Electronic Supplementary Information

Chemical Communications

Surface Modification Strategy for Fluorescence Solvatochromism of Carbon Dots Prepared from *p*-Phenylenediamine

Kohei Sato, Rina Sato, Yoshiki Iso* and Tetsuhiko Isobe*

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

*Corresponding authors.

Telephone: +81 45 566 1558 (Y.I.), +81 45 566 1554 (T.I.).

Fax: +81 45 566 1551 (T.I.).

E-mail: iso@applc.keio.ac.jp (Y.I.), isobe@applc.keio.ac.jp (T.I.).

Experimental Section

Materials

p-PD (98.0%) and DA (98.0%) were purchased from Tokyo Chemical Industry. PFDA (98.0%) was purchased from Sigma-Aldrich. Diphenyl ether (99.0%) was purchased from FUJIFILM Wako Pure Chemical. Hexane (95.0%), chloroform (99.0%), and methanol (99.8%) were purchased from Kanto Chemical. All reagents were used as received without further purification.

Preparation of CDs

p-PD (0.60 g, 5.5 mmol) was mixed with diphenyl ether (45 mL). The mixture was refluxed at 250 °C for 8 h under ambient atmosphere. After cooling to room temperature, the obtained suspension was poured into hexane (180 mL). The resulting precipitate was collected by centrifugation at ~11,000 × g (10,000 rpm, using a rotor with a diameter of 10 cm) for 10 min. After repeating the purification process three times, the precipitate was air-dried overnight to yield CD powder. The powder (1 mg) was re-dispersed in chloroform (10 mL) and methanol (10 mL) under ultrasonication. 4-Fold-diluted dispersions of these dispersions were used for characterization.

Surface modification of CDs: The as-prepared CD powder (0.10 g) was added to DA (1.59 g, 9.25 mmol). The mixture was refluxed at 170 °C for 4 h under ambient atmosphere. After cooling to room temperature, the obtained black solid was purified by redispersion in hexane (100 mL) and centrifugation at ~11,000 × g for 10 min to remove excess DA. After the purification process was repeated three times, the precipitate was air-dried overnight to yield DA-CD powder. The CD powder (0.10 g) was also added to PFDA (4.75 g, 9.25 mmol). The mixture was refluxed at 170 °C for 4 h under ambient atmosphere. After cooling to room temperature, the obtained black solid was purified by evaporating excess PFDA at 100 °C using a rotary evaporator and air-dried overnight to yield PFDA-CD powder. DA-CDs and PFDA-CD powders (1 mg) were re-dispersed in chloroform (10 mL) and methanol (10 mL) under ultrasonication. 4-Fold-diluted dispersions of these dispersions were used for characterization.

Characterization

FT-IR spectra of pressed KBr discs containing the powders were measured on an FT-IR spectrometer (JASCO, FT/IR-4200). XPS spectra were measured on an X-ray photoelectron spectrometer (JEOL, JPS-9010TR) with a Mg K α radiation source. The binding energy of C–C/C=C bonds in the C 1s spectra at 284.4 eV was used for the

charge-up correction. The morphologies of all samples were observed with a TEM (FEI, Tecnai 12). The samples for TEM observation were prepared by drying a drop of each methanol dispersion on a copper grid covered with a carbon-reinforced collodion film (Okenshoji, COL-C10). The samples were also observed using an AFM (HITACHI, AFM5100N) in dynamic force mode. The samples for AFM were prepared by drying a drop of a methanol dispersion of each sample on a p-type silicon wafer (Nilaco, $< 0.02 \Omega$ cm). PL spectra and PLE spectra of the dispersions were measured on a fluorescence spectrometer (JASCO, FP-6500). Each spectral response was calibrated against an ethylene glycol solution of rhodamine B (5.5 g L^{-1}) and a standard light source (JASCO, ESC-333). The absolute PL QYs of the dispersions were measured on a quantum efficiency measurement system (Otsuka Electronics, QE-2000-311C). PL decay curves of the dispersions were measured on a PL lifetime spectrometer (Hamamatsu Photonics, Quantaurus-Tau C11367) equipped with 405 and 470 nm LEDs as the light sources. The PL decay curves were fitted with the following biexponential equation:

$$f(t) = A_1 exp\left(-\frac{t}{\tau_1}\right) + A_2 exp\left(-\frac{t}{\tau_2}\right),\tag{1}$$

where f(t) is the PL intensity at time t, A_1 and A_2 are the amplitudes, and τ_1 and τ_2 are the PL decay times. The average PL lifetime, τ_{ave} , was calculated using equation (2).

$$\tau_{ave} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2} \tag{2}$$

Assignments of FT-IR peaks

The FT-IR spectra of CDs, DA-CDs, PFDA-CDs, *p*-PD, DA, and PFDA are shown in Fig. S1, and assignments of the FT-IR peaks are summarized in Tables S1–S3. The CDs, DA-CDs, and PFDA-CDs maintained the structure of *p*-PD, as confirmed by the aryl C–H stretching vibrations (3060–3000 cm⁻¹; No. 9), C=C stretching vibration (1520 cm⁻¹; No. 19), C–H bending vibrations (1130–1120 cm⁻¹; No. 27, 850–830 cm⁻¹; No. 29, 520 cm⁻¹; No. 31), C=N stretching vibration (1610–1600 cm⁻¹; No. 17), and C–N stretching vibrations (1310 cm⁻¹; No. 24, 1270–1250 cm⁻¹; No. 25).

