Acid Promoted Radical-Chain Difunctionalization of Styrenes with Stabilized Radicals and (N,O)-Nucleophiles

Sensheng Liu, and Martin Klussmann*

Contents

General experimental details
Optimization of reaction conditions ^[a] 4
Failed examples for Hydrogen donors 5
Failed examples for Nucleophiles
General procedure A: synthesis of N-(1-phenyl-2-(9H-thioxanthen-9-yl)ethyl)acetamides
General procedure B: synthesis of N-(1-phenyl-2-(9H-xanthene-9-yl)ethyl)amides
General procedure C: synthesis of 9-(2-methoxy-2-phenylethyl)-9H-thioxanthenes
General procedure D: synthesis of 9-(2-methoxy-2-phenylethyl)-9H-thioxanthene N-(1-phenyl-2-
(phenylthio)ethyl)acetamides
General procedure E: synthesis of N-(3-cyano-1-phenylpropyl)acetamide
Characterization Data
X-ray study 26
Mechanistic studies:
¹ H, ¹³ C and DEPT 135 NMR Spectra of the Products
Configuration of <i>trans</i> -3p and <i>trans</i> -3r:
Reference

General experimental details

Unless otherwise indicated, all reagents and solvents were purchased from commercial distributors and used as received. Solvents (hexanes, ethyl acetate) used for column chromatography were of technical grade and used after distillation in a rotary evaporator.

Benzoyl peroxide (BPO) 75% remainder H_2O and Hexafluorophosphoric acid solution (HPF₆, 55% wt. in H_2O) from Sigma-Aldrich, used directly without further purification.

TLC was used to check the reactions for full conversion and was performed on Macherey-Nagel Polygram Sil G/UV254 thin layer plates. TLC spots were visualized by UV-light irradiation.

Flash column chromatography was carried out using Merck Silica Gel 60 (40-63 μ m). Yields refer to pure isolated compounds.

¹H and ¹³C NMR spectra were measured with Bruker AV 500 spectrometer. All chemical shifts are given in ppm downfield relative to TMS and were referenced to the solvent residual peaks.^[1] ¹H NMR chemical shifts are designated using the following abbreviations as well as their combinations: s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet. For ¹³C NMR data the following abbreviations are used: p =primary (CH₃), s = secondary (CH₂), t = tertiary (CH), q = quaternary (C).

High resolution mass spectra were recorded with a Bruker APEX III FTICR-MS or a Finnigan SSQ 7000 quadrupole MS or a Finnigan MAT 95 double focusing sector field MS instrument.

The three electrode system was controlled by using a potentiostat/galvanostat (BioLogic VSP, France). Two platinized Pt wire as a counter and working electrode with a Ag/AgCl electrode as a reference were used. The cyclic voltammetry (CV) was conducted from -1 V to 0.5 V with a scan rate of 100 mV/s.

Optimization of reaction conditions^[a]

	la	+ S 2a	Oxidant Acid (1 CH ₃ CN 2	(1.5 equiv .0 equiv.) (2 mL) h	A.) Me	NH 3a	S
Entry	Oxidant	Equiv.	Acid	Equiv.	Additive	T/°C	Yield (%) ^[b]
1	BPO	(1.5 equiv.)	HCl (aq., 38%)	1.0	-	50	7
2	BPO	(1.5 equiv.)	CF ₃ COOH ^[c]	1.0	-	50	11
3	BPO	(1.5 equiv.)	H ₂ SO ₄ (aq., 55%)	1.0	-	50	25
4	BPO	(1.5 equiv.)	HBF ₄ (aq., 48%)	1.0	-	50	39
5	BPO	(1.5 equiv.)	HClO ₄ (aq., 70%)	1.0	-	50	51
6	BPO	(1.5 equiv.)	TfOH ^[c]	1.0	-	50	47
7	BPO	(1.5 equiv.)	HPF ₆ (aq., 55%)	1.0	-	50	88
8	BPO	(1.5 equiv.)	-	-	NaPF ₆ (1.0 equiv.)	50	< 5
9	DTBP	(1.5 equiv.)	HPF ₆ (aq., 55%)	1.0	-	50	0
10	TBPB	(1.5 equiv.)	HPF ₆ (aq., 55%)	1.0	-	50	0
11	TBHP	(1.5 equiv.)	HPF ₆ (aq., 55%)	1.0	-	50	0
12	BPO	(1.5 equiv.)	HPF ₆ (aq., 55%)	1.0	-	100	35
13	BPO	(1.5 equiv.)	HPF ₆ (aq., 55%)	1.0	-	r.t.	25
14	BPO	(1.5 equiv.)	HPF ₆ (aq., 55%)	0.5	-	50	16
15	BPO	(1.5 equiv.)	HPF ₆ (aq., 55%)	0.1	-	50	20
16	BPO	(1.5 equiv.)	-	-	-	50	0
17	BPO	(1.0 equiv.)	HPF ₆ (aq., 55%)	1.0	-	50	40
18	BPO	(0.5 equiv.)	HPF ₆ (aq., 55%)	1.0	-	50	18
19	-	-	HPF ₆ (aq., 55%)	1.0	-	50	0
20 ^[d]	BPO	(1.5 equiv.)	HPF ₆ (aq., 55%)	1.0	-	50	91 (88)

[a] **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 equiv.), Oxidant (0.3 mmol, 1.5 equiv.), Acid (0.2 mmol, 1.0 equiv.) and CH₃CN (2 mL), for 2 hours. [b] Yields were determined by ¹**H NMR** spectroscopic analysis of the crude reaction mixture relative to the internal standard CH₃NO₂, yield of isolated product in parentheses. [c] H₂O (0.2 mmol, 1.0 equiv.) was added. [d] Degassed, under argon.

Failed examples for Hydrogen donors

Failed examples for Nucleophiles

General procedure A: synthesis of *N*-(1-phenyl-2-(9*H*-thioxanthen-9-yl)ethyl)acetamides.

Under argon atmosphere, the thioxanthene **2a** (0.4 mmol, 2.0 equiv.), BPO (0.3 mmol, 1.5 equiv.) were added into a 10 mL glass tube. Then CH₃CN (2 mL), alkenes **1** (0.2 mmol), HPF₆ (55% aq., 0.2 mmol, 1.0 equiv.) were added. The reaction mixture was stirred at 50 °C for 2 h under Ar atmospheres. After the reaction was fully completed, the mixture was cooled to room temperature and concentrated under reduced pressure to give a crude product. The residue was further purified by silica gel column with *iso*-hexane/ethyl acetate (from 10:1 to 1:1) to give the desired products **3a-3r** (*trans-***3q** and *trans-***3r** need 6 h).

General procedure B: synthesis of *N*-(1-phenyl-2-(9*H*-xanthene-9-yl)ethyl)amides.

Under argon atmosphere, the xanthene **2b** (0.4 mmol, 2.0 equiv.), BPO (0.3 mmol, 1.5 equiv.) were added into a 10 mL glass tube. Then nitriles (2 mL), styrene **1a** (0.2 mmol), HPF₆ (55% aq., 0.2 mmol, 1.0 equiv.) were added. The reaction mixture was stirred at 50 °C for 6 h under Ar atmospheres. After the reaction was fully completed, the mixture was cooled to room temperature and concentrated under reduced pressure to give a crude product. The residue was further purified by silica gel column with *iso*-hexane/ethyl acetate (from 10:1 to 1:1) to give the desired products **3s-3x**.

General procedure C: synthesis of 9-(2-methoxy-2-phenylethyl)-9*H*-thioxanthenes.

Under argon atmosphere, the thioxanthene **2a** (0.4 mmol, 2.0 equiv), BPO (0.3 mmol, 1.5 equiv) were added into a 10 mL glass tube. Then CH₃CN (1 mL), alcohols (1 mL), styrene **1a** (0.2 mmol), HPF₆ (55% aq., 0.2 mmol, 1.0 equiv) were added. The reaction mixture was stirred at 50 °C for 2 h under Ar atmospheres. After the reaction was fully completed, the mixture was cooled to room temperature and concentrated under reduced pressure to give a crude product. The residue was further purified by silica gel column with *iso*-hexane/ethyl acetate (100:1) to give the desired products **9a-9h**.

