Ring Size Matters: Supramolecular Isomerism in Self-Assembled Redox-Active Tetra- and Hexaruthenium Macrocycles

Daniel Fink, Nicole Orth, Michael Linseis, Ivana Ivanović-Burmazović and Rainer F. Winter*

D. Fink, Dr. M. Linseis, Prof. R. Winter
Fachbereich Chemie, Universität Konstanz
78457 Konstanz (Germany)
N. Orth, Prof. I. Ivanović-Burmazović
Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg
91058 Erlangen (Germany)

Supporting Information

Experimental Procedures, Synthesis and Characterization Data

Methods and Materials
Electrochemical and Spectroelectrochemical Measurements
Computational Details:
Synthesis and Characterization
NMR Spectra
Figure S1. ³¹ P{ ¹ H} NMR spectrum of macrocycle 2-TF ₆ , measured in C_6D_6 9
Figure S2. ³¹ P{ ¹ H} NMR spectrum of macrocycle 2-TF ₄ , measured in C_6D_6
Figure S3. ¹ H NMR spectrum of macrocycle 2-TF ₆ , measured in C_6D_6 10
Figure S4. ¹ H NMR spectrum of macrocycle 2-TF ₄ , measured in C_6D_6 10
Figure S5. ¹³ C{ ¹ H} NMR spectrum of macrocycle 2-TF ₆ , measured in C_6D_6 11
Figure S6. ¹³ C{ ¹ H} NMR spectrum of macrocycle 2-TF ₄ , measured in C_6D_6 11
Figure S7. Excerpt from the DOSY spectrum of a mixture of the two macrocyclic isomers $2-TF_4$ (grey) and $2-TF_6$ (blue)
ESI MS
Figure S8. ESI Mass spectrum of macrocycle 2-TF ₆ (top), magnified $[M-2 P'Pr_3]^{2+}$ peak with calculated isotopic pattern (bottom)
Figure S9. ESI Mass spectrum of macrocycle $2-TF_4$ (top), magnified M ⁺ peak with calculated isotopic pattern (bottom)

X-ray Crystallography
Compound 2-TF ₆ :
Figure S10. Structure of macrocycle 2-TF ₆ as the benzene dodecasolvate with atom numbering. Benzene solvate molecules as well as hydrogen atoms have been removed for reasons of clarity. Ellipsoids are drawn at a 50% probability level
Table S1. Crystal data and structure refinement for macrocycle 2-TF ₆ ·12 C ₆ H ₆ . 16
Table S2. Selected bond lengths [Å] for 2-TF ₆ ·12 C ₆ H ₆ . 17
Table S3. Selected bond angles [°] for 2-TF ₆ ·12 C ₆ H ₆ 19
Compound 2-TF ₄ :
Figure S11. Structure of macrocycle $2-TF_4$ as the benzene tetrasolvate with atom numbering. Benzene solvate molecules as well as hydrogen atoms have been removed for clarity reasons. Ellipsoids are drawn at a 50% probability level
Table S4. Crystal data and structure refinement for macrocycle 2-TF ₄ ·4 C ₆ H ₆ . 24
Table S5. Selected bond lengths [Å] for 2-TF4·4 C6H6. 25
Table S6. Selected bond angles [°] for 2-TF ₄ ·4 C ₆ H ₆
Cyclic Voltammetry
Compound 2-TF ₆ :
Figure S12. Cyclic voltammograms for the first composite wave of macrocycle 2-TF ₆ at $v = 100$ mV/s (left) and at $v = 25$, 50, 100, 200, 400, 600, 800, 1000 mV/s (right) in CH ₂ Cl ₂ / ^{<i>n</i>} Bu ₄ NBAr ^{F24} .
Figure S13. Cyclic voltammograms for the first two composite waves of macrocycle 2-TF ₆ at $v = 100 \text{ mV/s}$ (left) and at $v = 25$, 50, 100, 200, 400, 600, 800, 1000 mV/s (right) in CH ₂ Cl ₂ / ⁿ Bu ₄ NBAr ^{F24}
Table S7. Data of the cyclovoltammetric measurements for macrocycle 2-TF ₆ at different scanrates, measured in $CH_2Cl_2/^nBu_4NBAr^{F24}$
Figure S14. Square wave voltammogram of macrocycle 2-TF ₆ (left) with deconvolution (right), measured in $CH_2Cl_2/^nBu_4NBAr^{F24}$
Compound 2-TF ₄ :
Figure S15. Cyclic voltammograms for the first composite wave of macrocycle 2-TF ₄ at $v = 100$ mV/s (left) and at $v = 25$, 50, 100, 200, 400, 600, 800, 1000 mV/s (right) in CH ₂ Cl ₂ / ^{<i>n</i>} Bu ₄ NBAr ^{F24} .

Figure S16. Cyclic voltammograms for the first two composite waves of macrocycle 2-	TF₄ at
v = 100 mV/s (left) and at $v = 25, 50, 100, 200, 400, 600, 800, 1000 mV/s$ (right) in	
$CH_2Cl_2/^Bu_4NBAr^{F24}$.	
Table S8. Data of the cyclovoltammetric measurements for macrocycle 2-TF ₄ at differerates, measured in $CH_2Cl_2/^nBu_4NBAr^{F24}$.	nt scan
Figure S17. Square wave voltammogram of macrocycle 2-TF ₄ (left) with deconvolution measured in $CH_2Cl_2/^nBu_4NBAr^{F24}$.	n (right), 31
Spectroelectrochemistry	32
Compound 2-TF ₆ :	32
Figure S18. Changes in the NIR (left) and mid-IR (Ru(CO)) (right) spectra of 2-TF ₆ up oxidation to 2-TF ₆ ³⁺ , measured in CH ₂ Cl ₂ / n Bu ₄ NPF ₆ (0.2 M, r. t.)	on 32
Figure S19. Changes in the NIR (left) and mid-IR (Ru(CO)) (right) spectra of $2-TF_6^{3+}$ u further oxidation to $2-TF_6^{6+}$, measured in CH ₂ Cl ₂ / ^{<i>n</i>} Bu ₄ NPF ₆ (0.2 M, r. t.)	ıpon 32
Figure S20. Changes in the UV/Vis/NIR spectra of 2-TF ₆ upon oxidation to 2-TF ₆ ³⁺ (le deconvolution (right), measured in $CH_2Cl_2/^nBu_4NPF_6$ (0.2 M, r. t.).	ft) and 32
Figure S21. Changes in the UV/Vis/NIR spectra upon further oxidation of $2-TF_6^{3+}$ to 2-(left) and deconvolution (right), measured in CH ₂ Cl ₂ / ^{<i>n</i>} Bu ₄ NPF ₆ (0.2 M, r. t.).	• TF ₆ ⁶⁺ 33
Compound 2-TF ₄ :	33
Figure S22. Changes in the NIR (left) and mid-IR (Ru(CO)) (right) spectra of $2-TF_4$ up	on
oxidation to 2-TF ₄ ²⁺ , measured in CH ₂ Cl ₂ / n Bu ₄ NPF ₆ (0.2 M, r. t.)	
Figure S23. Changes in the NIR (left) and mid-IR (Ru(CO)) (right) spectra upon further oxidation of $2-TF_4^{2+}$ to $2-TF_4^{4+}$, measured in $CH_2Cl_2/^nBu_4NPF_6$ (0.2 M, r. t.)	r 33
Figure S24. Changes in the UV/Vis/NIR spectra of 2-TF ₄ upon oxidation to 2-TF ₄ ²⁺ (le	eft) and
deconvolution (right), measured in $CH_2Cl_2/^nBu_4NPF_6$ (0.2 M, r. t.).	
Figure S25. Changes in the UV/Vis/NIR spectra upon further oxidation of 2-TF ₄ ²⁺ to 2 -(left) and deconvolution (right) measured in CH ₂ Cl ₂ / ⁿ Bu/NPF ₄ (0.2 M, r, t)	•TF ₄ ⁴⁺ 34
EDR Spectroscopy	35
Compound 2-1F ₆ :	
Figure S26. EPR spectra of 2-TF ₆ ³⁺ (left) and 2-TF ₆ ⁶⁺ (right) at room temperature	35
Compound 2-TF ₄ :	
Figure S27. EPR spectra of $2-TF_4^{2+}$ (left) and $2-TF_4^{4+}$ (right) at room temperature	35

