Phosphoryl radical-initiated Atherton-Todd-type reaction under open air

Yingcong Ou, ${ }^{\text {a }}$ Yuanting Huang, ${ }^{a}$ Zhenlin $\mathrm{He},{ }^{a}$ Guodian Yu , ${ }^{\text {a }}$ Yanping Huo, ${ }^{a}$ Xianwei Li, ${ }^{\text {a }}$ Yang Gao, ${ }^{\text {a }}$ and Qian Chen* ${ }^{*, b}$
${ }^{\text {a }}$ School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
${ }^{\mathrm{b}}$ Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
*qianchen@gdut.edu.cn

SUPPORTING INFORMATION

Content:

1. General Information S2
2. Overview of Substrates Numbering S3
3. Mechanistic Studies S4
4. Experimental Section S9
5. Analytic Data for Products. S11
6. NMR Spectra for Products. S29

1. General Information

Unless otherwise stated, commercially available reagents including dry solvents were used without additional purification. Petroleum ether refers to the petroleum fraction b.p. $60-90^{\circ} \mathrm{C}$. Secondary phosphine oxides which were not commercially available were prepared according to the literature. ${ }^{1}$ All reactions were carried out in oven-dried thick-walled glassware. Flash chromatography was performed using the indicated solvent system on silica gel standard grade (200-300 mesh). ${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} on a Bruker $400(400 \mathrm{MHz})$ spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} on a Bruker $400(100 \mathrm{MHz})$ spectrometer. ${ }^{31} \mathrm{P}$ NMR spectra were recorded in CDCl_{3} on a Bruker $400(162 \mathrm{MHz})$ spectrometer. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded in CDCl_{3} on a Bruker $400(376 \mathrm{MHz})$ spectrometer. Chemical shifts were reported relative to $\mathrm{CDCl}_{3}(\delta 7.26 \mathrm{ppm})$ for ${ }^{1} \mathrm{H} \mathrm{NMR}$ and $\mathrm{CDCl}_{3}(\delta 77.16$ ppm) for ${ }^{13} \mathrm{C}$ NMR. High-resolution mass spectra (HRMS) were recorded on an Q-Exactive Orbitrap mass spectrometer (Thermo, CA). Abbreviations for signal coupling are as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad .

2. Overview of Substrates Numbering

1h

 Me , CyOH 2k

3. Mechanistic Studies

1) The Investigation of the Effect of Air Atmosphere

To a solution of diphenylphosphine oxide 1a ($40 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethanol 2a (46 $\mathrm{mg}, 1 \mathrm{mmol})$ in PEG-200 (2 mL) were added $\mathrm{CHCl}_{3}(24 \mathrm{mg}, 0.2 \mathrm{mmol})$ and DBU (46 $\mathrm{mg}, 0.3 \mathrm{mmol}$). The mixture was stirred at $25{ }^{\circ} \mathrm{C}$ under N_{2} for 3 h . The reaction mixture was quenched with saturated aqueous NaCl solution $(20 \mathrm{~mL})$, and the resulting mixture was then extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The desired ethyl diphenylphosphinate 3aa was not detected from ${ }^{1} \mathrm{H}$ NMR spectrum of the crude mixture.

2) The Investigation of the Effect of Visible Light

To a solution of diphenylphosphine oxide 1a ($40 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethanol 2a (46 $\mathrm{mg}, 1 \mathrm{mmol})$ in PEG-200 (2 mL) were added $\mathrm{CHCl}_{3}(24 \mathrm{mg}, 0.2 \mathrm{mmol})$ and DBU (46 $\mathrm{mg}, 0.3 \mathrm{mmol})$. The mixture was stirred at $25^{\circ} \mathrm{C}$ under air atmosphere in the dark for 3 h . The reaction mixture was quenched with saturated aqueous NaCl solution (20 mL), and the resulting mixture was then extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (2:1) to afford ethyl diphenylphosphinate 3aa ($48 \mathrm{mg}, 98 \%$) as a colorless oil.