General procedure D: synthesis of 9-(2-methoxy-2-phenylethyl)-9*H*-thioxanthene *N*-(1-phenyl-2-(phenylthio)ethyl)acetamides

Under argon atmosphere, the thiophenols **10** (0.4 mmol, 2.0 equiv.), BPO (0.3 mmol, 1.5 equiv.) were added into a 10 mL glass tube. Then CH₃CN (1 mL), alcohols (1 mL), styrene **1a** (0.2 mmol), HPF₆ (55% aq., 0.2 mmol, 1.0 equiv.) were added. The reaction mixture was stirred at 50 °C for 6 h under Ar atmospheres. After the reaction was fully completed, the mixture was cooled to room temperature and concentrated under reduced pressure to give a crude product. The residue was further purified by silica gel column with *iso*-hexane/ethyl acetate (from 10:1 to 2:1) to give the desired products **5a-5h**.

General procedure E: synthesis of N-(3-cyano-1-phenylpropyl)acetamide

Under argon atmosphere, BPO (0.75 mmol, 1.5 equiv., three portions every 2 hours) were added into a 10 mL glass tube. Then CH₃CN (30 mL), styrene **1a** (0.5 mmol), HPF₆ (55% aq., 0.66 mmol, 1.32 equiv.) and a *N*,*N*-dimethylaniline derivative as initiator (10 mol%, 0.05 mmol) were added. The reaction mixture was stirred at 70 °C for 18 h under Ar atmospheres. After the reaction was fully completed, the mixture was cooled to room temperature and concentrated under reduced pressure to give a crude product. The residue was further purified by silica gel column with *iso*-hexane/ethyl acetate (from 10:1 to 1:1) to give the desired products **13**.

Characterization Data

N-(1-phenyl-2-(9H-thioxanthen-9-yl)ethyl)acetamide (3a, unreported product)

Following the general procedure A, white solid (65.3 mg, 91%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.36-7.32 (m, 2H), 7.24-7.09 (m, 11H), 5.39 (d, *J* = 12.5 Hz, 1H), 4.85-4.80 (m, 1H), 4.07-4.00 (m, 1H), 2.20-2.09 (m, 2H), 1.80 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 168.99, 142.05, 137.66, 137.62, 132.53, 132.32, 128.97, 128.71, 128.68,

127.42, 127.23, 127.10, 126.79, 126.77, 126.71, 126.60, 51.63, 46.77, 38.02, 23.46.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{23}H_{21}NOSNa$ 382.123605; found 382.123850.

N-(2-(9H-thioxanthen-9-yl)-1-(p-tolyl)ethyl)acetamide (3b, unreported product)

Following the general procedure A, white solid (62.0 mg, 83%).

¹**H** NMR (500 MHz, CDCl₃) δ 7.36-7.31 (m, 1H), 7.20-7.10 (m, 7H), 7.04 (s, 4H), 5.35 (d, J = 8.5 Hz, 1H), 4.78 (dd, J = 15.5 Hz, 7.5 Hz, 1H), 4.05 (dd, J = 15.0 Hz, 5.0 Hz, 1H), 2.24 (s, 3H), 2.14 (t, J = 7.5 Hz, 2H), 1.79 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 168.89, 139.04, 137.78, 137.65, 137.12, 132.54, 132.35, 129.39, 128.93, 128.72, 127.23, 127.07, 126.67, 126.59, 51.31, 46.69, 37.93, 23.49, 21.06.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{24}H_{23}NOSNa 396.139255$; found 396.139160.

N-(1-(4-(tert-butyl)phenyl)-2-(9H-thioxanthen-9-yl)ethyl)acetamide (3c, unreported product)

Following the general procedure **A**, white solid (51.4 mg, 62%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.42 (d, *J* = 8.5 Hz, 1H), 7.49 (dd, *J* = 6.5 Hz, 4.0 Hz, 1H), 7.44 (d, *J* = 7.0 Hz, 1H), 7.40 (d, *J* = 6.5 Hz, 1H), 7.32-7.23 (m, 7H), 7.00 (d, *J* = 8.0 Hz, 2H), 4.45-4.40 (m, 1H), 4.18 (dd, *J* = 9.5 Hz, 4.5 Hz, 1H), 2.09-2.04 (m, 1H), 1.92 (s, 3H), 1.85-1.78 (m, 1H), 1.22 (s, 9H). ¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.95, 149.42, 141.14, 138.65, 137.14, 131.87, 131.72, 129.89, 129.13, 127.35, 127.22, 127.18, 127.11, 126.29, 125.48, 50.28, 45.69, 39.13, 34.55, 31.58, 23.26. HRMS (ESIpos) (m/z): M⁺ calculated for C₂₇H₂₉NOSNa 438.186205; found 438.186910.

N-(1-(4-fluorophenyl)-2-(9H-thioxanthen-9-yl)ethyl)acetamide (3d, unreported product)

Following the general procedure A, white solid (72.4 mg, 96%).

¹**H** NMR (500 MHz, CDCl₃) δ 7.36-7-33 (m, 2H), 7.17-7.09 (m, 8H), 6.90 (t, *J* = 10.0 Hz, 2H), 5.35 (d, *J* = 5.0 Hz, 1H), 4.81-4.76 (m, 1H), 4.01 (t, 2H, *J* = 10.0 Hz, 1H), 2.15-2.11 (m, 2H), 1.80 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 169.05, 162.92, 160.97, 137.92 (d, J = 3.75 Hz, 1C), 137.46 (d, J = 8.75 Hz, 1C), 133.46, 132.52, 132.29, 130.12, 128.92, 128.66, 128.45, 128.26, 128.19, 127.28, 127.16, 126.86 (d, J = 3.75 Hz, 1C), 126.78, 115.57, 115.40, 51.09, 46.85, 37.92, 23.42.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{23}H_{20}FNOSNa$ 400.114184; found 400.114170.

N-(1-(4-chlorophenyl)-2-(9H-thioxanthen-9-yl)ethyl)acetamide (3e, unreported product)

Following the general procedure A, white solid (66.0 mg, 84%).

¹**H** NMR (500 MHz, DMSO-*d*₆) δ 8.53 (d, *J* = 5.0 Hz, 1H), 7.55-7.54 (m, 1H), 7.50 (dd, *J* = 5.0 Hz, 2.5 Hz, 1H), 7.45 (dd, *J* = 5.0 Hz, 1.5 Hz, 1H), 7.38-7.28 (m, 7H), 7.15 (d, *J* = 8.5 Hz, 2H), 4.48-4.41 (m, 1H), 4.25 (dd, *J* = 10.0 Hz, 5.5 Hz, 1H), 2.12-2.08 (m, 1H), 1.98 (s, 3H), 1.92-1.86 (m, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.10, 143.08, 138.40, 136.97, 131.88, 131.73, 131.63, 129.84, 129.20, 128.76, 128.51, 127.42, 127.40, 127.37, 127.30, 127.24, 127.17, 50.24, 45.58, 38.76, 23.20. HRMS (ESIpos) (m/z): M⁺ calculated for C₂₃H₂₀CINOSNa 416.084633; found 416.084760.

N-(1-(4-bromophenyl)-2-(9H-thioxanthen-9-yl)ethyl)acetamide (3f, unreported product)

Following the general procedure A, white solid (70.8 mg, 81%).

¹**H** NMR (500 MHz, DMSO-*d*₆) δ 8.53 (d, *J* = 5.0 Hz, 1H), 7.55-7.53 (m, 1H), 7.50 (d, *J* = 8.5 Hz, 3H), 7.45 (dd, *J* = 7.5 Hz, 1.0 Hz, 1H), 7.38-7.28 (m, 5H), 7.09 (d, *J* = 8.5 Hz, 2H), 4.46-4.41 (m, 1H), 4.25 (dd, *J* = 9.5 Hz, 5.0 Hz, 1H), 2.14-2.08 (m, 1H), 1.97 (s, 3H), 1.92-1.85 (m, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.11, 143.51, 138.39, 136.96, 131.88, 131.73, 131.67, 129.84, 129.20, 128.89, 127.43, 127.41, 127.37, 127.30, 127.24, 127.17, 120.12, 50.31, 45.57, 38.69, 23.20. HRMS (ESIpos) (m/z): M⁺ calculated for C₂₃H₂₀BrNOSNa 460.034131; found 460.034780.

N-(1-(4-nitrophenyl)-2-(9H-thioxanthen-9-yl)ethyl)acetamide (3g, unreported product)

Following the general procedure A, light yellow solid (8.0 mg, 10%).