DFT Calculations	.36
Figure S28. Calculated geometry-optimized structures of the two isomeric model compounds	
2-TF ₄ ^{Me} (left) and 2-TF ₆ ^{Me} (right).	.36
References	.37

Experimental Details

Methods and Materials

All manipulations were done under purified nitrogen with dry, distilled and nitrogen-saturated solvents. All reagents were purchased from commercial sources and used without further purification. ¹H NMR (400 MHz), ¹³C NMR (101 MHz) and ³¹P NMR (162 MHz) spectra were measured on a Bruker AvanceIII 400 spectrometer, and ¹H NMR (600 MHz) and ¹³C NMR (151 MHz) spectra on a Bruker AvanceIII 600 spectrometer. HRu(CO)Cl(P^{*i*}Pr₃)₂⁽¹⁾ and [{Ru(CO)Cl(P^{*i*}Pr₃)₂}₂(μ -2,5-(CH=CH)₂-C₄H₂S](1-T)⁽²⁾ were prepared according to literature methods.

EPR spectra were obtained using an X-band tabletop spectrometer MiniScope MS 400 by magnettech GmbH. All measurements were performed at room temperature and the macrocycles were chemically oxidized using ferrocenium hexafluoroantimonate (Cp_2FeSbF_6), acetylferrocenium hexafluoroantimonate ($^{Ac}Cp_2FeSbF_6$) or 1,1'diacetylferrocenium hexafluoroantimonate ($^{Ac}Cp_2FeSbF_6$) as oxidizing agents.

Mass spectra were recorded on an UHR-ToF Bruker Daltonik (Bremen, Germany) maXis plus instrument, an ESI-quadrupole time-of-flight (qToF) mass spectrometer capable of resolution of at least 60.000 FWHM. Detection was done in the positive-ion mode with a 4.5 kV voltage supply. The drying gas (N₂) was held at 180 C° and the spray gas was held at 20 °C. The spectrometer was calibrated with ESI-ToF Low Concentration Tuning Mix of Agilent prior to every measurement. All measurements were carried out using dichloromethane as solvent. Additional ESI-MS data was acquired on a Bruker micrOTOF II mass spectrometer (Bruker, Billerica, MA, USA).

X-Ray diffraction analysis was performed on a STOE IPDS-II diffractometer equipped with a graphitemonochromated radiation source ($\lambda = 0.71073$ Å) and an image plate detection system at 100.15 K. Using Olex2,⁽³⁾ the structures were solved with the SIR2004⁽⁴⁾ structure solution program using Direct Methods or the ShelXT⁽⁵⁾ structure solution program using Intrinsic Phasing and refined with the ShelXL⁽⁶⁾ refinement package using Least Squares minimization. Hydrogen atoms were introduced at their calculated positions. Structure plots were made with the Platon program.

Electrochemical and Spectroelectrochemical Measurements

All electrochemical experiments were performed in a home-built cylindrical vacuum-tight onecompartment cell. A spiral-shaped Pt wire and an Ag wire as the counter and reference electrodes are sealed into glass capillaries that are introduced via Quickfit screws at opposite sides of the cell. A platinum electrode is introduced as the working electrode through the top port via a Teflon screw cap with a suitable fitting. It is polished with first 1 μ m and the 0.25 μ m diamond pastes (Buehler-Wirtz) before measurements. The cell can be attached to a conventional Schlenk line via a side arm equipped with a Teflon screw valve and allows experiments to be performed under an atmosphere of argon with approximately 5 mL of analyte solution. "Bu₄NPF₆ and "Bu₄NBAr^F were used as the supporting electrolytes. Referencing was done with addition of equimolar amount of cobaltocenium hexafluorophosphate as an internal standard to the analyte solution after all data of interest had been acquired. Representative sets of scans were repeated with the added standard. The final referencing was done against the ferrocene/ferrocenium (Cp₂Fe^{0/+}) redox couple with $E_{1/2}$ Cp₂Co^{+/0} = -1330 mV vs. Cp₂Fe^{0/+}. Electrochemical data were acquired with a computer-controlled BASi potentiostat. The OTTLE cell was also home-built and comprises of a Pt-mesh working and counter electrode and a thin silver wire as a pseudoreference electrode sandwiched between the CaF₂ windows of a conventional liquid IR cell. Its design follows that of Hartl et al.⁽⁷⁾ The working electrode is positioned in the centre of the spectrometer beam. For every measurement, a Wenking POS 2 potentiostat by Bank Elektronik -Intelligent Controls GmbH was used. FT-IR spectra were recorded using a Bruker Tensor II FT-IR spectrometer. UV/Vis/NIR spectra were obtained on a TIDAS fiberoptic diode array spectrometer (combined MCS UV/NIR and PGS NIR instrumentation) from j&m Analytik AG.