3) The Investigation of By-Products

To a solution of diphenylphosphine oxide 1a ($10 \mathrm{mg}, 0.05 \mathrm{mmol}$) and ethanol 2a $(12 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{CD}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ were added $\mathrm{CHCl}_{3}(6 \mathrm{mg}, 0.05 \mathrm{mmol})$ and DBU ($12 \mathrm{mg}, 0.075 \mathrm{mmol}$). The mixture was stirred at $25^{\circ} \mathrm{C}$ under air atmosphere for 3 h . The by-product $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with 90% yield was detected from ${ }^{1} \mathrm{H}$ NMR spectrum of the resulting mixture according to the yield of Зaa (99\%).

4) Radical-Trapping Experiment

To a solution of diphenylphosphine oxide 1a ($40 \mathrm{mg}, 0.2 \mathrm{mmol}$) and the radical scavenger diphenylethene $6(72 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ were added CHCl_{3} ($24 \mathrm{mg}, 0.2 \mathrm{mmol}$) and DBU ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$). The mixture was stirred at $25^{\circ} \mathrm{C}$ under air atmosphere for 3 h . The reaction mixture was then concentrated under reduced pressure. The adducts 7 and $\mathbf{8}$, which should be generated via a phosphoryl radical pathway, were detected by LC-MS spectrum of the crude mixture.

To a solution of diphenylphosphine oxide 1a $(40 \mathrm{mg}, 0.2 \mathrm{mmol})$ and the radical scavenger TEMPO ($62 \mathrm{mg}, 0.4 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ were added $\mathrm{CHCl}_{3}(24 \mathrm{mg}$, 0.2 mmol) and DBU ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$). The mixture was stirred at $25^{\circ} \mathrm{C}$ under air atmosphere for 3 h . The reaction mixture was then concentrated under reduced
pressure. The TEMPO-P $(\mathrm{O}) \mathrm{Ph}_{2}$ adduct was detected by LC-MS spectrum of the crude mixture, suggesting that a phosphoryl radical reaction pathway might be involved.

To a solution of diphenylphosphine oxide 1a ($40 \mathrm{mg}, 0.2 \mathrm{mmol}$), ethanol $\mathbf{2 a}(46 \mathrm{mg}$, 1 mmol) and the radical scavenger BQ ($43 \mathrm{mg}, 0.4 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ were added $\mathrm{CHCl}_{3}(24 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{DBU}(46 \mathrm{mg}, 0.3 \mathrm{mmol})$. The mixture was stirred at $25{ }^{\circ} \mathrm{C}$ under air atmosphere for 3 h . The reaction mixture was then concentrated under reduced pressure. The desired reaction of 1a with $2 \mathbf{2 a}$ was completely inhibited, and the $\mathrm{BQ}-\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}$ adduct was detected by LC-MS spectrum of the crude mixture, suggesting that a radical reaction pathway might be involved.

5) The Investigation of the Effect of Catalytic Amounts of $\mathbf{O}_{\mathbf{2}}$

To a solution of diphenylphosphine oxide 1a ($40 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethanol 2a (46 $\mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ were added $\mathrm{CHCl}_{3}(24 \mathrm{mg}, 0.2 \mathrm{mmol})$, $\mathrm{DBU}(46 \mathrm{mg}$, $0.3 \mathrm{mmol})$, and $\mathrm{O}_{2}(1.8 \mathrm{~mL}, 0.08 \mathrm{mmol})$ under N_{2}. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was then concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (2:1) to afford ethyl diphenylphosphinate $\mathbf{3 a a}$ (45 mg , 92%) as a colorless oil.

4. Experimental Section

1) General Procedure for the Atherton-Todd-Type Reaction in $\mathbf{C H}_{3} \mathbf{C N}$

To a solution of diphenylphosphine oxide 1a ($40 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethanol 2a (46 $\mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ were added $\mathrm{CHCl}_{3}(24 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{DBU}(46$ $\mathrm{mg}, 0.3 \mathrm{mmol}$). The mixture was stirred at $25^{\circ} \mathrm{C}$ under air atmosphere for 3 h (Figure S1). The reaction mixture was then concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (2:1) to afford ethyl diphenylphosphinate 3aa (48 mg, 98\%) as a colorless oil.

Figure S1 The reaction setup for the general procedure.