¹**H** NMR (500 MHz, DMSO-*d*₆) δ 8.69 (d, *J* = 8.0 Hz, 1H), 8.81 (d, *J* = 8.5 Hz, 2H), 7.57-7.55 (m, 1H), 7.50 (t, *J* = 16.5 Hz, 8.0 Hz, 2H), 7.40-7.30 (m, 7H), 4.56-4.51 (m, 1H), 4.34 (dd, *J* = 10.0 Hz, 5.0 Hz, 1H), 2.18-2.12 (m, 1H), 2.01 (s, 3H), 1.94-1.88 (m, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.37, 151.87, 146.76, 138.27, 136.67, 131.90, 131.77, 129.89, 129.22, 127.86, 127.53, 127.47, 127.42, 127.36, 127.25, 127.21, 124.12, 50.78, 45.49, 38.33, 23.15. HRMS (ESIpos) (m/z): M⁺ calculated for C₂₃H₂₀N₂O₃SNa 427.108684; found 427.109200.

N-(2-(9H-thioxanthen-9-yl)-1-(4-(trifluoromethyl)phenyl)ethyl)acetamide (3h, unreported product)

Following the general procedure **A**, white solid (25.6 mg, 30%).

¹**H** NMR (500 MHz, DMSO-*d*₆) δ 8.64 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.56-7.55 (m, 1H), 7.50-7.47 (m, 2H), 7.37-7.30 (m, 7H), 4.54-4.50 (m, 1H), 4.31 (dd, *J* = 10.0 Hz, 5.0 Hz, 1H), 2.18-2.14 (m, 1H), 2.00 (s, 3H), 1.92-1.87 (m, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.27, 148.88, 138.38, 136.79, 131.88, 131.75, 129.89, 129.20, 127.48, 127.44, 127.39, 127.32, 127.23, 127.18, 125.78, 125.74, 125.71, 50.72, 45.55, 38.61, 23.17. HRMS (ESIneg) (m/z): H⁻ calculated for C₂₄H₂₀F₃NOS 426.114497; found 426.115170.

N-(1-([1,1'-biphenyl]-4-yl)-2-(9H-thioxanthen-9-yl)ethyl)acetamide (3i, unreported product)

Following the general procedure **A**, white solid (69.6 mg, 80%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.50 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 7.0 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.51-7.49 (m, 1H), 7.46-7.42 (m, 4H), 7.35-7.24 (m, 6H), 7.71 (d, *J* = 8.0 Hz, 2H), 4.51-4.46 (m, 1H), 4.23 (dd, *J* = 10.0 Hz, 5.0 Hz, 1H), 2.15-2.10 (m, 1H), 1.59 (s, 3H), 1.91-1.85 (m, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.06, 143.34, 140.37, 139.11, 138.55, 137.11, 131.89, 131.75, 129.89, 129.34, 129.19, 127.75, 127.40, 127.37, 127.27, 127.23, 127.21, 127.15, 127.01, 50.46, 45.68, 39.01, 23.27.

HRMS (ESIpos+neg) (m/z): M^+ calculated for $C_{29}H_{25}NOSNa$ 458.154905; found 458.154970.

N-(2-(9H-thioxanthen-9-yl)-1-(m-tolyl)ethyl)acetamide (3j, unreported product)

Following the general procedure A, white solid (50.0 mg, 63%).

¹**H** NMR (500 MHz, DMSO-*d*₆) δ 8.43 (d, *J* = 8.5 Hz, 1H), 7.50-7.48 (m, 1H), 7.45-7.39 (m, 2H), 7.33-7.23 (m, 5H), 7.14 (t, *J* = 7.5 Hz 1H), 6.98 (d, *J* = 7.5 Hz, 1H), 6.88-6.86 (m, 2H), 4.42-4.40 (m, 1H), 4.18 (dd, *J* = 10.0 Hz, 5.0 Hz, 1H), 2.24 (s, 3H), 2.09-2.03 (m, 1H), 1.93 (s, 3H), 1.85-1.79 (m, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 168.95, 144.10, 138.62, 137.81, 137.10, 131.86, 131.71, 129.89, 129.17, 128.69, 127.78, 127.37, 127.24, 127.22, 127.19, 127.13, 123.71, 50.58, 45.66, 39.19, 23.28, 21.49. HRMS (ESIpos) (m/z): M⁺ calculated for C₂₄H₂₃NOSNa 396.139256; found 396.139410.

N-(1-(3-bromophenyl)-2-(9H-thioxanthen-9-yl)ethyl)acetamide (3k, unreported product)

Following the general procedure **A**, white solid (67.3 mg, 77%).

¹**H** NMR (500 MHz, DMSO-*d*₆) δ 8.55 (d, *J* = 8.5 Hz, 1H), 7.55-7.53 (m, 1H), 7.50 (dd, *J* = 7.5 Hz, 1.0 Hz, 1H), 7.47-7.41 (m, 2H), 7.38-7.25 (m, 7H), 7.10 (d, *J* = 7.5 Hz, 1H), 4.48-4.39 (m, 1H), 4.28 (dd, *J* = 9.5 Hz, 5.0 Hz, 1H), 2.14-2.08 (m, 1H), 2.04 (s, 3H), 1.92-1.86 (m, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.17, 146.97, 138.43, 136.86, 131.90, 131.76, 131.06, 130.08, 129.85, 129.22, 129.17, 127.44, 127.42, 127.38, 127.29, 127.22, 127.16, 125.83, 122.12, 50.49, 45.63, 38.80, 23.22.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{23}H_{20}BrNOSNa$ 460.034131; found 460.033700.

N-(1-(3-nitrophenyl)-2-(9H-thioxanthen-9-yl)ethyl)acetamide (3l, unreported product)

Following the general procedure A, light yellow solid (26.6 mg, 33%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.64 (d, *J* = 8.0 Hz, 1H), 8.05-8.63 (m, 1H), 7.94 (s, 1H), 7.56-7.42 (m, 5H), 7.32-7.25 (m, 5H), 4.56-4.51 (m, 1H), 4.29 (dd, *J* = 10.0 Hz, 5.5 Hz, 1H), 2.15-2.09 (m, 1H), 1.94 (s, 3H), 1.92-1.88 (m, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.30, 148.30, 146.30, 138.31, 136.75, 133.66, 131.91, 131.79, 130.41, 129.85, 129.22, 127.47, 127.43, 127.40, 127.34, 127.24, 127.19, 122.28, 121.15, 50.61, 45.57, 38.43, 23.18.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{23}H_{20}N_2O_3SNa$ 427.108684; found 427.109450.

N-(2-(9H-thioxanthen-9-yl)-1-(o-tolyl)ethyl)acetamide (3m, unreported product)

Following the general procedure A, white solid (57.4 mg, 77%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.57 (d, *J* = 8.5 Hz, 1H), 7.50-7.48 (m, 1H), 7.43 (d, *J* = 7.0 Hz, 1H), 7.42 (d, *J* = 5.0 Hz, 1H), 7.34-7.29 (m, 4H), 7.26-7.20 (m, 2H), 7.10 (t, *J* = 7.5 Hz, 1H), 7.04-7.00 (m, 1H), 6.97 (d, *J* = 10.0 Hz, 1H), 4.71-4.67 (m, 1H), 4.25 (dd, *J* = 11.0 Hz, 3.5 Hz, 1H), 2.20-1.97 (m, 4H), 1.70 (s, 3H), 1.62-1.56 (m, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.11, 142.90, 138.74, 136.57, 134.12, 131.74, 131.66, 130.39, 130.28, 129.04, 127.50, 127.41, 127.24, 127.15, 127.07, 127.00, 126.69, 126.45, 125.22, 46.93, 45.82, 38.62, 23.26, 18.01.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{24}H_{23}NOSNa 396.139255$; found 396.139960.

N-(1-(2-bromophenyl)-2-(9H-thioxanthen-9-yl)ethyl)acetamide (3n, unreported product)

Following the general procedure A, white solid (62.0 mg, 71%).

¹**H** NMR (500 MHz, DMSO- d_6) δ 8.69 (d, J = 7.5 Hz, 1H), 7.48-7.45 (m, 2H), 7.41-7.39 (m, 2H), 7.34-7.28 (m, 6H), 7.25-7.21 (m, 1H), 7.08 (td, J = 15.0 Hz, 7.5 Hz, 2.5 Hz, 1H), 4.81-4.76 (m, 1H), 4.31 (dd, J = 11.5 Hz, 4.0 Hz, 1H), 2.22-2.16 (m, 1H), 2.02 (s, 3H), 1.49-1.43 (m, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.17, 146.97, 138.43, 136.86, 131.90, 131.76, 131.06, 130.08, 129.85, 129.22, 129.17, 127.44, 127.42, 127.38, 127.29, 127.22, 127.16, 125.83, 122.12, 50.49, 45.63, 38.80, 23.22.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{23}H_{20}BrNOSNa$ 460.034131; found 460.034720.

