Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Experiments

Sample preparation

All the samples were synthesized by high-temperature solid state reaction. The raw materials including Mn_2O_3 and Na_2CO_3 (8% excess for volatilizing during high-temperature calcination) were mixed well in the planetary ball mill. Then add a certain molar ratio of Bi_2O_3 (All reagents were Analytical-reagent-grade) thoroughly ground in the agate bowl with the previous mixture. The final mixture was annealed at 750 °C for 20 h in air followed by natural cooling process. Finally, the synthesized samples were immediately transferred to a glove-box in Ar-atmosphere. After the material synthesized and stored in same condition, the sample is soaked in water for 12 hours and dried in the oven overnight to test the stability.

Material Characterizations

The crystal structure was obtained by (XRD, Rint 1000, Rigaku, Japan) Cu (K α) radiation source in the 10° < 2 θ < 70° range. The particle morphologies were observed by scanning electron microscopy (SEM TESCAN VEGA3) instrument. The asprepared sample was characterized by high-resolution transmission electron microscope (TEM, JEOL JEM-2100 microscopy) for crystal structure information. The X-ray photo-electron spectroscopy (XPS) data were characterized by XPS, ESCALAB 250Xi, Al Ka for determine the valence states of the elements in as-prepared material.

Electrochemical Characterizations

The electrochemical performance of all the samples were obtained with coin cells (CR2025). The cathode was fabricated by mixing 80 wt% of active materials, 10 wt% of acetylene black (AB) and 10 wt% of polyvinylidene fluoride (PVDF) with the blending to form uniform slurry using NMP as a dispersing agent. Then, the slurry was pasted onto on a current collector Al-foil and dried at 120 $^{\circ}$ C for 12 h in a vacuum oven. All the cells were assembled in an Ar-filled glove box with H₂O and O₂ contents less than 0.1 and 10 ppm, respectively. For all Na half-cells, metallic Na discs were used as

the counter electrode. Glass fibers (GF/D Whatman) were used in the half-cell as separators. The electrolyte consists of 1 M NaClO₄ dissolved in a solution of ethylene carbonate/diethyl carbonate (EC/PC, 1:1, v/v) with the additive 5 vol% fluoroethylene carbonate (FEC) by volume. The coin cells were galvanostatically charged and discharged in the voltage range of 2.0-4.1V at various current rates (1C=100mA g⁻¹) by battery test system (NEWARE).

Figure S1. The Rietveld refinement of the as-synthesized samples NMB-1%.

Phase	Atom	site	x	У	z	U iso	Occupancy
	Mn ₁	4g	0.031400	0.306600	0.000000	0.00014	1.0000
	Mn ₂	4h	0.361800	0.090300	0.500000	0.00097	1.0000
	Mn₃	2c	0.000000	0.500000	0.000000	0.00021	1.0000
Dham	Mn₄	4h	0.357200	0.306100	0.500000	0.00008	1.0000
Pbam	Mn₅	4g	0.014200	0.108100	0.000000	0.00011	1.0000
	Naı	4g	0.197699	0.210225	0.000000	0.00088	0.9951
	Na ₂	4h	0.207240	0.414701	0.500000	0.00088	0.5467
	Na ₃	4g	0.132747	0.000005	0.000000	0.00006	0.5414

Table S1. Refined crystallographic sites of prepared samples NMB-1%.

		Rwp (%)	11.40%				
		Rp (%)	8.00%		χ²	2.988	
	Bi ₁	2/m	0.000000	0.500000	0.500000	0.00043	0.0021
C2/m	Na ₁	2/m	0.000000	0.500000	0.500000	0.00043	0.9979
	Mn ₁	2/m	0.000000	0.000000	0.000000	0.00880	1.0000
	Bi _f	2b	0.333300	0.666700	0.750000	0.00018	0.00055
	Bi _e	2d	0.000000	0.000000	0.250000	0.00015	0.80000
P6₃/mmc	Na _f	2b	0.333300	0.666700	0.750000	0.00055	0.4100
	Na _e	2d	0.000000	0.000000	0.250000	0.80000	0.2905
	Mn ₁	2a	0.000000	0.000000	0.000000	0.00076	1.0000
	Bi ₃	4g	0.132747	0.000005	0.000000	0.00006	0.0138
	Bi ₂	4h	0.207240	0.414701	0.500000	0.00088	0.0156
	Bi ₁	4g	0.197699	0.210225	0.000000	0.00049	0.0069

Figure S2. (a-b) SEM images of NMB-2% and NMB-4% samples.

Figure S3. The XRD patterns of samples NMB-1% 15h and NMB-1% 25h in different annealing

time.

Figure S4. The SEM images of samples NMB-1% 15h and NMB-1% 25h in different annealing

time.

Figure S5. (a) Electrochemical cycle properties of NMB-2% and NMB-4% at 0.5C. (b) Rate performance of as-prepared samples NMB-2% and NMB-4% at rate of 0.2-10C. (c) Rate cycle performance of NMB-2% and NMB-4% at 2C.

Figure S6. (a) Rate performance of as-prepared samples NM at rate of 0.2-10C. (b) Electrochemical cycle properties of samples NM at 0.5C. (c) Rate cycle performance of NM at 2C.

Figure S7. (a) Charge-discharge curves of as-synthesized NM at rate of 0.2-10C. (b) CV curves of NM sample at the scan rate 0.2mV/s.

Figure S8. The 1st charge-discharge curves of as-prepared samples NMB-1%, NMB-2% and NMB-4% at 0.2C.