2) General Procedure for the Atherton-Todd-Type Reaction in PEG-200

To a solution of bis(4-methoxyphenyl)phosphine oxide $\mathbf{1 b}(52 \mathrm{mg}, 0.2 \mathrm{mmol})$ and methanol 2b ($32 \mathrm{mg}, 1 \mathrm{mmol}$) in PEG-200 $(2 \mathrm{~mL})$ were added $\mathrm{CHCl}_{3}(24 \mathrm{mg}, 0.2$
mmol) and DBU ($46 \mathrm{mg}, 0.3 \mathrm{mmol}$). The mixture was stirred at $25^{\circ} \mathrm{C}$ under air atmosphere for 3 h (Figure S 1). The reaction mixture was quenched with saturated aqueous NaCl solution (20 mL), and the resulting mixture was then extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (2:1) to afford methyl bis(4-methoxyphenyl)phosphinate 3bb ($58 \mathrm{mg}, 99 \%$) as a colorless oil.

3) Large-Scale Synthesis

To a solution of diphenylphosphine oxide 1a ($20.22 \mathrm{~g}, 0.10 \mathrm{~mol}$) and ethanol 2a $(23.04 \mathrm{~g}, 0.50 \mathrm{~mol})$ in PEG-200 $(100 \mathrm{~mL})$ were added $\mathrm{CHCl}_{3}(11.94 \mathrm{~g}, 0.10 \mathrm{~mol})$ and DBU ($22.84 \mathrm{~g}, 0.15 \mathrm{~mol}$). The mixture was stirred at $25^{\circ} \mathrm{C}$ under air atmosphere for 3 h. The reaction mixture was quenched with saturated aqueous NaCl solution (1 L), and the resulting mixture was then extracted with ethyl acetate $(3 \times 1 \mathrm{~L})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate (2:1) to afford ethyl diphenylphosphinate 3aa $(18.47 \mathrm{~g}, 75 \%)$ as a colorless oil.

5. Analytic Data for Products

The known compounds 3aa, ${ }^{2} \mathbf{3 a b},{ }^{2}{ }^{3} \mathbf{3 a c},{ }^{2} \mathbf{3 a d},{ }^{2} \mathbf{3 a e},{ }^{2} \mathbf{3 a f},{ }^{3} \mathbf{3 a g},{ }^{3}{ }^{3} \mathbf{3 a h},{ }^{3} \mathbf{3 a i},{ }^{4} \mathbf{3 a j},{ }^{2}$
 3hb, ${ }^{8} \mathbf{3 i b},{ }^{2} \mathbf{3 k b},{ }^{2} \mathbf{3 m b},{ }^{2} \mathbf{3 o b},{ }^{2} \mathbf{5 a},{ }^{9} \mathbf{5 b},{ }^{10} \mathbf{5 c},{ }^{11} \mathbf{5 d},{ }^{12} \mathbf{5 e},{ }^{13} \mathbf{5 f},{ }^{14} 5 \mathbf{5},{ }^{15} 5 \mathbf{5},{ }^{15} 5 \mathbf{j},{ }^{16}$ and $5 \mathbf{l}^{16}$ showed characterization data in full agreement with previously reported data.

Ethyl Diphenylphosphinate (3aa) ${ }^{2}$.

Colorless oil (48 mg, 98\%): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.77(\mathrm{~m}, 4 \mathrm{H})$, 7.53-7.47 (m, 2H), 7.46-7.40(m, 4H), 4.14-4.05 (m, 2H), $1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.1(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=136 \mathrm{~Hz}), 131.6(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 61.1(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 16.5(\mathrm{~d}, J=6.7 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 31.4$.

Methyl Diphenylphosphinate (3ab) ${ }^{2}$.

Colorless oil (46 mg, 99\%): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.77(\mathrm{~m}, 4 \mathrm{H})$, $7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.2(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=136 \mathrm{~Hz})$, $128.6(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 51.5(\mathrm{~d}, J=6.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.3$.

Propyl Diphenylphosphinate (3ac) ${ }^{2}$.

Colorless oil (48 mg, 92\%): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.76(\mathrm{~m}, 4 \mathrm{H})$, $7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 4 \mathrm{H}), 3.99(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 2 \mathrm{H})$,
$0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.1(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.7$ $(\mathrm{d}, J=137 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 66.5(\mathrm{~d}, J=6.1 \mathrm{~Hz})$, $23.9(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 10.2 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.1$.

Butyl Diphenylphosphinate (3ad) ${ }^{2}$.