N-(1-mesityl-2-(9H-thioxanthen-9-yl)ethyl)acetamide (30, unreported product)

 R^1 = 2,4,6-Me Following the general procedure **A**, white solid (61.5 mg, 75%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.42 (d, *J* = 8.5 Hz, 1H), 7.50-7.48 (m, 1H), 7.44 (dd, *J* = 8.0 Hz, 1.5 Hz, 1H), 7.40 (dd, *J* = 10.0 Hz, 5.0 Hz, 1H), 7.33-7.24 (m, 7H), 7.00 (d, *J* = 8.5 Hz, 2H), 4.45-4.42 (m, 1H), 4.18 (dd, *J* = 9.5 Hz, 4.5 Hz, 1H), 2.10-2.04 (m, 1H), 1.92 (s, 3H), 1.84-1.78 (m, 1H), 1.22 (s, 9H). ¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 168.93, 149.43, 141.14, 138.65, 137.14, 131.86, 131.72, 129.89, 129.13, 127.36, 127.22, 127.19, 127.12, 126.26, 125.49, 50.27, 45.68, 39.13, 34.56, 31.58, 23.26. HRMS (ESIpos) (m/z): M⁺ calculated for C₂₆H₂₇NOSNa.170555; found 424.170840424.

N-(1-(naphthalen-2-yl)-2-(9H-thioxanthen-9-yl)ethyl)acetamide (3p, unreported product)

Following the general procedure A, white solid (59.7 mg, 73%).

¹**H** NMR (500 MHz, DMSO-*d*₆) δ 8.62 (d, J = 8.5 Hz, 1H), 7.91-7.86 (m, 3H), 7.57-7.48 (m, 6H), 7.38-7.29 (m, 6H), 4.69-4.64 (m, 1H), 4.30 (dd, J = 9.5 Hz, 5.0 Hz, 1H), 2.28-2.21 (m, 1H), 2.04-1.98 (m, 4H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.12, 141.52, 138.57, 137.11, 133.26, 132.48, 131.91, 131.77, 129.92, 129.25, 128.51, 128.11, 127.86, 127.42, 127.39, 127.28, 127.23, 127.19, 126.58, 126.12, 125.25, 124.93, 50.83, 45.66, 38.83, 23.30.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{27}H_{23}NOSNa 432.139255$; found 432.139730.

trans-N-(2-(9H-thioxanthen-9-yl)-2,3-dihydro-1H-inden-1-yl)acetamide (trans-3q, unreported product)

Following the general procedure A (reaction time for 6 hours), white solid (22.2 mg, 30%).

¹**H** NMR (500 MHz, DMSO-*d*₆) δ 7.69 (d, J = 9.0 Hz, 1H), 7.59 (dd, J = 7.5 Hz, 2.0 Hz, 1H), 7.52 (dd, J = 6.5 Hz, 1.5 Hz, 1H), 7.50-7.48 (m, 1H), 7.44 (dd, J = 7.0 Hz, 2.0 Hz, 1H), 7.37-7.31 (m, 2H), 7.30-7.24 (m, 2H), 7.16-7.12 (m, 3H), 7.00-7.98 (m, 1H), 5.33 (t, J = 9.0 Hz, 1H), 4.45 (d, J = 9.0 Hz, 1H), 2.93-2.86 (m, 1H), 2.79-2.74 (m, 1H), 2.39-2.34 (m, 1H), 1.56 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 168.90, 144.77, 140.73, 137.22, 132.48, 131.97, 130.30, 129.83, 127.59, 127.24, 127.13, 126.95, 126.91, 126.84, 124.53, 123.78, 57.29, 51.70, 47.42, 35.39, 22.76. HRMS (ESIpos) (m/z): M⁺ calculated for C₂₄H₂₁NOSNa 394.123605; found 394.124240.

trans-N-(1-phenyl-2-(9H-thioxanthen-9-yl)propyl)acetamide (trans-3r, unreported product)

Following the general procedure **A** (reaction time for 6 hours), white solid (36.5 mg, 49%). ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.09 (d, *J* = 8.5 Hz, 1H), 7.57-7.55 (m, 1H), 7.48 (dd, *J* = 7.5 Hz, 1.5 Hz, 1H), 7.37-7.35 (m, 2H), 7.31-7.21 (m, 6H), 7.12 (t, *J* = 7.5 Hz, 1H), 7.09-6.87 (m, 2H), 4.58 (dd, *J* = 8.5 Hz, 2.5 Hz, 1H), 4.07 (d, *J* = 10.0 Hz, 1H), 2.41-2.37 (m, 1H), 2.11 (s, 3H), 0.44 (d, *J* = 7.5 Hz, 3H). ¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 169.90, 143.46, 137.71, 137.67, 132.47, 130.56, 128.49, 127.62, 127.46, 127.23, 127.10, 126.97, 126.78, 126.60, 126.12, 53.48, 51.76, 37.80, 23.23, 12.08. HRMS (ESIpos) (m/z): M⁺ calculated for C₂₄H₂₃NOSNa 396.1392563; found 96.139390.

N-(1-phenyl-2-(9H-xanthen-9-yl)ethyl)acetamide (3s, unreported product)

Following the general procedure **B**, white solid (63.1 mg, 92%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.24 (d, *J* = 7.5 Hz, 1H), 7.20-7.10 (m, 8H), 7.08-6.99 (m, 4H), 5.40 (d, *J* = 8.5 Hz, 1H), 4.95-4.90 (m, 1H), 3.98 (dd, *J* = 7.0 Hz, 5.5 Hz, 1H), 2.13-2.05 (m, 2H), 1.79 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 169.06, 152.39, 152.29, 142.25, 128.68, 128.66, 128.21, 127.90, 127.34, 126.41, 125.25, 124.98, 123.50, 123.44, 116.78, 116.62, 50.82, 46.67, 36.86, 23.40. HRMS (ESIpos) (m/z): M⁺ calculated for C₂₃H₂₁NO₂Na 366.146448; found 366.146620.

N-(1-phenyl-2-(9H-xanthen-9-yl)ethyl)propionamide (3t, unreported product)

Following the general procedure **B**, white solid (51.4 mg, 72%).

¹**H** NMR (500 MHz, CDCl₃) δ 7.26 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.21-7.09 (m, 8H), 7.06-6.99 (m, 4H), 5.35 (d, J = 8.0 Hz, 1H), 4.98-4.93 (m, 1H), 3.96 (t, J = 6.5 Hz, 1H), 2.11-1.97 (m, 4H), 1.01 (t, J = 7.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 172.74, 152.38, 152.27, 142.28, 133.60, 130.16, 128.68, 128.46, 128.20, 127.88, 127.33, 126.43, 125.32, 125.08, 123.50, 123.42, 116.77, 116.60, 50.66, 46.76, 36.85, 29.67, 9.63. HRMS (ESIpos+neg) (m/z): $[M+H]^+$ calculated for C₂₄H₂₄NO₂Na 358.180154; found 358.179870.

N-(1-phenyl-2-(9H-xanthen-9-yl)ethyl)butyramide (3u, unreported product)

Following the general procedure **B**, white solid (60.1 mg, 81%).

¹**H NMR** (500 MHz, CDCl₃) δ 8.45 (d, *J* = 8.5 Hz, 1H), 7.40 (dd, *J* = 7.5 Hz, 6.0 Hz, 1H), 7.35-7.29 (m, 5H), 7.23-7.16 (m, 7H), 4.90-4.80 (m, 1H), 4.07 (dd, *J* = 9.5 Hz, 4.0 Hz, 1H), 2.27-2.18 (m, 2H), 2.07-2.04 (m, 1H), 1.85-1.70 (m, 1H), 1.66-1.60 (m, 2H), 0.94 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 171.97, 152.09, 152.03, 144.08, 129.60, 129.05, 128.75, 128.46, 128.23, 127.11, 126.55, 125.13, 124.05, 123.79, 116.81, 116.53, 49.82, 47.98, 37.95, 36.25, 19.27, 14.15. HRMS (ESIpos+neg) (m/z): $[M+H]^+$ calculated for C₂₅H₂₆NO₂ 372.195804; found 372.195770.

N-(1-phenyl-2-(9H-xanthen-9-yl)ethyl)iso-butyramide (3v, unreported product)

Following the general procedure **B**, white solid (30.4 mg, 41%).