The CDs retained the amino group in *p*-PD, as confirmed by the NH₂ asymmetric and symmetric stretching vibrations (3420–3360 cm⁻¹; No. 2, 3320 cm⁻¹; No. 3), overtone of NH₂ bending vibration (3200 cm⁻¹; No. 4), and NH₂ bending vibrations (1630 cm⁻¹; No. 16, 770–650 cm⁻¹; No. 30). In contrast, the DA-CDs contained amide bonds rather than amino groups, as confirmed by the N–H stretching vibration (3320 cm⁻¹; No. 7), overtone of CNH bending and C–N stretching vibrations (3150 cm⁻¹; No. 8), C=O stretching vibration (1650 cm⁻¹; No. 15), and CNH bending and C–N stretching vibrations (1550 cm⁻¹; No. 18). Furthermore, the DA-CDs contained alkyl chains, as verified by the CH₃ asymmetric and symmetric stretching vibrations (2960 cm⁻¹; No. 10, 2870 cm⁻¹; No. 12), CH₂ asymmetric and symmetric stretching vibrations (2920 cm⁻¹; No. 11, 2850 cm⁻¹; No.

13), CH₂ and CH₃ asymmetric bending vibrations (1470 cm⁻¹; No. 21), and CH₃ symmetric bending vibration (1410 cm⁻¹; No. 23), which were not detected for the CDs. The DA-CDs did not have carboxy groups because there were no signals due to the O–H stretching vibrations (3400–3000 cm⁻¹; No. 6) or C–OH bending vibration (1430 cm⁻¹; No. 22), which were observed for DA. This finding reveals that the CDs are modified with DA through amide bonds to form DA-CDs, as already shown in Fig. 1. In addition, the peak assigned to the C=O stretching vibration for DA-CDs (1650 cm⁻¹; No. 15) was located at a lower wavenumber than that for DA (1700 cm⁻¹; No. 14), which is attributed to the weakened bond strength of C=O caused by electron donation from nitrogen to carbon in the amide bond due to the resonance effect for DA-CDs.^{S1}

The PFDA-CDs also contained amide bonds rather than amino groups, as confirmed by the N–H stretching vibration (3330 cm⁻¹; No. 7), overtone of CNH bending and C–N stretching vibrations (3160 cm⁻¹; No. 8), C=O stretching vibration (1700 cm⁻¹; No. 15), and CNH bending and C–N stretching vibrations (1560 cm⁻¹; No. 18). Furthermore, the PFDA-CDs contained perfluoroalkyl chains, as verified by the C–F stretching vibrations (1350–1100 cm⁻¹; No. 28), which were not detected for the CDs. The PFDA-CDs did not contain carboxy groups because there were no signals due to O–H stretching vibrations (3600–3400 cm⁻¹; No. 5) or C–OH bending vibration (1460 cm⁻¹; No. 22), which were observed for PFDA. This result reveals that the CDs were modified with PFDA through amide bonds to form PFDA-CDs, as already shown in Fig. 1. In addition, the peak assigned to the C=O stretching vibration for PFDA-CDs (1700 cm⁻¹; No. 15) was located at the same wavenumber as that for PFDA (1700 cm⁻¹; No. 14), which is attributed to two opposite two factors: electron donation from nitrogen in the amide bond by the resonance effect and electron withdrawal from the perfluoroalkyl group by the inductive effect.

Figure S1. FT-IR spectra of the CDs, *p*-PD, DA-CDs, DA, PFDA-CDs, and PFDA in the ranges of (a) 4000–2000 cm⁻¹ and (b) 2000–400 cm⁻¹.

Peak number	Peak posit	ion (cm ⁻¹)		
	CDs	<i>p</i> -PD	Assignment	
1	3480-3420		N–H stretching	
2	3420-3360	3420-3360	NH ₂ asymmetric stretching	
3	3320	3330	NH ₂ symmetric stretching	
4	3200	3200	overtone of NH ₂ bending	
9	3050-3000	3050-3000	aryl C-H stretching	
16	1630	1630	NH ₂ bending	
17	1600	1610	C=N stretching	
19	1520	1520	aryl ring semicircle stretching	
20	1450	1450	aryl ring semicircle stretching	
24	1310	1310	aryl C-N stretching	
25	1270	1270	aryl C-N stretching	
26	1230		aryl C–O stretching	
27	1130	1130	in-plane bending	
29	840	830	H wagging	
30	770–650	770–650	NH ₂ wagging	
31	520	520	out-of-plane bending	

 Table S1. Assignments of FT-IR peaks of CDs and p-PD.

