, 69.72 (q, *J* = 27.3 Hz), 59.6, 50.1, 31.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.67, -68.76; HRMS (ESI) m/z calculated for C₁₇H₁₇F₃NO⁺ (M+H)⁺ 308.1257, found 308.1256; HPLC (Chiralpak IG-H column, hexane/*i*PrOH = 88/12, 1.0 mL/min, 210 nm): t₁ = 11.7 min (major), t₂ = 47.4 min.

(1*S*,3*R*,10b*S*)-3-hydroxy-1-phenyl-10b-(trifluoromethyl)-1,2,3,10b-tetrahydrobenzo[*e*]pyrro lo[1,2-c][1,2,3]oxathiazine 5,5-dioxide (6): The solution of BH₃ (1M in THF, 0.8 ml, 0.8 mmol) in THF (2 mL) was added 3a (0.2 mmol, 76.6 mg). The reaction mixture was stirred for 4 h at 60 °C. Purification by column chromatography on silica gel (PE/EA = 10:1) afforded the product 6 as white solid (77.3 mg, 68% yield, 98% *ee*). $R_f = 0.53$ (PE/EA, 3:1); $[\alpha]^{28}_{D} = 42.7$ (*c* 1.0, CHCl₃); m.p. 45.0-45.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.26-7.08 (m, 4H), 7.08-6.97 (m, 1H), 6.91-6.72 (m, 3H), 6.55 (d, *J* = 8.1 Hz, 1H), 6.24-6.16 (m, 1H), 4.46 (t, *J* = 8.3 Hz, 1H), 3.34 (s, 1H), 2.40 (q, *J* = 8.8, 6.6 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 151.1, 136.1, 130.8, 129.5, 129.2 (d, *J* = 3.4 Hz), 128.3, 128.1, 125.1, 124.8 (q, *J* = 284.8 Hz), 119.3, 116.1, 88.3, 76.3(q, *J* = 29.7 Hz), 52.1, 38.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -71.66, -73.83; HRMS (ESI) m/z calculated for $C_{17}H_{13}F_{3}NO_{3}S^{+}$ (M-OH)⁺ 368.0563, found 368.0565; HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 80/20, 1.0 mL/min, 210 nm): t₁ = 7.6 min (major), t₂ = 8.9 min. The relative stereochemistry of compound **6** was determined by 2D-NOESY NMR (**Scheme S2**). No NOE effect was observed for between H¹ and H⁴.

(1*S*,10*bS*)-1-phenyl-10*b*-(trifluoromethyl)-1,2,3,10*b*-tetrahydrobenzo[*e*]pyrrolo[1,2-*c*][1,2,3]o xathiazine 5,5-dioxide (7): Compound 6 (0.1 mmol, 38.5mg) was dissolved in DCM (0.5ml) and cooled to -10 °C. Et₃SiH (3.2 eq, 0.32 mmol) was added to the mixture, and then BF₃·Et₂O (3.2eq, 0.32mmol) was added slowly. The temperature of the reaction system increased to 0 °C within 30 min and reacted under 0 °C for another 10 min. Purification by column chromatography on silica gel (PE/EA = 10:1) afforded the product 7 as white solid (30.8 mg 84% yield, 98% *ee*). R_f = 0.56 (PE/EA, 3:1); White solid, 30.8 mg, 84% yield, 98% *ee*, $[\alpha]^{28}_{D} = 28.7$ (*c* 1.5, CHCl₃); m.p. 99.4-100.0 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.21 (d, *J* = 7.2 Hz, 1H), 7.17-7.07 (m, 3H), 7.03 (dd, *J* = 8.2, 1.3 Hz, 1H), 6.88-6.71 (m, 3H), 6.56 (d, *J* = 8.1 Hz, 1H), 4.42-4.29 (m, 1H), 4.18-3.97 (m, 1H), 3.92-3.77 (m, 1H), 2.45-2.30 (m, 1H), 2.32-2.13 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 151.3, 137.0, 130.6, 129.1, 129.0 (d, *J* = 3.4 Hz), 128.3, 127.9, 125.5 (q, *J* = 285.0 Hz), 125.0, 119.3, 117.2, 76.1 (q, *J* = 28.9 Hz), 55.1, 52.4, 31.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.23, -72.82; HRMS (ESI) m/z calcd for C₁₇H₁₅F₃NO₃S⁺ (M+H)⁺ 370.0719, found 370.0719; HPLC (Chiralpak IC-H column, hexane/*i*PrOH = 98/2, 1.0 mL/min, 210 nm): t₁ = 14.3 min (major), t₂ = 15.5 min.

6. X-ray structure for compound 3e

A single crystal of the compound **3e** (CCDC 1919445) was grown from its solution in dichloromethane/isopropanol (1/3), which is suitable for X-ray diffraction analysis. The correctness of the X-ray data and the structure had been checked by using the Check CIF utility on the submission Web site: http://checkcif.iucr.org

Copy of NMR for New Compounds

-40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -15; fl (ppm)

 $\frac{1.3465}{1.3170}$ $\sum_{7.9734}^{8.0332}$

fl (ppm) . 160 . 140

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

0 -100 fl (ppm) -10 -20 -30 -40 -50 . -60 -70 -80 -90 -110 -120 -130 140 -150 -160 -170 -180 -190 -200

0 -100 fl (ppm) -20 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 180 -190

0 -10 -100 -110 fl (ppm) -120 -130 -170 -190 -2 -20 -30 -40 -50 -60 -70 -80 -90 -140 -150 -160 -180 -200