¹**H** NMR (500 MHz, DMSO-*d*₆) δ 8.35 (d, *J* = 8.5 Hz, 1H), 7.40 (dd, *J* = 7.5 Hz, 2.0 Hz, 1H), 7.32-7.26 (m, 1H), 7.25-7.23 (m, 4H), 7.17-7.10 (m, 7H), 4.81-4.76 (m, 1H), 4.01 (dd, *J* = 9.5 Hz, 4.0 Hz, 1H), 2.06-2.00 (m, 1H), 1.99-1.74 (m, 1H), 1.12 (d, *J* = 6.5 Hz, 3H), 1.01 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 175.97, 152.09, 152.03, 144.12, 129.59, 129.06, 128.78, 128.47, 128.24, 127.09, 126.56, 126.48, 125.14, 124.05, 123.81, 116.81, 116.54, 49.64, 48.06, 36.29, 34.58, 20.30, 19.87.

HRMS (ESIpos) (m/z): M⁺ calculated for C₂₅H₂₅NO₂Na 394.177747; found 394.177150.

N-(1-phenyl-2-(9H-xanthen-9-yl)ethyl)pivalamide (3w, unreported product)

Following the general procedure **B**, white solid (39.2 mg, 51%).

¹**H** NMR (500 MHz, DMSO- d_6) δ 8.01 (d, J = 7.5 Hz, 1H), 7.46 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 7.37-7.34 (m, 1H), 7.33-7.28 (m, 4H), 7.22-7.16 (m, 7H), 4.91-4.88 (m, 1H), 4.02 (dd, J = 10.0 Hz, 4.0 Hz, 1H), 2.27-2.21 (m, 1H), 1.85-1.80 (m, 1H), 1.24 (s, 9H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 177.34, 152.09, 152.03, 144.34, 129.60, 129.20, 128.69, 128.44, 128.22, 126.98, 126.61, 126.46, 125.21, 123.99, 123.80, 116.83, 116.50, 49.87, 47.73, 38.65, 36.42, 27.90. HRMS (ESIpos+neg) (m/z): $[M+H]^+$ calculated for C₂₆H₂₇NO₂ 386.211454; found 386.210940.

N-(1-phenyl-2-(9*H*-xanthen-9-yl)ethyl)benzamide (3x, unreported product)

Following the general procedure **B**, white solid (32.4 mg, 40%).

¹**H** NMR (500 MHz, DMSO-*d*₆) δ 8.94 (d, *J* = 8.5 Hz, 1H), 7.90-7.88 (m, 2H), 7.56-7.39 (m, 5H), 7.2-7.20 (m, 7H), 7.17-7.11 (m, 4H), 5.04-5.00 (m, 1H), 4.12 (dd, *J* = 9.5 Hz, 4.5 Hz, 1H), 2.36-2.30 (m, 1H), 1.90-1.85 (m, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 166.46, 152.14, 152.01, 144.05, 134.99, 131.71, 129.60, 129.21, 128.79, 128.71, 128.67, 128.65, 128.44, 128.24, 127.89, 127.82, 127.21, 126.75, 126.50, 126.44, 125.16, 123.99, 123.82, 116.82, 116.53, 50.76, 47.34, 36.49.

HRMS (ESIpos+neg) (m/z): $[M+Na]^+$ calculated for C₂₈H₂₃NO₂Na 428.162098; found 428.162020.

9-(2-methoxy-2-phenylethyl)-9H-thioxanthene (9a, unreported product)

Following the general procedure C, white solid (58.6 mg, 91%).

¹**H** NMR (500 MHz, DMSO- d_6) δ 7.51 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.43 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 7.41-7.34 (m, 7H), 7.28-7.23 (m, 2H), 7.11-7.10 (m, 2H), 4.43 (dd, J = 10.5 Hz, 5.5 Hz, 1H), 4.07 (dd, J = 10.5 Hz, 3.5 Hz, 1H), 3.08 (s, 3H), 2.01-1.95 (m, 1H), 1.81-1.76 (m, 1H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 141.85, 138.77, 137.04, 131.89, 129.90, 129.01, 128.94, 128.07, 127.50, 127.44, 127.19, 127.11, 126.80, 80.67, 56.17, 45.29, 40.80.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{22}H_{20}OSNa$ 355.112707; found 355.112750.

9-(2-ethoxy-2-phenylethyl)-9H-thioxanthene (9b, unreported product)

Following the general procedure C, colorless oil (50.5 mg, 73%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 7.51 (dd, *J* = 7.5 Hz, 1.5 Hz, 1H), 7.43 (dd, *J* = 7.5 Hz, 1.5 Hz, 1H), 7.40-7.22 (m, 9H), 7.11-7.10 (m, 2H), 4.43 (dd, *J* = 10.5 Hz, 5.5 Hz, 1H), 3.76 (dd, *J* = 10.0 Hz, 3.0 Hz, 1H), 3.21-3.13 (m, 2H), 2.00-1.95 (m, 1H), 1.80-1.75 (m, 1H), 1.16 (t, *J* = 6.5 Hz, 3H). ¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 142.57, 138.84, 137.13, 131.95, 131.93, 129.87, 128.99, 128.89, 127.91, 127.50, 127.47, 127.40, 127.20, 127.14, 127.07, 126.61, 79.01, 63.73, 45.44, 40.91, 15.79. HRMS (EI) (m/z): calculated for C₂₃H₂₂OS 346.139138; found 346.139318.

9-(2-phenyl-2-propoxyethyl)-9H-thioxanthene (9c, unreported product)

Following the general procedure C, colorless oil (67.0 mg, 93%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 7.52-7.50 (m, 1H), 7.44 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.40 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.36-7.34 (m, 2H), 7.32-7.27 (m, 4H), 7.25-7.21 (m, 2H), 7.11-7.09 (m, 2H), 4.43 (dd, J = 10.5 Hz, 4.5 Hz, 1H), 3.76 (dd, J = 10.0 Hz, 3.0 Hz, 1H), 3.10 (t, J = 6.5 Hz, 2H), 2.01-1.95 (m, 1H), 1.81-1.75 (m, 1H), 1.60-1.53 (m, 2H), 0.93 (t, J = 7.0 Hz, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 142.58, 138.85, 137.14, 131.93, 131.90, 129.83, 128.99, 128.89, 127.92, 127.53, 127.50, 127.42, 127.21, 127.16, 127.09, 126.64, 79.10, 70.03, 45.45, 41.03, 23.20, 11.31. HRMS (ESIpos) (m/z): M⁺ calculated for C₂₄H₂₄OSNa 383.144007; found 383.144320.

9-(2-butoxy-2-phenylethyl)-9H-thioxanthene (9d, unreported product)

Following the general procedure C, Colorless oil (68.8 mg, 92%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.37-7.35 (m, 1H), 7.28-7.26 (m, 3H), 7.18-7.05 (m, 9H), 4.41 (dd, J = 11.0 Hz, 4.5 Hz, 1H), 3.70 (dd, J = 10.5 Hz, 3.0 Hz, 1H), 3.21-3.17 (m, 1H), 3.12-3.07 (m, 1H), 2.14-2.09 (m, 1H), 1.80-1.74 (m, 1H), 1.59-1.52 (m, 2H); 1.43-1.36 (m, 2H), 0.89 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 142.71, 138.98, 137.10, 132.56, 132.39, 129.60, 128.51, 128.25, 127.28, 127.20, 126.83, 126.68, 126.60, 126.46, 126.38, 126.15, 79.21, 68.32, 45.71, 40.82, 32.33, 19.71, 14.08. HRMS (EI) (m/z): calculated for C₂₅H₂₆OS 374.170438; found 374.170248.

9-(2-(pentyloxy)-2-phenylethyl)-9H-thioxanthene (9e, unreported product)

Following the general procedure C, Colorless oil (65.1 mg, 84%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 7.57-7.55 (m, 1H), 7.48 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.44 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.40-7.31 (m, 6H), 7.30-7.25 (m, 2H), 7.16-7.14 (m, 2H), 4.46 (dd, J = 10.5 Hz, 5.5 Hz, 1H), 3.80 (dd, J = 10.0 Hz, 3.5 Hz, 1H), 3.17 (t, J = 6.5 Hz, 2H), 2.05-2.00 (m, 1H), 1.86-1.80 (m, 1H), 1.61-1.57 (m, 2H), 1.42-1.31 (m, 5H), 0.94 (t, J = 7.5 Hz, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 142.58, 138.83, 137.16, 133.70, 131.96, 131.91, 129.78, 129.51, 129.22, 128.97, 128.88, 127.92, 127.53, 127.49, 127.42, 127.21, 127.16, 127.05, 126.64, 79.13, 68.31, 45.46, 41.01, 29.58, 28.45, 22.43, 14.38.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{26}H_{28}OSNa 411.175307$; found 411.175940.