Daak number	Peak posi	tion (cm ^{-1})	Assignment ^{S1}			
reak number	DA-CDs	DA	Assignment			
6		3400-3000	O–H stretching			
7	3320		NH stretching			
0	2150		overtone of CNH bending			
8	3150		overtone of C–N stretching			
9	3060		aryl C-H stretching			
10	2960	2960	CH ₃ asymmetric stretching			
11	2920	2920	CH ₂ asymmetric stretching			
12	2870	2870	CH ₃ symmetric stretching			
13	2850	2850	CH ₂ symmetric stretching			
14		1700	C=O asymmetric stretching			
15	1650		C=O stretching			
17	1600		C=N stretching			
10	1550		CNH bending			
18	1550		C–N stretching			
19	1520		aryl ring semicircle stretching			
21	1470	1470	CH ₂ bending			
21	14/0	1470	CH ₃ asymmetric bending			
22		1430	C–OH bending			
23	1410	1410	CH ₃ symmetric bending			
24	1310		aryl C-N stretching			
25	1250		aryl C-N stretching			
27	1120		in-plane bending			
29	850		H wagging			
31	520		out-of-plane bending			

Table S2. Assignments of FT-IR peaks of DA-CDs and DA.

Paak number	Peak posit	ion (cm $^{-1}$)	Assignment ^{S1}				
	PFDA-CDs	PFDA					
5		3600-3400	O–H stretching				
7	3330		NH stretching				
Q	2160		overtone of CNH bending				
0	3100		overtone of C–N stretching				
9	3060		aryl C-H stretching				
14		1700	C=O asymmetric stretching				
15	1700		C=O stretching				
17	1610		C=N stretching				
10	1560		CNH bending				
18	1300		C–N stretching				
19	1520		aryl ring semicircle stretching				
22		1460	C–OH bending				
28	1350-1100	1350-1100	C–F stretching				
29	830		H wagging				
31	520		out-of-plane bending				

 Table S3. Assignments of FT-IR peaks of PFDA-CDs and PFDA.

Figure S2. Wide-scan, N 1s, and O 1s XPS spectra of CDs, DA-CDs, and PFDA-CDs.

Figure S3. TEM images and particle size distributions of the CDs, DA-CDs, and PFDA-CDs.

Figure S4. AFM images of the CDs, DA-CDs, and PFDA-CDs.

Figures S5. Normalized PL spectra of CDs, DA-CDs, and PFDA-CDs in chloroform (blue) and methanol (red) under 365 nm excitation.

	Chloroform			Methanol			Peak Shift	
Sample	λ_{ex}	$\lambda_{ m em}$	FWHM	λ_{ex}	$\lambda_{ m em}$	FWHM	$\Delta \lambda_{\rm ex}$	$\Delta \lambda_{ m em}$
	(nm)	(nm)	(nm)	(nm)	(nm)	(nm)	(nm)	(nm)
CDs	473	556	84	517	611	90	44	55
DA-CDs	418	501	142	424	504	83	6	3
PFDA-CDs	455	561	103	533	598	104	78	37

Table S4. PL/PLE peak wavelengths and PL full widths at half maximum (FWHMs) of chloroform and methanol dispersions of each sample and PL/PLE peak shifts between both dispersions.

Table S5. Absolute PL QYs of chloroform and methanol dispersions of each sample excited at the optimum excitation wavelength.

Samula	Chlo	roform	Methanol		
Sample	$\lambda_{\mathrm{ex}} (\mathrm{nm})$	PL QY (%)	$\lambda_{\mathrm{ex}} (\mathrm{nm})$	PL QY (%)	
CDs	473	30.3	517	14.1	
DA-CDs	418	0.244	424	1.59	
PFDA-CDs	455	4.19	533	0.861	

Figures S6. (a, b) PL decay curves of CDs, DA-CDs, and PFDA-CDs in (a) chloroform and (b) methanol. λ_{ex} : 405 nm (DA-CDs) and 470 nm (CDs, PFDA-CDs). (c) Correlation between the average PL lifetime and the absolute PL QY.

Solvent	Sample	τ_1 (ns)	A_1 (%)	τ_2 (ns)	A_2 (%)	$\tau_{\rm ave}({\rm ns})$	χ^2
Chloroform	CDs	2.76	29.1	13.1	70.9	12.3	0.988
	DA-	0.55(80.3	2 45	19.7	1.54	1.45
	CDs	0.330		2.45			
	PFDA-	2.28	39.7	8.93	60.3	7.97	1.05
	CDs						
Methanol	CDs	0.572	35.8	7.97	64.2	7.68	1.02
	DA-	1.61	61.0	1 16	39.0	3.43	0.899
	CDs			4.40			
	PFDA-	1 1 /	58.4	2 5 1	41.6	1.98	1.18
	CDs	1.14		2.31			

Table S6. Fitted parameters of the PL decay curves of chloroform and methanol dispersions of each sample.

References

S1 P. J. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, 2nd ed., ELSEVIER, Amsterdam, 2018.