Colorless oil (53 mg, 97\%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.77(\mathrm{~m}, 4 \mathrm{H})$, $7.53-7.38(\mathrm{~m}, 6 \mathrm{H}), 4.01(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H})$, $0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.0(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.7$ $(\mathrm{d}, J=137 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 64.7(\mathrm{~d}, J=6.0 \mathrm{~Hz})$, $32.6(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 18.9,13.6 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.1$.

Pentyl Diphenylphosphinate (3ae) ${ }^{2}$.

Colorless oil ($51 \mathrm{mg}, 88 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.74(\mathrm{~m}, 4 \mathrm{H})$, 7.56-7.38 (m, 6H), 4.01 ($\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.25(\mathrm{~m}, 4 \mathrm{H})$, $0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.1(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.7$ $(\mathrm{d}, J=137 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 65.0(\mathrm{~d}, J=6.1 \mathrm{~Hz})$, $30.2(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 27.8,22.2,13.9 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.2$.

Phenethyl Diphenylphosphinate (3af) ${ }^{3}$.

Colorless oil ($63 \mathrm{mg}, 98 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73-7.62(\mathrm{~m}, 4 \mathrm{H})$, $7.51-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.15(\mathrm{~m}, 5 \mathrm{H}), 4.20(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.02(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.5,132.1(\mathrm{~d}, J=2.8 \mathrm{~Hz}$), $131.6(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=136 \mathrm{~Hz}), 129.1,128.6,128.5(\mathrm{~d}, J=4.9 \mathrm{~Hz})$,
126.6, $65.4(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 37.1(\mathrm{~d}, J=7.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.6$.

Benzyl Diphenylphosphinate (3ag) ${ }^{3}$.

Colorless oil ($55 \mathrm{mg}, 90 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.78(\mathrm{~m}, 4 \mathrm{H})$, $7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.4(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.7(\mathrm{~d}$, $J=10.2 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=137 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 128.5,128.2,127.8,66.3$ (d, $J=5.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.4$.

Allyl Diphenylphosphinate (3ah) ${ }^{3}$.

Colorless oil ($51 \mathrm{mg}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.73$ (m, 4H), 7.54-7.47 (m, 2H), 7.47-7.36 (m, 4H), 6.03-5.88 (m, 1H), 5.37-5.32 (m, 1H), 5.23-5.19(m, 1H), 4.54-4.50(m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.0(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=137 \mathrm{~Hz}), 128.6(\mathrm{~d}$, $J=13.2 \mathrm{~Hz}), 117.9,65.3(\mathrm{~d}, J=5.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.2$.

Prop-2-yn-1-yl Diphenylphosphinate (3ai) ${ }^{4}$.

Colorless oil ($50 \mathrm{mg}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.73(\mathrm{~m}, 4 \mathrm{H})$, 7.53-7.46 (m, 2H), 7.44-7.40 (m, 4H), $4.66(\mathrm{dd}, J=6.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.5(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=10.4 \mathrm{~Hz})$, 130.7 (d, $J=137 \mathrm{~Hz}$), 128.6 (d, $J=13.3 \mathrm{~Hz}$), $78.0(\mathrm{~d}, J=8.9 \mathrm{~Hz}$), 75.8, 52.4 (d, $J=$ $4.6 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.1$.

Isopropyl Diphenylphosphinate (3aj) ${ }^{2}$.

Colorless oil ($21 \mathrm{mg}, 41 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.53-$ $7.46(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 4 \mathrm{H}), 4.73-4.60(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.4(\mathrm{~d}, J=136 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=$ $10.1 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 70.2(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 24.3(\mathrm{~d}, J=4.2 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.8$.

Cyclohexyl Diphenylphosphinate (3ak) ${ }^{3}$.

Colorless oil ($19 \mathrm{mg}, 31 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.74(\mathrm{~m}, 4 \mathrm{H})$, 7.53-7.38 (m, 6H), 4.46-4.37 (m, 1H), 1.90-1.87 (m, 2H), 1.77-1.67 (m, 2H), $1.67-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.18(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 132.6(\mathrm{~d}, J=137 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 128.4(\mathrm{~d}$, $J=13.1 \mathrm{~Hz}), 75.0(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 33.9(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 25.2,23.6 ;{ }^{31} \mathrm{P}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 29.7.
(3S,5S,8R,9S,10S,13R,14S,17R)-10,13-Dimethyl-17-((R)-6-methylheptan-2-yl)hex adecahydro-1H-cyclopenta[a]phenanthren-3-yl Diphenylphosphinate (3al).