9-(2-isopropoxy-2-phenylethyl)-9H-thioxanthene (9f, unreported product)

Following the general procedure C, colorless oil (49.6 mg, 69%).

¹**H** NMR (500 MHz, DMSO- d_6) δ 7.55 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.47 (dd, J = 7.5 Hz, 1.0 Hz, 1H), 7.44-7.41 (m, 2H), 7.39-7.25 (m, 7H), 7.14-7.16 (m, 2H), 4.40 (dd, J = 10.0 Hz, 5.0 Hz, 1H), 4.05 (dd, J = 9.5 Hz, 3.0 Hz, 1H), 3.41-3.39 (m, 1H), 2.06-2.00 (m, 1H), 1.82-1.77 (m, 1H), 1.16 (d, J = 6.0 Hz, 3H), 1.05 (d, J = 6.0 Hz, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 143.36, 139.06, 137.37, 131.99, 131.95, 130.00, 128.93, 128.85, 127.85, 127.57, 127.49, 127.39, 127.24, 127.11, 126.98, 126.71, 76.05, 68.55, 45.40, 41.36, 23.91, 21.66. HRMS (EI) (m/z): calculated for C₂₄H₂₄OS 360.154787; found 360.154395.

9-(2-(cyclohexyloxy)-2-phenylethyl)-9H-thioxanthene (9g, unreported product)

Following the general procedure C, colorless oil (22.4 mg, 28%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 7.50 (dd, J = 7.0 Hz, 1.0 Hz, 1H), 7.43 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.39-7.34 (m, 2H), 7.33-7.24 (m, 5H), 7.23-7.20 (m, 2H), 7.12-7.10 (m, 2H), 4.35 (dd, J = 10.0 Hz, 4.5 Hz, 1H), 4.09 (dd, J = 9.5 Hz, 3.0 Hz, 1H), 3.08-3.04 (m, 1H), 2.01-1.95 (m, 1H), 1.90-1-87 (m, 1H), 1.78-1.71 (m, 2H), 1.61-1.56 (m, 2H), 1.45-1.42 (m, 1H), 1.35-1.30 (m, 1H), 1.25-1.03 (m, 4H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 143.59, 139.11, 137.51, 132.00, 131.93, 129.82, 129.51, 129.17, 128.88, 128.84, 127.81, 127.60, 127.51, 127.37, 127.24, 127.12, 127.03, 126.64, 75.93, 74.77, 45.44, 41.62, 33.72, 31.79, 25.78, 24.28, 24.19.

HRMS (EI) (m/z): calculated for C₂₇H₂₈OS 400.186088; found 400.185978.

9-(2-(tert-butoxy)-2-phenylethyl)-9H-thioxanthene (9h, unreported product)

Following the general procedure C, colorless oil (30.0 mg, 40%).

¹**H** NMR (500 MHz, DMSO-*d*₆) δ 7.42-7.37 (m, 2H), 7.24-7.14 (m, 11H), 4.19 (dd, J = 7.0 Hz, 5.5 Hz, 1H), 3.99 (dd, J = 7.5 Hz, 6.0 Hz, 1H), 1.92-1.82 (m, 2H), 0.92 (s, 9H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 145.65, 138.95, 138.57, 132.18, 132.13, 129.06, 128.93, 128.72, 127.54, 127.48, 127.36, 127.32, 127.20, 127.16, 127.11, 126.86, 74.35, 72.08, 45.23, 42.29, 29.13.

HRMS (EI) (m/z): calculated for C₂₅H₂₆OS 374.170438; found 374.170366.

N-(1-phenyl-2-(phenylsulfinyl)ethyl)acetamide (11a, CAS: 98289-63-5)

Following the general procedure **D**, light yellow oil (35.0 mg, 61%).

¹**H** NMR (500 MHz, DMSO- d_6) δ 8.46 (d, J = 8.0 Hz, 1H), 7.37-7.31 (m, 8H), 7.28-7.25 (m, 1H), 7.22-7.19 (m, 1H), 4.94 (dd, J = 15.5 Hz, 7.5 Hz, 1H), 3.27 (d, J = 7.0 Hz, 2H), 1.85 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.09, 142.24, 136.41, 129.71, 129.53, 129.02, 128.81, 128.74, 127.69, 127.23, 126.25, 52.34, 38.90, 23.10.

HRMS (ESIpos) (m/z): [M-H]⁻ calculated for C₁₆H₁₇NOS 270.095811; found 270.095880.

N-(1-phenyl-2-(p-tolylthio)ethyl)acetamide (11b, CAS: 1820957-34-3)

Following the general procedure **D**, colorless oil (25.6 mg, 45%).

¹**H** NMR (500 MHz, DMSO- d_6) δ 8.44 (d, J = 8.5 Hz, 1H), 7.49-7.25 (m, 7H), 7.14 (d, J = 8.0 Hz, 1H), 4.90 (dd, J = 15.0 Hz, 7.5 Hz, 1H), 3.32 (d, J = 7.5 Hz, 2H), 2.82 (s, 3H), 1.85 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.09, 142.36, 135.98, 133.31, 132.54, 130.18, 129.65, 129.02, 128.79, 127.63, 127.19, 52.32, 39.00, 23.11, 21.01.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{17}H_{19}NOSNa 308.107956$; found 308.107750.

N-(2-((4-(tert-butyl)phenyl)thio)-1-phenylethyl)acetamide (11c, unreported product)

Following the general procedure **D**, colorless oil (35.1 mg, 54%).

¹**H** NMR (500 MHz, CDCl₃) δ 7.25-7.18 (m, 9H), 5.87 (d, *J* = 7.5 Hz, 1H), (m, 7H), 5.13 (dd, *J* = 13.5 Hz, 6.0 Hz, 1H), 3.31-3.21 (m, 2H), 1.87 (s, 3H), 1.22 (s, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 169.53, 149.96, 140.35, 131.85, 130.14, 130.11, 128.72, 128.42, 127.79, 126.58, 126.17, 53.06, 40.24, 34.50, 31.25, 23.28.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{20}H_{25}OSNa 350.154905$; found 350.154770.

N-(2-((4-methoxyphenyl)thio)-1-phenylethyl)acetamide (11d, CAS: 141248-72-8)

Following the general procedure **D**, colorless oil (30.1 mg, 50%).

¹**H** NMR (500 MHz, CDCl₃) δ 7.28-7.22 (m, 4H), 7.20-7.15 (m, 3H), 5.93 (d, J = 8.0 Hz, 1H), 5.02 (dd, J = 13.5 Hz, 7.0 Hz, 1H), 3.71 (s, 3H), 3.19-3.11 (s, 3H), 1.90 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 169.50, 159.25, 140.51, 133.64, 128.71, 127.74, 126.56, 125.42, 114.77, 55.35, 52.95, 41.81, 23.33.

HRMS (ESIpos) (m/z): [M] calculated for C₁₇H₁₉NO₂S 301.113110; found 301.113101.

N-(2-((4-chlorophenyl)thio)-1-phenylethyl)acetamide (11e, CAS: 1883670-31-2)

Following the general procedure **D**, colorless oil (24.7 mg, 42%).

¹**H** NMR (500 MHz, DMSO-*d*₆) δ 8.45 (d, J = 7.5 Hz, 1H), 7.37 (s, 4H), 7.35-7.31 (m, 4H), 7.28-7.25 (m, 4H), 7.28-7.25 (m, 1H), 4.95-4.91 (m, 1H), 3.30-3.24 (m, 2H), 1.84 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 169.12, 142.06, 130.89, 130.47, 129.40, 128.82, 127.74, 127.25, 52.20, 38.93, 23.08.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{16}H_{16}CINOSNa$ 328.053333; found 328.052790.