Computational Details:

The ground state electronic structures of complexes 2-TF₄ and 2-TF₆ were calculated by density functional theory (DFT) methods using the Gaussian 09 program packages.⁽⁸⁾ Open shell systems were calculated by the unrestricted Kohn-Sham approach (UKS). Geometry optimization followed by vibrational analysis was performed in solvent media. Solvent effects were described by the polarizable continuum model (PCM) with standard parameters for 1,2-dichloroethane.⁽⁹⁾ The quasirelativistic Wood-Boring small-core pseudopotentials (MWB)⁽¹⁰⁾ and the corresponding optimized set of basis functions for Ru⁽¹¹⁾ and 6-31G(d) polarized double- ζ basis sets⁽¹²⁾ for the remaining atoms were employed together with the Perdew, Burke, Ernzerhof exchange and correlation functional (PBE0)⁽¹³⁾. The GaussSum program package was used to analyze the results,⁽¹⁴⁾ while the visualization of the results was performed with the Avogadro program package.⁽¹⁵⁾ Graphical representations of molecular orbitals were generated with the help of GNU Parallel⁽¹⁶⁾ and plotted using the vmd program package⁽¹⁷⁾ in combination with POV-Ray.⁽¹⁸⁾

Synthesis and Characterization

Macrocycle 2-TF₆: A solution of 15.6 mg (0.100 mmol, 1.0 eq) of furan-2,5-dicarboxylic acid and 27.6 mg (0.200 mmol, 2.0 eq) of K_2CO_3 in 30 ml of MeOH was slowly added to a solution of 110.4 mg (0.100 mmol, 1.0 eq) of **1-T** in 20 ml of CH_2Cl_2 . The resulting yellow suspension was stirred for 12 h at room temperature. The solvents were removed under reduced pressure and the residue was taken up in 20 ml of CH_2Cl_2 . Insoluble material was removed via centrifugation. CH_2Cl_2 was removed *in vacuo* and the resulting yellow solid was washed with *n*-hexane. Yield: 80 mg (67%)

[Ru] = $Ru(P^{i}Pr_{3})_{2}$

¹**H** NMR (600 MHz, C₆D₆): δ in ppm = 8.78 (d, 6H, ³J_{H,H} = 15.2 Hz, H₍₁₎), 7.15 (s, 6H, H₍₅₎), 6.70 (d, 6H, ³J_{H,H} = 15.2 Hz, H₍₂₎), 6.45 (s, 6H, H₍₄₎), 2.36 - 2.23 (m, 36H, PHC(CH₃)₂), 1.28 - 1.22 (m, 216H, PHC(CH₃)₂)

³¹**P**{¹**H**} **NMR** (162 MHz, C_6D_6): δ in ppm = 37.47 (s, P^iPr_3)

¹³C{¹H} NMR (151 MHz, C₆D₆): δ in ppm = 209.1 (t, ²*J*_{C,P} = 13.5 Hz, RuCO), 168.4 (s, C₍₇₎), 158.4 (s, C₍₁₎), 150.2 (s, C₍₆₎), 144.7 (s, C₍₃₎), 129.8 (s, C₍₂₎), 116.8 (s, C₍₄₎), 116.3 (s, C₍₅₎), 25.0 (vt, ¹*J*_{C,P} = 9.5 Hz, PH*C*(CH₃)₂), 20.0 (s, PHC(CH₃)₂), 19.8 (s, PHC(CH₃)₂)

IR (CH₂Cl₂): 1906 cm⁻¹ ($v_{C=0}$)

UV/Vis (CH₂Cl₂): $\lambda_{max} = 390 \text{ nm}, \varepsilon = 76200 \text{ M}^{-1} \text{cm}^{-1}$

ESI MS (CH₂Cl₂): 3562.0808 m/z ([M]⁺, calculated: 3562.0816 m/z), 1781.5322 m/z ([M]²⁺, calculated: 1781.5444 m/z)

Macrocycle 2-TF₄: A solution of 10.0 mg **2-TF₆** in 0.5 ml C₆D₆ was stirred for 168 h at 35 °C. The solvent was removed *in vacuo* and the resulting yellow solid was subsequently washed with small amounts of *n*-hexane. Yield: 9.1 mg (91%)

[Ru] = $Ru(P^iPr_3)_2$

¹**H** NMR (600 MHz, C₆D₆): δ in ppm = 8.79 (d, 4H, ³*J*_{H,H} = 15.2 Hz, H₍₁₎), 6.97 (s, 4H, H₍₅₎), 6.87 (d, 4H, ³*J*_{H,H} = 15.2 Hz, H₍₂₎), 6.49 (s, 4H, H₍₄₎), 2.31 - 2.36 (m, 24H, PHC(CH₃)₂), 1.24 - 1.33 (m, 144H, PHC(CH₃)₂)

³¹**P**{¹**H**} **NMR** (162 MHz, C_6D_6): δ in ppm = 38.00 (s, P^iPr_3)

¹³C{¹H} NMR (151 MHz, C₆D₆): δ in ppm = 209.9 (t, ²*J*_{C,P} = 13.1 Hz, RuCO), 168.8 (s, C₍₇₎), 157.0 (t, ²*J*_{C,P} = 11.9 Hz, C₍₁₎), 150.0 (s, C₍₆₎), 144.8 (s, C₍₃₎), 131.2 (s, C₍₂₎), 117.9 (s, C₍₄₎), 117.0 (s, C₍₅₎), 25.2 (vt, ¹*J*_{C,P} = 9.7 Hz, PHC(CH₃)₂), 20.0 (s, PHC(CH₃)₂), 19.8 (s, PHC(CH₃)₂)

IR (CH₂Cl₂): 1905 cm⁻¹ ($v_{C=O}$)

UV/Vis (CH₂Cl₂): $\lambda_{max} = 391$ nm, $\varepsilon = 51200$ M⁻¹cm⁻¹

ESI MS (CH₂Cl₂): 2375.7184 m/z ([M]⁺, calculated: 2375.7259 m/z), 1187.8595 m/z ([M]²⁺, calculated: 1187.8627 m/z)

NMR Spectra

Figure S1. ³¹P{¹H} NMR spectrum of macrocycle 2- \mathbf{TF}_6 , measured in C₆D₆.

Figure S3. ¹H NMR spectrum of macrocycle 2-TF₆, measured in C₆D₆.

Figure S4. ¹H NMR spectrum of macrocycle 2-TF₄, measured in C₆D₆.

Figure S6. ¹³C{¹H} NMR spectrum of macrocycle 2-TF₄, measured in C_6D_6 .

Figure S7. Excerpt from the DOSY spectrum of a mixture of the two macrocyclic isomers $2-TF_4$ (grey) and $2-TF_6$ (blue).

Figure S8. ESI Mass spectrum of macrocycle **2-TF**₆ (top), magnified $[M-2 P'Pr_3]^{2+}$ peak with calculated isotopic pattern (bottom).

Figure S9. ESI Mass spectrum of macrocycle $2-TF_4$ (top), magnified M⁺ peak with calculated isotopic pattern (bottom).

X-ray Crystallography

Compound 2-TF₆:

Figure S10. Structure of macrocycle $2-TF_6$ as the benzene dodecasolvate with atom numbering. Benzene solvate molecules as well as hydrogen atoms have been removed for reasons of clarity. Ellipsoids are drawn at a 50% probability level.

Experimental. Single crystals of **2-TF**₆ were obtained as yellow prisms by slow diffusion of methanol into a solution of compound **2-TF**₆ in benzene. A suitable crystal was selected, sealed in a Mark tube and mounted on a STOE IPDS-II diffractometer. The crystal was kept at 100.15 K during data collection. Using **Olex2**⁽³⁾, the structure was solved with the **ShelXT**⁽⁵⁾ structure solution program using Intrinsic Phasing and refined with the **ShelXL**⁽⁶⁾ refinement package using Least Squares minimization.