-100 fl (ppm) 0 -10 -20 -30 -40 -50 . -70 -90 -110 -120 -150 -170 -180 190 -2 -60 -80 -130 -140 -160

0 -20 -10 -30 -50 -70 -100 fl (ppm) -150 -170 -190 -20 -40 -90 -110 -120 -130 -140 -160 -180 -60 -80

-100 fl (ppm) -20(0 -10 -20 -30 -50 -70 -90 -110 -120 -130 -140 -150 -170 -190 -40 -60 -80 -160 -180

0 -100 fl (ppm) -20 -10 -20 -30 -70 -110 -120 -130 -140 -150 -170 -190 -40 -50 -60 -80 -90 -160 -180

-100 fl (ppm) -20 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190

-20 -90 -100 fl (ppm) -10 -30 -40 -50 -60 -70 -80 -110 -120 -130 -140 -150 -160 -170 -180 -190

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

— -73.8753

0 -10 -70 -100 fl (ppm) -190 -200 -20 -30 -40 -50 -60 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180

-67.6677
-68.7605

т 0 -90 -100 fl (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -110 -120 -130 -140 -150 -160 -170 -180

0 -90 fl (ppm) -10 -20 -30 -40 -50 -70 -100 -120 -130 -160 -170 -18 -60 -80 -110 -140 -150

ZZZ-3-1E. HRMS (ESI) m/z calcd for $C_{17}H_{13}F_3NO_4S^+$ (M+H)⁺ 384.05119, found 384.05130.

ZZZ-3-22B. HRMS (ESI) m/z calcd for C₁₇H₁₂F₄NO₄S⁺ (M+H)⁺ 402.04177, found 402.04153.

ZZZ-3-15A. HRMS (ESI) m/z calcd for C₁₇H₁₂ClF₃NO₄S⁺ (M+H)⁺ 418.01222, found 418.01227.

ZZZ-3-15C. HRMS (ESI) m/z calcd for C₁₈H₁₅F₃NO₄S⁺ (M+H)⁺ 398.06684, found 398.06696. 00085 #23 RT: 0.31 AV: 1 NL: 1.77E7

ZZZ-3-18C. HRMS (ESI) m/z calcd for $C_{23}H_{17}F_3NO_4S^+$ (M+H)⁺ 460.08249, found 460.08255.

ZZZ-2-96A. HRMS (ESI) m/z calcd for C₁₇H₁₂F₄NO₄S⁺ (M+H)⁺ 402.04177, found 402.04178.

ZZZ-2-96C. HRMS (ESI) m/z calcd for C₁₇H₁₂BrF₃NO₄S⁺ (M+H)⁺ 461.96170, found 461.96167. 00095 #11 RT: 0.14 AV: 1 NL: 3.67E6 T: FTMS + p ESI Full ms [100.00-1000.00]

ZZZ-3-1D. HRMS (ESI) m/z calcd for C₁₈H₁₅F₃NO₅S⁺ (M+H)⁺ 414.06175, found 414.06122. 00097 #15 RT: 0.20 AV: 1 NL: 7.74E5

ZZZ-3-9B. HRMS (ESI) m/z calcd for C₁₇H₁₂ClF₃NO₄S⁺ (M+H)⁺ 418.01222, found 418.01202.

ZZZ-3-9C. HRMS (ESI) m/z calcd for C₂₁H₁₅F₃NO₄S⁺ (M+H)⁺ 434.06684, found 434.06677. 000100 #17 RT: 0.22 AV: 1 NL: 3.23E5 T: FTMS + p ESI Full ms [100.00-1000.00]

ZZZ-3-1A. HRMS (ESI) m/z calcd for C₁₅H₁₁F₃NO₅S⁺ (M+H)⁺ 374.03045, found 374.03055. 000101 #12 RT: 0.15 AV: 1 NL: 1.51E7

S74

ZZZ-3-7C. HRMS (ESI) m/z calcd for C₁₄H₁₅F₃NO₄S⁺ (M+H)⁺ 350.06684, found 350.06699. 000102 #19 RT: 0.25 AV: 1 NL: 1.08E7

ZZZ-3-7A. HRMS (ESI) m/z calcd for C₁₄H₁₅F₃NO₄S⁺ (M+H)⁺ 350.06684, found 350.06689. 000103 #8 RT: 0.10 AV: 1 NL: 1.88E7 T: FTMS + p ESI Full ms [100.00-1000.00]

S77

ZZZ-2-52. HRMS (ESI) m/z calcd for C₂₇H₃₃N₄O₃⁺ (M-Cl)⁺ 461.25472, found 461.25443.

HPLC for racemic and pure enantioenriched sample 3g

HPLC for racemic and pure enantioenriched sample 3h

1 13.954 BB

2 15.641 BB

0.3992 2.95731e4 1168.6740

6.5136

0.3135 167.22672

HPLC for racemic and pure enantioenriched sample 3i

HPLC for racemic and pure enantioenriched sample 3j

HPLC for racemic and pure enantioenriched sample 3k

HPLC for racemic and pure enantioenriched sample 4b

HPLC for racemic and pure enantioenriched sample 4e

HPLC for racemic and pure enantioenriched sample 40

序

号

1

间 min

20.648

%

98.19

mAU*min

122.2400

称度

EP

1.05

(50%)

0.469

mAU

244.16

信号 3: DAD1 C, Sig=210,8 Ref=360,100

峰	保留时间	类型	峰宽	峰面积	峰高
#	[min]		[min]	[mAU*s]	[mAU]
1	14.305	BB	0.4445	1.22544e4	443.2915
2	15.507	BB	0.3607	115.59990	4.2311