N-(2-((4-bromophenyl)thio)-1-phenylethyl)acetamide (11f, CAS: 1883670-32-3) Following the general procedure **D**, colorless oil (34.3 mg, 49%). ¹**H** NMR ¹**H** NMR (500 MHz, CDCl₃) δ 7.32-7.34 (m, 2H), 7.28-7.25 (m, 2H), 7.27-7.22 (m, 1H), 7.19-7.17 (m, 2H), 7.16-7.14 (m, 2H), 5.80 (d, *J* = 7.5 Hz, 1H), 5.09 (dd, *J* = 14.0 Hz, 7.0 Hz, 1H), 3.37 (dd, *J* = 13.5 Hz, 6.5 Hz, 1H), 3.20 (dd, *J* = 13.5 Hz, 6.5 Hz, 1H), 1.92 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 169.50, 139.80, 132.06, 131.19, 128.88, 128.09, 126.70, 120.36, 52.94, 39.45, 23.34.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{16}H_{16}BrNOSNa$ 372.002830; found 372.002510.

N-(1-phenyl-2-(m-tolylthio)ethyl)acetamide (11g, CAS: 1883670-29-8)

Following the general procedure **D**, colorless oil (30.2 mg, 53%).

¹**H** NMR (500 MHz, DMSO- d_6) δ 8.45 (d, J = 8.0 Hz, 1H), 7.34-7.31 (m, 4H), 7.27-7.25 (m, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.16-7.13 (m, 2H), 7.01-7.00 (m, 1H), 4.96-4.93 (m, 1H), 3.26 (d, J = 7.5 Hz, 2H), 2.28 (s, 3H), 1.85 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.10, 142.25, 138.84, 136.19, 129.71, 129.43, 129.12, 129.02, 128.80, 127.69, 127.24, 126.98, 125.70, 52.40, 38.82, 23.09, 21.35.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{17}H_{19}NOSNa 308.107955$; found 308.107310.

N-(1-phenyl-2-(o-tolylthio)ethyl)acetamide (11h, CAS: 1820957-37-6)

Following the general procedure **D**, colorless oil (20.1 mg, 39%).

¹**H** NMR (500 MHz, DMSO- d_6) δ 8.47 (d, J = 8.0 Hz, 1H), 7.39-7.37 (m, 1H), 7.36-7.31 (m, 4H), 7.28-7.25 (m, 1H), 7.16-7.13 (m, 1H), 7.21-7.18 (m, 2H), 7.13-7.10 (m, 1H), 4.94 (dd, J = 15.5 Hz, 7.5 Hz, 1H), 3.26 (d, J = 1.0 Hz, 2H), 2.25 (s, 3H), 1.86 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.09, 142.30, 136.98, 135.60, 130.46, 128.81, 128.01, 127.70, 127.21, 127.13, 126.04, 52.32, 38.55, 23.10, 20.41.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{17}H_{19}NOSNa 308.107955$; found 308.107620.

N-(3-cyano-1-phenylpropyl)acetamide (13, CAS: 2127514-83-2)

Following the general procedure **E**, using *p*-bromo-N,N-dimethylaniline as initiator; isolated as a white solid (48.5 mg, 48%).

¹**H** NMR (500 MHz, CDCl₃) δ 7.38-7.35 (m, 2H), 7.32-7.30 (m, 1H), 7.27-7.26 (m, 2H), 5.90 (d, J = 8.0 Hz, 1H), 5.04 (dd, J = 15.5 Hz, 8.0 Hz, 1H), 2.37-2.31 (m, 2H), 2.27-2.22 (m, 1H), 2.15-2.10 (m, 1H), 1.99 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 169.85, 139.83, 129.21, 128.34, 126.55, 119.26, 52.90, 31.66, 23.37, 14.54.

HRMS (ESIpos) (m/z): M^+ calculated for $C_{12}H_{14}N_2O$ 202.110063; found 202.109890.

X-ray study

Single crystals of 3e were crystallized from CH₃CN.

Table 1. Crystal data and structure refinement.

Identification code	CCDC 1957001	
Empirical formula	$C_{23}H_{20}ClNOS$	
Color	colourless	
Formula weight	393.91 g·mol⁻¹	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	MONOCLINIC	
Space group	P2 ₁ /n, (no. 14)	
Unit cell dimensions	a = 13.3178(19) Å	<i>α</i> =90°.
	b = 9.6266(14) Å	β=106.661(5)°.
	c = 15.545(2) Å	$\gamma = 90^{\circ}$.
Volume	1909.2(5) Å ³	
Z	4	
Density (calculated)	1.370 Mg · m ⁻³	
Absorption coefficient	0.322 mm ⁻¹	
F(000)	824 e	

Crystal size	0.128 x 0.100 x 0.040 mm ³
θ range for data collection	2.381 to 31.679°.
Index ranges	$-19 \le h \le 19, -14 \le k \le 14, -22 \le l \le 22$
Reflections collected	53315
Independent reflections	6405 [$R_{int} = 0.0286$]
Reflections with $I \ge 2\sigma(I)$	5548
Completeness to $\theta = 25.242^{\circ}$	99.9 %
Absorption correction	Gaussian
Max. and min. transmission	0.99 and 0.96
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6405 / 0 / 257
Goodness-of-fit on F ²	1.035
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0343$ $wR^2 = 0.0889$
R indices (all data)	$R_1 = 0.0413$ $wR^2 = 0.0930$
Largest diff. peak and hole	0.5 and -0.3 e · Å-3

Cl(1)-C(19)	1.7418(10)	S(1)-C(7)	1.7638(11)
S(1)-C(8)	1.7666(11)	O(1)-C(22)	1.2366(13)
N(1)-C(15)	1.4632(13)	N(1)-C(22)	1.3377(13)
C(1)-C(2)	1.5095(14)	C(1)-C(13)	1.5111(14)
C(1)-C(14)	1.5479(14)	C(2)-C(3)	1.3946(15)
C(2)-C(7)	1.3983(13)	C(3)-C(4)	1.3911(16)
C(4)-C(5)	1.3894(17)	C(5)-C(6)	1.3869(17)
C(6)-C(7)	1.3965(15)	C(8)-C(9)	1.3941(16)
C(8)-C(13)	1.4003(14)	C(9)-C(10)	1.3849(18)
C(10)-C(11)	1.3900(19)	C(11)-C(12)	1.3878(17)
C(12)-C(13)	1.3959(15)	C(14)-C(15)	1.5312(13)
C(15)-C(16)	1.5184(13)	C(16)-C(17)	1.3978(13)
C(16)-C(21)	1.3905(14)	C(17)-C(18)	1.3893(14)
C(18)-C(19)	1.3837(15)	C(19)-C(20)	1.3793(16)
C(20)-C(21)	1.3931(15)	C(22)-C(23)	1.5063(15)
C(7)-S(1)-C(8)	100.13(5)	C(22)-N(1)-C(15)	122.68(8)
C(2)-C(1)-C(13)	111.05(8)	C(2)-C(1)-C(14)	108.92(8)
C(13)-C(1)-C(14)	111.19(8)	C(3)-C(2)-C(1)	121.46(9)
C(3)-C(2)-C(7)	118.43(9)	C(7)-C(2)-C(1)	120.08(9)
C(4)-C(3)-C(2)	121.16(10)	C(5)-C(4)-C(3)	119.71(11)
C(6)-C(5)-C(4)	120.06(10)	C(5)-C(6)-C(7)	119.98(10)
C(2)-C(7)-S(1)	121.05(8)	C(6)-C(7)-S(1)	118.34(8)
C(6)-C(7)-C(2)	120.60(10)	C(9)-C(8)-S(1)	118.34(8)
C(9)-C(8)-C(13)	120.77(10)	C(13)-C(8)-S(1)	120.89(8)
C(10)-C(9)-C(8)	120.06(11)	C(9)-C(10)-C(11)	119.95(11)
C(12)-C(11)-C(10)	119.76(11)	C(11)-C(12)-C(13)	121.35(10)
C(8)-C(13)-C(1)	120.18(9)	C(12)-C(13)-C(1)	121.76(9)
C(12)-C(13)-C(8)	118.05(10)	C(15)-C(14)-C(1)	113.85(8)
N(1)-C(15)-C(14)	108.99(8)	N(1)-C(15)-C(16)	109.44(7)
C(16)-C(15)-C(14)	113.53(8)	C(17)-C(16)-C(15)	120.63(8)
C(21)-C(16)-C(15)	120.59(9)	C(21)-C(16)-C(17)	118.68(9)

Table 2.	Bond lengths [Å] and angles ['].
I doit 2.	Dona lengens [11] and angles [1

C(18)-C(17)-C(16)	121.00(9)	C(19)-C(18)-C(17)	118.73(10)
C(18)-C(19)-Cl(1)	119.27(8)	C(20)-C(19)-Cl(1)	118.97(8)
C(20)-C(19)-C(18)	121.75(9)	C(19)-C(20)-C(21)	118.89(10)
C(16)-C(21)-C(20)	120.94(10)	O(1)-C(22)-N(1)	123.02(10)
O(1)-C(22)-C(23)	121.39(9)	N(1)-C(22)-C(23)	115.59(9)

ORTEP diagram of the X-ray structure of **3e**. Displacement ellipsoids are drawn at the 50% probability level.