Empirical formula	$C_{192}H_{312}O_{21}P_{12}Ru_6S_3$	
Formula weight	4030.64	
Temperature	100(3) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 23.3486(4) Å	$\alpha = 63.0890(10)^{\circ}$
	<i>b</i> = 24.9671(5) Å	$\beta = 83.8960(10)^{\circ}$
	<i>c</i> = 25.2132(5) Å	$\gamma = 71.9420(10)^{\circ}$
Volume	12450.7(4) Å ³	
Ζ	2	
Density (calculated)	1.075 g/m ³	
Absorption coefficient	0.505 mm ⁻¹	
<i>F</i> (000)	4248.0	
Crystal size	$0.4\times0.2\times0.1\ mm^3$	
2Θ range for data collection	4.6 to 52.5 °	
Index ranges	$-29 \le h \le 25, -31 \le k \le 31, -3$	$31 \le l \le 31$
Reflections collected	92182	
Independent reflections	49773 [$R_{\rm int} = 0.0704, R_{\rm sigma} =$	= 0.0942]
Refinement method	Full-matrix least-squares on	F^2
Data / restraints / parameters	49773/208/2121	
Goodness-of-fit on F^2	1.050	
Final <i>R</i> indices $[I \ge 2\sigma (I)]$	$R_1 = 0.0848, wR_2 = 0.2212$	
R indices (all data)	$R_1 = 0.1399, wR_2 = 0.2541$	
Largest diff. peak and hole	1.86 and -01.08 e Å ⁻³	

Table S1. Crystal data and structure refinement for macrocycle 2-TF₆·12 C_6H_6 .

Table S2.	Selected	bond lengths	[Å] for	$2 - TF_6 \cdot 12$	C ₆ H ₆

Ru(1) - P(1)	2.435(2)	O(7) - C(30)	1.266(8)
Ru(1) - P(2)	2.380(2)	O(8) - C(36)	1.265(8)
Ru(1) - O(4)	2.214(5)	O(9) - C(36)	1.267(8)
Ru(1) - O(5)	2.290(5)	O(10) - C(31)	1.259(9)
Ru(1) - C(1)	1.982(8)	O(11) - C(31)	1.246(8)
Ru(1) - C(43)	1.788(10)	O(12) - C(42)	1.279(8)
Ru(2) - P(3)	2.393(2)	O(13) - C(42)	1.280(8)
Ru(2) - P(4)	2.399(2)	O(14) - C(37)	1.273(9)
Ru(2) - O(10)	2.199(5)	O(15) - C(37)	1.270(9)
Ru(2) - O(11)	2.275(5)	O(16) - C(43)	1.172(10)
Ru(2) - C(8)	2.015(8)	O(17) - C(44)	1.155(9)
Ru(2) - C(44)	1.814(8)	O(18) - C(45)	1.144(9)
Ru(3) - P(5)	2.413(2)	O(19) - C(46)	1.170(10)
Ru(3) - P(6)	2.415(2)	O(20) - C(47)	1.175(9)
Ru(3) - O(8)	2.209(5)	O(21) - C(48)	1.161(8)
Ru(3) - O(9)	2.267(5)	C(1) - C(2)	1.342(10)
Ru(3) - C(9)	1.976(7)	C(2) - C(3)	1.457(11)
Ru(3) - C(45)	1.795(9)	C(3) - C(4)	1.357(10)
Ru(4) - P(7)	2.388(2)	C(4) - C(5)	1.390(11)
Ru(4) - P(8)	2.370(3)	C(5) - C(6)	1.361(11)
Ru(4) - O(14)	2.209(5)	C(6) - C(7)	1.438(12)
Ru(4) - O(15)	2.341(5)	C(7) - C(8)	1.307(11)
Ru(4) - C(16)	1.990(7)	C(9) - C(10)	1.352(10)
Ru(4) - C(46)	1.813(10)	C(10) - C(11)	1.452(10)
Ru(5) - P(9)	2.425(2)	C(11) - C(12)	1.350(12)
Ru(5) - P(10)	2.3956(19)	C(12) - C(13)	1.436(12)
Ru(5) - O(12)	2.198(5)	C(13) - C(14)	1.364(12)
Ru(5) - O(13)	2.307(5)	C(14) - C(15)	1.447(11)
Ru(5) - C(17)	2.005(7)	C(15) - C(16)	1.321(10)
Ru(5) - C(47)	1.779(8)	C(17) - C(18)	1.357(10)
Ru(6) - P(11)	2.4479(17)	C(18) - C(19)	1.453(9)
Ru(6) - P(12)	2.3913(17)	C(19) - C(20)	1.346(9)

Ru(6) - O(6)	2.222(5)	C(20) - C(21)	1.413(9)
Ru(6) - O(7)	2.267(4)	C(21) - C(22)	1.361(9)
Ru(6) - C(24)	1.992(6)	C(22) - C(23)	1.428(9)
Ru(6) - C(48)	1.808(8)	C(23) - C(24)	1.358(9)
S(1) - C(3)	1.754(8)	C(25) - C(26)	1.481(10)
S(1) - C(6)	1.733(8)	C(26) - C(27)	1.351(11)
S(2) - C(11)	1.727(8)	C(27) - C(28)	1.380(11)
S(2) - C(14)	1.737(9)	C(28) - C(29)	1.338(11)
S(3) - C(19)	1.752(6)	C(29) - C(30)	1.459(10)
S(3) - C(22)	1.756(7)	C(31) - C(32)	1.484(10)
O(1) - C(26)	1.353(8)	C(32) - C(33)	1.362(10)
O(1) - C(29)	1.368(8)	C(33) - C(34)	1.430(11)
O(2) - C(32)	1.372(8)	C(34) - C(35)	1.363(11)
O(2) - C(35)	1.340(9)	C(35) - C(36)	1.468(10)
O(3) - C(38)	1.375(8)	C(37) - C(38)	1.468(10)
O(3) - C(41)	1.376(8)	C(38) - C(39)	1.331(10)
O(4) - C(25)	1.288(9)	C(39) - C(40)	1.400(11)
O(5) - C(25)	1.220(9)	C(40) - C(41)	1.358(10)
O(6) - C(30)	1.267(8)	C(41) - C(42)	1.420(10)

Table S3. Selected bond a	angles [°]	for 2-TF ₆	;·12 C ₆ H ₆ .
---------------------------	------------	------------------------------	--------------------------------------

O(4) - Ru(1) - O(5)	58.36(18)	O(6) - Ru(6) - P(11)	85.67(12)
O(4) - Ru(1) - P(1)	87.95(15)	O(6) - Ru(6) - P(12)	92.47(12)
O(4) - Ru(1) - P(2)	89.67(14)	O(7) - Ru(6) - P(11)	93.48(12)
O(5) - Ru(1) - P(1)	90.09(13)	O(7) - Ru(6) - P(12)	88.64(12)
O(5) - Ru(1) - P(2)	88.14(13)	P(11) - Ru(6) - P(12)	175.92(7)
P(1) - Ru(1) - P(2)	177.54(8)	C(24) - Ru(6) - O(6)	98.8(2)
C(1) - Ru(1) - O(4)	96.7(3)	C(24) - Ru(6) - O(7)	157.2(2)
C(1) - Ru(1) - O(5)	155.0(3)	C(24) - Ru(6) - P(11)	86.59(18)
C(1) - Ru(1) - P(1)	91.1(2)	C(24) - Ru(6) - P(12)	90.11(18)
C(1) - Ru(1) - P(2)	89.8(2)	C(48) - Ru(6) - O(6)	169.2(3)
C(43) - Ru(1) - O(4)	173.4(3)	C(48) - Ru(6) - O(7)	111.1(3)
C(43) - Ru(1) - O(5)	115.2(3)	C(48) - Ru(6) - P(11)	92.4(2)
C(43) - Ru(1) - P(1)	91.1(3)	C(48) - Ru(6) - P(12)	90.1(2)
C(43) - Ru(1) - P(2)	91.2(3)	C(48) - Ru(6) - C(24)	91.7(3)
C(43) - Ru(1) - C(1)	89.8(4)	O(21) - C(48) - Ru(6)	177.3(7)
O(16) - C(43) - Ru(1)	177.5(9)	C(23) - C(24) - Ru(6)	138.8(5)
C(2) - C(1) - Ru(1)	140.0(7)	C(30) - O(6) - Ru(6)	91.4(4)
C(25) - O(4) - Ru(1)	90.6(4)	C(30) - O(7) - Ru(6)	89.4(4)
C(25) - O(5) - Ru(1)	88.8(4)	C(1) - C(2) - C(3)	123.9(8)
O(10) - Ru(2) - O(11)	58.53(18)	C(2) - C(3) - S(1)	119.6(6)
O(10) - Ru(2) - P(3)	88.87(13)	C(3) - C(4) - C(5)	115.2(8)
O(10) - Ru(2) - P(4)	90.77(14)	C(4) - C(3) - S(1)	107.9(6)
O(11) - Ru(2) - P(3)	87.74(14)	C(4) - C(3) - C(2)	132.5(8)
O(11) - Ru(2) - P(4)	86.95(14)	C(5) - C(6) - S(1)	108.6(7)
P(3) - Ru(2) - P(4)	173.99(9)	C(5) - C(6) - C(7)	131.5(7)
C(8) - Ru(2) - O(10)	95.8(3)	C(6) - C(5) - C(4)	114.9(7)
C(8) - Ru(2) - O(11)	154.4(2)	C(6) - S(1) - C(3)	93.5(4)
C(8) - Ru(2) - P(3)	92.2(2)	C(7) - C(6) - S(1)	119.8(6)
C(8) - Ru(2) - P(4)	93.9(2)	C(8) - C(7) - C(6)	125.0(7)
C(44) - Ru(2) - O(10)	174.3(3)	C(9) - C(10) - C(11)	126.4(7)
C(44) - Ru(2) - O(11)	115.9(3)	C(10) - C(11) - S(2)	121.2(6)
C(44) - Ru(2) - P(3)	89.8(2)	C(11) - C(12) - C(13)	113.5(8)

C(44) - Ru(2) - P(4)	90.0(2)	C(12) - C(11) - S(2)	110.2(6)
C(44) - Ru(2) - C(8)	89.8(3)	C(12) - C(11) - C(10)	128.6(8)
O(17) - C(44) - Ru(2)	176.2(8)	C(13) - C(14) - S(2)	109.3(6)
C(7) - C(8) - Ru(2)	139.8(6)	C(13) - C(14) - C(15)	129.7(8)
C(31) - O(10) - Ru(2)	91.4(4)	C(14) - C(13) - C(12)	113.6(8)
C(31) - O(11) - Ru(2)	88.3(5)	C(14) - S(2) - C(11)	93.4(4)
O(8) - Ru(3) - O(9)	58.81(19)	C(15) - C(14) - S(2)	121.1(6)
O(8) - Ru(3) - P(5)	91.02(13)	C(16) - C(15) - C(14)	124.6(7)
O(8) - Ru(3) - P(6)	87.17(13)	C(17) - C(18) - C(19)	123.4(6)
O(9) - Ru(3) - P(5)	89.64(14)	C(18) - C(19) - S(3)	120.8(5)
O(9) - Ru(3) - P(6)	87.41(14)	C(19) - C(20) - C(21)	115.3(6)
P(5) - Ru(3) - P(6)	177.03(8)	C(20) - C(19) - S(3)	109.0(5)
C(9) - Ru(3) - O(8)	97.9(3)	C(20) - C(19) - C(18)	130.2(6)
C(9) - Ru(3) - O(9)	156.7(3)	C(21) - C(22) - S(3)	109.0(5)
C(9) - Ru(3) - P(5)	89.8(2)	C(21) - C(22) - C(23)	130.6(7)
C(9) - Ru(3) - P(6)	92.8(2)	C(22) - C(21) - C(20)	113.9(6)
C(45) - Ru(3) - O(8)	169.3(3)	C(22) - S(3) - C(19)	92.8(3)
C(45) - Ru(3) - O(9)	110.8(3)	C(23) - C(22) - S(3)	120.3(5)
C(45) - Ru(3) - P(5)	91.8(2)	C(24) - C(23) - C(22)	125.2(7)
C(45) - Ru(3) - P(6)	89.5(2)	O(4) - C(25) - O(5)	122.2(7)
C(45) - Ru(3) - C(9)	92.5(4)	O(4) - C(25) - C(26)	116.6(7)
O(18) - C(45) - Ru(3)	177.6(8)	O(5) - C(25) - C(26)	121.1(7)
C(10) - C(9) - Ru(3)	137.7(6)	C(25) - C(26) - O(1)	116.7(6)
C(36) - O(8) - Ru(3)	91.6(4)	C(25) - C(26) - C(27)	134.1(7)
C(36) - O(9) - Ru(3)	88.9(4)	C(26) - O(1) - C(29)	106.6(6)
O(14) - Ru(4) - O(15)	58.13(18)	C(26) - C(27) - C(28)	107.5(7)
O(14) - Ru(4) - P(7)	88.40(15)	C(27) - C(26) - O(1)	109.2(6)
O(14) - Ru(4) - P(8)	91.21(15)	C(27) - C(28) - C(29)	107.2(7)
O(15) - Ru(4) - P(7)	88.44(15)	C(28) - C(29) - O(1)	109.5(6)
O(15) - Ru(4) - P(8)	88.82(15)	C(28) - C(29) - C(30)	133.9(7)
P(7) - Ru(4) - P(8)	176.98(9)	O(1) - C(29) - C(30)	116.6(7)
C(16) - Ru(4) - O(14)	94.9(3)	O(6) - C(30) - C(29)	118.9(6)
C(16) - Ru(4) - O(15)	152.9(3)	O(7) - C(30) - O(6)	120.1(6)