Mechanistic studies:

Radical trapping experiment:

Under the optimization reaction condition, TEMPO or 2,4,6-tri-*tert*-butylphenol (3.0 equiv.) were added. After the reaction was fully completed, the mixture was cooled to room temperature and concentrated under reduced pressure to give a crude product. Yields were determined by ¹H NMR spectroscopic analysis of the crude reaction mixture relative to the internal standard CH₃NO₂. TEMPO and 2,4,6-tri-*tert*-butylphenol reduced the yield significantly, which proves that this reaction might go through the radical procedure.

Investigation of the initiation step:

These experiments were performed in a Schlenk tube under Ar and analyze directly without any workup. Yields were determined by 1 H NMR spectroscopic analysis of the crude reaction mixture relative to the internal standard CH₃NO₂.

BPO with or without acid in acetonitrile at 50 °C for 2 h did not change, this acid apparently does not affect the decomposition of BPO.

In the presence of thioxanthene, xanthene or thiolphenols, benzoic acid was formed in significant amounts under these conditions, indicating that thioxanthene, xanthene and thiolphenols can accelerate the peroxide decomposition.

In the absence of acid, the product was not formed, indicating that the electron transfer (ET) steps are facilitated by the effect of acid.

Cyclic Voltammetry of BPO in the presence of different acids

Cyclic voltammograms showing the effect of acid addition on the reduction potential of BPO. Two platinized Pt wires as a counter and working electrode with a Ag/AgCl electrode as a reference were used. The cyclic voltammetry (CV) was conducted from -1.0 V to 2.0 V with a scan rate of 100 mV/s. BPO (0.3 mmol), acid (0.2 mmol), tBu₄NPF₆ (0.1 M) in CH₃CN, under a stream of Ar.

The BPO can be reduced at -345 mV. With the addition of the HPF₆, the reduction process becomes much easier. The reduction potential of the BPO is shifted by around 470 mV, which means the acid addition is favorable for the BPO reduction. Other acid like H_2SO_4 , $HClO_4$ and CF_3COOH induce a smaller shift. Apparently, the shift in the reduction potential of BPO is connected with the pKa of the acid.

¹H, ¹³C and DEPT 135 NMR Spectra of the Products

Configuration of *trans*-3p and *trans*-3r:

The NOESY cross peaks are in good agreement with a relative *trans* configuration.

Atom	ā	3	COSY	HSQC	HMQC(MB)	NOESY
C1	22.77			1	1	
H1	1.50	5	3	1	1, 2	3, 4, 6, 15, 16, 17, 18
C2	168.94				1, 3, 4	
N3						
H3	7.63	d 8.9(4)	1, 4	1	2, 4	1, 4, 6, 12
C4	57.30			4	3, 4, 6, 11b, 12, 13	
84	5.27	d 9.3(12), d 8.9(3)	3, 6, 11a, 12, 13	4	2, 4, 5, 10, 12, 13	1, 3, 6, 11a, 12, 13, 15, 24
C5	144.80				4, 7, 9, 11a, 11b	
C6	123.80			6	6	
H6	6.93	m	4, 7, 11a, 11b	6	4, 6, 7, 8, 10	1, 3, 4
C7	126.87			7	6, 8	
H7	7.09	m	6	7	5	
C8	127.61			8	6	
HS	7.09	m		8	7, 10	
C9	124.55			9	11a, 11b	
H9	7.07	m	11a, 11b	9	5, 11	11b
C10	140.75	14			4, 6, 8, 11a, 11b	
C11	35.41			11a, 11b	9, 11a, 11b, 12, 13	
H11a	2.71	d 15.6(11b), d 10.3(12)	4, 6, 9, 11b, 12, 13	11	5, 9, 10, 11, 12, 13	4, 11b, 13, 24
H11b	2.31	d 7.8(12), d 15.6(11a)	6, 9, 11a, 12, 13	11	4, 5, 9, 10, 11, 12	9, 11a, 12
C12	47.44			12	4, 11a, 11b, 12, 13	
H12	2.84	d 7.8(11b), d 9.3(4), d 9.1(13), d 10.3(11a)	4, 11a, 11b, 13	12	4, 11, 12, 13, 25	3, 4, 11b, 13, 15
C13	51.72			13	4, 11a, 12, 13, 15, 24	
H13	4.39	d 9.1(12)	4, 11a, 11b, 12, 15, 18, 21, 24	13	4, 11, 12, 13, 14, 15, 19, 20, 24, 25	4, 112, 12, 15, 24
C14	137.25				13, 16, 18	
C15	129.85			15	13, 15, 17	
H15	7.38	m	13, 16	15	13, 15, 17, 19	1, 4, 12, 13
C16	126.97			16	18	
H16	7.21	m	15, 17	16	14, 18	1
C17	126.94			17	15	
H17	7.23	m	16, 18	17	15, 19	1
C18	126.84			18	16	
H18	7.43	m	13, 17	18	14, 16	1
C19	131.99				13, 15, 17	
C20	132.51				13, 22, 24	
C21	127.15			21	23	
H21	7.48	m	13, 22	21	23, 25	
C22	127.26			22	24	
H22	7.27	m	21, 23	22	20, 24	
C23	126.92			23	21	
H23	7.30	m	22, 24	23	21, 24, 25	
C24	130.32			24	13, 22, 23	-
H24	7.52	m	13, 23	24	13, 20, 22	4, 11a, 13
				-		

The NOESY correlations support the relative stereochemistry SR/RS rather than RR/SS. For stereocenters in open-chain positions, such observations must not be regarded as conclusive evidence though.

C1	23.22			1		
H1	2.099	s		1	2	3, 4, 6, 11, 13
C2	169.93				1, 3, 4	
N3	n.d.					(
H3	8.086	d 8.5(4)	4		2	1, 4, 6, 10, 11
C4	53.49			4	4, 6, 10, 11	
H4	4.570	d 8.5(3), d 2.9(9)	3, 6, 9	4	2, 4, 5, 6, 9, 10	1, 3, 6, 9, 10, 11, 1
C5	143.49				4, 7	
C6	126.14			6	4, 6, 8	
H6	6.884	m	4, 7, 8	6	4, 6, 8	1, 3, 4, 9, 10
C7	128.51			7	7	
H7	7.217	m	6,8	7	5, 7	
C8	126.63			8	6	
H8	7.113	m	6,7	8	6	
C9	37.81			9	4, 10, 11	
H9	2.381	d 10.3(11), q 7.1(10), d 2.9(4)	4, 10, 11	9	10, 11	4, 6, 10, 11
C10	12.09			10	4, 9, 11	
H10	0.434	d 7.1(9)	9	10	4, 9, 11	3, 4, 6, 9, 11, 22
C11	51.78			11	9, 10, 11, 13, 22	
H11	4.065	d 10.3(9)	9	11	4, 9, 10, 11, 12, 13, 17, 18, 22, 23	1, 3, 4, 9, 10, 13, 2
C12	137.69				11, 14, 16	
C13	130.58			13	11, 15	
H13	7.358	d 2.1(15), d 7.1(14)	16	13	11, 15, 17	1, 4, 11
C14	126.99			14	16	
H14	7.259	d 1.6(16), d 7.4(15), d 7.1(13)	16	14	12, 16	
C15	127.26			15	13	
H15	7.288	d 7.4(16), d 7.4(14), d 2.1(13)	16	15	13, 17	
C16	127.64			16	14	
H16	7.556	m	13, 14, 15	16	12, 14	
C17	132.18				11, 13, 15	
C18	132.50				11, 20, 22	
C19	127.48			19	21	
H19	7.475	d 1.9(21), d 7.6(20)	20, 21, 22	19	21, 23	
C20	127.13			20	22	
H20	7.238	d 1.6(22), d 7.4(21), d 7.6(19)	19	20	18, 22	
C21	126.81			21	19	
H21	7.285	d 7.5(22), d 7.4(20), d 1.9(19)	19	21	19, 23	
C22	130.59			22	11, 20	
H22	7.352	d 1.6(20), d 7.5(21)	19	22	11, 18, 20	10, 11

The structure model above shows one possible conformation.

Reference:

[1] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* **2010**, *29*, 2176.