C(16) - Ru(4) - P(7)	93.4(2)	O(7) - C(30) - C(29)	120.9(6)
C(16) - Ru(4) - P(8)	89.6(2)	O(10) - C(31) - O(11)	121.8(7)
C(46) - Ru(4) - O(14)	174.0(3)	O(10) - C(31) - C(32)	118.9(7)
C(46) - Ru(4) - O(15)	116.6(3)	O(11) - C(31) - C(32)	119.3(7)
C(46) - Ru(4) - P(7)	88.6(3)	C(31) - C(32) - O(2)	116.2(6)
C(46) - Ru(4) - P(8)	91.5(3)	C(31) - C(32) - C(33)	132.4(8)
C(46) - Ru(4) - C(16)	90.5(3)	C(32) - O(2) - C(35)	106.5(6)
O(19) - C(46) - Ru(4)	178.7(10)	C(32) - C(33) - C(34)	105.9(7)
C(15) - C(16) - Ru(4)	140.1(6)	C(33) - C(32) - O(2)	111.4(7)
C(37) - O(14) - Ru(4)	93.4(4)	C(33) - C(34) - C(35)	105.7(7)
C(37) - O(15) - Ru(4)	87.5(4)	C(34) - C(35) - O(2)	110.4(7)
O(12) - Ru(5) - O(13)	58.69(17)	C(34) - C(35) - C(36)	132.8(7)
O(12) - Ru(5) - P(9)	86.65(13)	O(2) - C(35) - C(36)	116.8(7)
O(12) - Ru(5) - P(10)	89.51(12)	O(9) - C(36) - C(35)	119.7(7)
O(13) - Ru(5) - P(9)	86.61(12)	O(8) - C(36) - O(9)	120.5(7)
O(13) - Ru(5) - P(10)	88.26(12)	O(8) - C(36) - C(35)	119.7(7)
P(9) - Ru(5) - P(10)	174.69(7)	O(14) - C(37) - O(15)	121.0(7)
C(17) - Ru(5) - O(12)	96.9(2)	O(14) - C(37) - C(38)	116.9(7)
C(17) - Ru(5) - O(13)	155.5(2)	O(15) - C(37) - C(38)	122.1(7)
C(17) - Ru(5) - P(9)	92.94(19)	C(37) - C(38) - O(3)	116.4(6)
C(17) - Ru(5) - P(10)	91.16(19)	C(37) - C(38) - C(39)	132.6(7)
C(47) - Ru(5) - O(12)	173.6(3)	C(38) - O(3) - C(41)	105.6(5)
C(47) - Ru(5) - O(13)	115.0(3)	C(38) - C(39) - C(40)	106.8(7)
C(47) - Ru(5) - P(9)	92.1(2)	C(39) - C(38) - O(3)	111.0(7)
C(47) - Ru(5) - P(10)	91.3(2)	C(39) - C(40) - C(41)	107.4(7)
C(47) - Ru(5) - C(17)	89.5(3)	C(40) - C(41) - O(3)	109.2(6)
O(20) - C(47) - Ru(5)	177.1(7)	C(40) - C(41) - C(42)	133.1(7)
C(18) - C(17) - Ru(5)	134.6(5)	O(3) - C(41) - C(42)	117.5(6)
C(42) - O(12) - Ru(5)	93.3(4)	O(13) - C(42) - C(41)	121.8(6)
C(42) - O(13) - Ru(5)	88.4(4)	O(12) - C(42) - O(13)	119.4(6)
O(6) - Ru(6) - O(7)	58.55(17)	O(12) - C(42) - C(41)	118.7(7)

Compound 2-TF₄:

Figure S11. Structure of macrocycle $2-TF_4$ as the benzene tetrasolvate with atom numbering. Benzene solvate molecules as well as hydrogen atoms have been removed for clarity reasons. Ellipsoids are drawn at a 50% probability level.

Experimental. Single crystals of **2-TF**₄ were obtained as yellow prisms by slow diffusion of methanol into a solution of compound **2-TF**₄ in benzene. A suitable crystal was selected and mounted on a STOE IPDS-II diffractometer. The crystal was kept at 100.15 K during data collection. Using **Olex2**⁽³⁾, the structure was solved with the **SIR2004**⁽⁴⁾ structure solution program using Direct Methods and refined with the **ShelXL**⁽⁶⁾ refinement package using Least Squares minimization.

Empirical formula	$C_{134}H_{214}O_{14}P_8Ru_4S_2\\$		
Formula weight	2765.20		
Temperature	100.15 K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	<i>a</i> = 11.9389(9) Å	$\alpha = 102.732(6)^{\circ}$	
	<i>b</i> = 17.3830(15) Å	$\beta = 98.198(6)^{\circ}$	
	c = 18.6230(15) Å	$\gamma = 101.465(6)^{\circ}$	
Volume	3623.7(5) Å ³		
Ζ	1		
Density (calculated)	1.267 g/m ³		
Absorption coefficient	0.580 mm ⁻¹		
<i>F</i> (000)	1458.0		
Crystal size	$0.4\times0.3\times0.2\ mm^3$		
2Θ range for data collection	3.548 to 53.716 °		
Index ranges	$-15 \le h \le 15, -22 \le k \le 22, -23 \le l \le 23$		
Reflections collected	52347		
Independent reflections	15420 [$R_{int} = 0.1519, R_{sigma} = 0.1730$]		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	15420/8/754		
Goodness-of-fit on F^2	0.866		
Final <i>R</i> indices $[I \ge 2\sigma (I)]$	$R_1 = 0.0595, wR_2 = 0.0787$		
R indices (all data)	$R_1 = 0.1321$, w $R_2 = 0.0926$		
Largest diff. peak and hole	0.85 and -0.62 e Å ⁻³		

Table S4. Crystal data and structure refinement for macrocycle $2\text{-}TF_4\text{-}4$ $C_6H_6.$

Ru(1) - P(1)	2.4102(16)	O(4) - C(14)	1.282(5)
Ru(1) - P(2)	2.4196(17)	O(5) - C(14)	1.257(5)
Ru(1) - O(1)	2.202(3)	O(6) - C(15)	1.162(6)
Ru(1) - O(2)	2.289(3)	O(7) - C(16)	1.185(6)
Ru(1) - C(1)	2.013(4)	S(1) - C(3)	1.740(5)
Ru(1) - C(9)	2.594(5)	S(1) - C(7a)	1.759(5)
Ru(1) - C(15)	1.805(5)	C(1) - C(2)	1.349(6)
Ru(2) - P(3)	2.4138(16)	C(2) - C(3)	1.451(6)
Ru(2) - P(4)	2.3840(16)	C(3) - C(4)	1.378(7)
Ru(2) - O(4)	2.211(3)	C(4) - C(8a)	1.417(6)
Ru(2) - O(5)	2.276(3)	C(5) - C(6)	1.320(7)
Ru(2) - C(5)	2.020(5)	C(6) - C(7)	1.453(6)
Ru(2) - C(14)	2.583(5)	C(7) - C(8)	1.352(7)
Ru(2) - C(16)	1.784(5)	C(9) - C(10)	1.459(7)
O(1) - C(9)	1.272(5)	C(10) - C(11)	1.366(6)
O(2) - C(9)	1.266(6)	C(11) - C(12)	1.409(7)
O(3) - C(10)	1.355(5)	C(12) - C(13)	1.342(6)
O(3) - C(13)	1.372(5)	C(13) - C(14)	1.464(7)

Table S5. Selected bond lengths [Å] for $2-TF_4 \cdot 4 C_6H_6$.

O(1) - Ru(1) - O(2)	58.52(11)	C(16) - Ru(2) - C(5)	90.3(2)
O(1) - Ru(1) - P(1)	88.19(10)	C(9) - O(1) - Ru(1)	92.7(3)
O(1) - Ru(1) - P(2)	88.54(10)	C(9) - O(2) - Ru(1)	88.9(3)
O(1) - Ru(1) - C(9)	29.32(13)	C(10) - O(3) - C(13)	106.0(3)
O(2) - Ru(1) - P(1)	89.82(10)	C(14) - O(4) - Ru(2)	91.4(3)
O(2) - Ru(1) - P(2)	87.60(10)	C(14) - O(5) - Ru(2)	89.1(3)
O(2) - Ru(1) - C(9)	29.22(13)	C(3) - S(1) - C(7a)	92.4(2)
P(1) - Ru(1) - P(2)	176.57(5)	C(2) - C(1) - Ru(1)	132.0(4)
P(1) - Ru(1) - C(9)	88.10(12)	C(1) - C(2) - C(3)	126.9(5)
P(2) - Ru(1) - C(9)	88.55(12)	C(2) - C(3) - S(1)	125.2(4)
C(1) - Ru(1) - O(1)	100.85(17)	C(4) - C(3) - S(1)	110.1(3)
C(1) - Ru(1) - O(2)	159.29(16)	C(4) - C(3) - C(2)	124.7(4)
C(1) - Ru(1) - P(1)	91.38(15)	C(3) - C(4) - C(8a)	113.1(4)
C(1) - Ru(1) - P(2)	90.24(15)	C(10) - C(11) - C(12)	106.0(4)
C(1) - Ru(1) - C(9)	130.17(18)	O(3) - C(10) - C(11)	110.5(4)
C(15) - Ru(1) - O(1)	169.75(16)	O(3) - C(10) - C(9)	117.4(4)
C(15) - Ru(1) - O(2)	111.55(16)	C(11) - C(10) - C(9)	132.1(4)
C(15) - Ru(1) - P(1)	89.26(17)	O(1) - C(9) - Ru(1)	58.0(2)
C(15) - Ru(1) - P(2)	93.79(18)	O(1) - C(9) - C(10)	121.2(4)
C(15) - Ru(1) - C(1)	89.1(2)	O(2) - C(9) - Ru(1)	61.9(3)
C(15) - Ru(1) - C(9)	140.65(17)	O(2) - C(9) - O(1)	119.9(5)
O(4) - Ru(2) - O(5)	58.83(11)	O(2) - C(9) - C(10)	118.9(4)
O(4) - Ru(2) - P(3)	87.55(9)	C(10) - C(9) - Ru(1)	174.8(4)
O(4) - Ru(2) - P(4)	88.61(9)	C(13) - C(12) - C(11)	106.9(4)
O(4) - Ru(2) - C(14)	29.75(12)	O(3) - C(13) - C(14)	117.1(4)
O(5) - Ru(2) - P(3)	88.82(9)	C(12) - C(13) - O(3)	110.6(4)
O(5) - Ru(2) - P(4)	89.76(9)	C(12) - C(13) - C(14)	132.1(4)
O(5) - Ru(2) - C(14)	29.11(12)	O(4) - C(14) - Ru(2)	58.8(2)
P(3) - Ru(2) - C(14)	86.92(11)	O(4) - C(14) - C(13)	120.4(4)
P(4) - Ru(2) - P(3)	176.10(5)	O(5) - C(14) - Ru(2)	61.8(2)
P(4) - Ru(2) - C(14)	90.08(11)	O(5) - C(14) - O(4)	120.5(4)
C(5) - Ru(2) - O(4)	104.52(16)	O(5) - C(14) - C(13)	119.1(4)

C(5) - Ru(2) - O(5)	163.34(15)	C(13) - C(14) - Ru(2)	175.6(4)
C(5) - Ru(2) - P(3)	89.84(14)	O(6) - C(15) - Ru(1)	178.0(5)
C(5) - Ru(2) - P(4)	90.48(14)	C(6) - C(5) - Ru(2)	131.9(4)
C(5) - Ru(2) - C(14)	134.23(17)	C(5) - C(6) - C(7)	129.5(4)
C(16) - Ru(2) - O(4)	165.18(16)	C(6) - C(7) - S(1a)	122.8(4)
C(16) - Ru(2) - O(5)	106.35(16)	C(8) - C(7) - S(1a)	109.6(3)
C(16) - Ru(2) - P(3)	92.71(17)	C(8) - C(7) - C(6)	127.6(4)
C(16) - Ru(2) - P(4)	91.18(17)	C(7) - C(8) - C(4a)	114.8(4)
C(16) - Ru(2) - C(14)	135.45(18)	O(7) - C(16) - Ru(2)	177.1(4)

Cyclic Voltammetry

Compound 2-TF₆:

Figure S12. Cyclic voltammograms for the first composite wave of macrocycle **2-TF**₆ at v = 100 mV/s (left) and at v = 25, 50, 100, 200, 400, 600, 800, 1000 mV/s (right) in CH₂Cl₂/ⁿBu₄NBAr^{F24}.

Figure S13. Cyclic voltammograms for the first two composite waves of macrocycle **2-TF**₆ at v = 100 mV/s (left) and at v = 25, 50, 100, 200, 400, 600, 800, 1000 mV/s (right) in CH₂Cl₂/ⁿBu₄NBAr^{F24}.

Table S7. Data of the cyclovoltammetric measurements for macrocycle $2-TF_6$ at different scan rates, measured in $CH_2Cl_2/^nBu_4NBAr^{F24}$.

v in mV/s	$E_{1/2}^{0/3+}$ in mV	$\Delta E_{ m p}^{0/3+}$ in mV	$E_{1/2}^{3+/6+}$ in mV	$\Delta E_{ m p}^{3+/6+}$ in mV	Δ <i>E</i> in mV	
25	-474	78	-51	117	423	
50	-474	80	-56	129	418	
100	-476	84	-57	147	419	
200	-475	91	-54	172	421	
400	-475	91	-43	201	432	
600	-475	93	-38	227	437	
800	-472	98	-29	252	443	
1000	-473	99	-22	274	451	

Figure S14. Square wave voltammogram of macrocycle $2-TF_6$ (left) with deconvolution (right), measured in $CH_2Cl_2/^nBu_4NBAr^{F24}$.

Compound 2-TF₄:

Figure S15. Cyclic voltammograms for the first composite wave of macrocycle **2-TF**₄ at v = 100 mV/s (left) and at v = 25, 50, 100, 200, 400, 600, 800, 1000 mV/s (right) in CH₂Cl₂/ⁿBu₄NBAr^{F24}.

Figure S16. Cyclic voltammograms for the first two composite waves of macrocycle **2-TF**₄ at v = 100 mV/s (left) and at v = 25, 50, 100, 200, 400, 600, 800, 1000 mV/s (right) in CH₂Cl₂/ⁿBu₄NBAr^{F24}.

Table S8. Data of the cyclovoltammetric measurements for macrocycle 2-TF4 at different scan rates,measured in $CH_2Cl_2/^nBu_4NBAr^{F24}$.

v in mV/s	$E_{1/2}^{0/2+}$ in mV	$\Delta E_{ m p}^{0/2+}$ in mV	$E_{1/2}^{2+/4+}$ in mV	$\Delta E_{\rm p}^{2+/4+}$ in mV	Δ <i>E</i> in mV	
25	-499	112	-48	168	451	
50	-499	107	-49	162	450	
100	-497	111	-49	170	447	
200	-496	119	-51	180	445	
400	-496	116	-49	184	446	
600	-497	116	-48	183	449	
800	-493	120	-42	193	452	
1000	-492	123	-33	201	458	

Figure S17. Square wave voltammogram of macrocycle 2-TF₄ (left) with deconvolution (right), measured in $CH_2Cl_2/^nBu_4NBAr^{F24}$.

Spectroelectrochemistry

Compound 2-TF₆:

Figure S18. Changes in the NIR (left) and mid-IR (Ru(CO)) (right) spectra of **2-TF**₆ upon oxidation to **2-TF**₆³⁺, measured in $CH_2Cl_2/^nBu_4NPF_6$ (0.2 M, r. t.).

Figure S19. Changes in the NIR (left) and mid-IR (Ru(CO)) (right) spectra of $2-TF_6^{3+}$ upon further oxidation to $2-TF_6^{6+}$, measured in CH₂Cl₂/^{*n*}Bu₄NPF₆ (0.2 M, r. t.).

Figure S20. Changes in the UV/Vis/NIR spectra of $2-TF_6$ upon oxidation to $2-TF_6^{3+}$ (left) and deconvolution (right), measured in CH₂Cl₂/ⁿBu₄NPF₆ (0.2 M, r. t.).

Figure S21. Changes in the UV/Vis/NIR spectra upon further oxidation of $2-TF_6^{3+}$ to $2-TF_6^{6+}$ (left) and deconvolution (right), measured in CH₂Cl₂/^{*n*}Bu₄NPF₆ (0.2 M, r. t.).

Figure S22. Changes in the NIR (left) and mid-IR (Ru(CO)) (right) spectra of $2-TF_4$ upon oxidation to $2-TF_4^{2+}$, measured in CH₂Cl₂/^{*n*}Bu₄NPF₆ (0.2 M, r. t.).

Figure S23. Changes in the NIR (left) and mid-IR (Ru(CO)) (right) spectra upon further oxidation of $2-TF_4^{2+}$ to $2-TF_4^{4+}$, measured in $CH_2Cl_2/^nBu_4NPF_6$ (0.2 M, r. t.).

Figure S24. Changes in the UV/Vis/NIR spectra of **2-TF**₄ upon oxidation to **2-TF**₄²⁺ (left) and deconvolution (right), measured in $CH_2Cl_2/^nBu_4NPF_6$ (0.2 M, r. t.).

Figure S25. Changes in the UV/Vis/NIR spectra upon further oxidation of $2-TF_4^{2+}$ to $2-TF_4^{4+}$ (left) and deconvolution (right), measured in CH₂Cl₂/^{*n*}Bu₄NPF₆ (0.2 M, r. t.).

EPR Spectroscopy

Compound 2-TF₆:

Figure S26. EPR spectra of $2-TF_6^{3+}$ (left) and $2-TF_6^{6+}$ (right) at room temperature.

Figure S27. EPR spectra of $2-TF_4^{2+}$ (left) and $2-TF_4^{4+}$ (right) at room temperature.

DFT Calculations

Figure S28. Calculated geometry-optimized structures of the two isomeric model compounds $2-TF_4^{Me}$ (left) and $2-TF_6^{Me}$ (right). Thermodynamic parameters are given per divinylthiophene diruthenium unit.

References

- (1) Werner, H.; Esteruelas, M. A.; Otto, H. Organometallics, 1986, 5 (11), 2295-2299.
- (2) Pfaff, U.; Hildebrandt, A.; Korb, M.; Oßwald, S.; Linseis, M.; Schreiter, K.; Spange, S.; Winter, R. F.; Lang, H. Chem. Eur. J., 2016, 22 (2), 783-801.
- (3) Dolomanov, O.V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst., **2009**, 42 (2), 339-341.
- (4) Burla, M.C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G.L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. J. Appl. Cryst., 2007, 40, 609-613.
- (5) Sheldrick, G.M. Acta Cryst. 2015, A71, 3-8.
- (6) Sheldrick, G.M. Acta Cryst. 2015, C71, 3-8.
- (7) Krejcik, M.; Danek, M.; Hartl, F. J. *Electroanal. Chem.*, **1991**, 317, 179-187.
- (8) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr. J. A., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2016**.
- (9) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24 (6), 669-681.
- (10) (a) Dolg, M.; Stoll, H.; Preuss, H. J. Chem. Phys. 1989, 90 (3), 1730-1734; (b) Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H. J. Chem. Phys. 1994, 100 (10), 7535-7532.
- (11) Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77 (2), 123-141.
- (12) Hariharan, P. H.; Pople, J. A. Theor. Chim. Acta 1973, 28 (3), 213-222.
- (13) (a) Perdew, J. P.; Burke, K.; Enzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865-3868; (b) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110 (13), 6158-6170.
- (14) O'Boyle, N. M.; Tenderholt A. L.; Langner, K. M. J. Comp. Chem., 2008, 29 (5), 839-845.
- (15) Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek E.; Hutchison, G. R. "Avogadro: An advanced semantic chemical editor, visualization, and analysis platform", *J. Cheminf.* **2012**, *4*, 17.
- (16) Tange, O. login: The USENIX Magazine, 2011, 36, 42-47.
- (17) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14 (1), 33-38.
- (18) Persistence of Vision Pty. Ltd. (2004). Persistence of Vision Raytracer (Version 3.7), retrieved from *http://www.povray.org/download/*.