White amorphous solid ($47 \mathrm{mg}, 40 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.75$ (m , $4 \mathrm{H}), 7.53-7.39(\mathrm{~m}, 6 \mathrm{H}), 4.37-4.27(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.84-0.93(\mathrm{~m}, 28 \mathrm{H})$, $0.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~s}$, $3 \mathrm{H}), 0.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.6(\mathrm{~d}, J=135 \mathrm{~Hz}$), $132.5(\mathrm{~d}, J=$
$135 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 128.4(\mathrm{~d}$, $J=13.0 \mathrm{~Hz}), 76.2(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 56.3(\mathrm{~d}, J=13.9 \mathrm{~Hz}), 54.2,44.7,42.6,40.0,39.5$, $36.8,36.6(\mathrm{~d}, ~ J=3.5 \mathrm{~Hz}), 36.2,35.8,35.4,35.3,31.9,30.1(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 28.5,28.2$, 28.0, 24.2, 23.8, 22.8, 22.6, 21.2, 18.7, 12.3, 12.1; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 29.9; HRMS (ESI-Orbitrap) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{57} \mathrm{O}_{2} \mathrm{PNa} 611.3981$, found 611.3989.

Phenyl Diphenylphosphinate (3an) ${ }^{5}$.

White amorphous solid ($57 \mathrm{mg}, 97 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.87$ (m , 4H), 7.60-7.43 (m, 6H), 7.29-7.22 (m, 4H), 7.15-7.05 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 150.9(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 132.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 131.0(\mathrm{~d}$, $J=138 \mathrm{~Hz}), 129.6,128.6(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 124.6,120.7(\mathrm{~d}, J=4.8 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.4$.

4-Methoxyphenyl Diphenylphosphinate (3ao) ${ }^{5}$.

White amorphous solid ($64 \mathrm{mg}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.85$ (m , 4H), 7.55-7.47 (m, 2H), 7.47-7.40 (m, 4H), 7.10 (dd, $J=9.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.73$ (d, J $=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.4,144.3(\mathrm{~d}, J=8.4$ $\mathrm{Hz}), 132.5(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=138 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=$ $13.4 \mathrm{~Hz}), 121.7(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 114.6,55.5 ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.7$.

3-Methoxyphenyl Diphenylphosphinate (3ap) ${ }^{6}$.

Colorless oil ($64 \mathrm{mg}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.83(\mathrm{~m}, 4 \mathrm{H})$, $7.58-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{dd}, J=8.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.73(\mathrm{~m}$, 2H), 6.66-6.59 (m, 1H), $3.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.6,151.8(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}), 132.5(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=138 \mathrm{~Hz}), 129.9$, $128.6(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 112.9(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 110.7,106.7(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 55.4 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.0$.

3,4-Dimethoxyphenyl Diphenylphosphinate (3aq).

Colorless oil ($67 \mathrm{mg}, 95 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.88(\mathrm{~m}, 4 \mathrm{H})$, 7.58-7.40 (m, 6H), $6.75(\mathrm{~s}, 1 \mathrm{H}), 6.70-6.66(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.4,146.0,144.5(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 132.4(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, $131.8(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=138 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 112.0(\mathrm{~d}, J=4.7$ $\mathrm{Hz}), 111.4,105.4(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 56.1,55.9 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.6$; HRMS (ESI-Orbitrap) m/z: [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{PNa}$ 377.0913, found 377.0908.

m-Tolyl Diphenylphosphinate (3ar) ${ }^{6}$.

Yellow oil (61 mg, 99\%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.82(\mathrm{~m}, 4 \mathrm{H})$, 7.54-7.48 (m, 2H), 7.48-7.40 (m, 4H), 7.11-7.07 (m, 1H), 7.05 (s, 1H), $6.97(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 150.8 (d, $J=8.3 \mathrm{~Hz}$), 139.9, 132.4 (d, $J=2.8 \mathrm{~Hz}$), 131.8 (d, $\mathrm{J}=10.3 \mathrm{~Hz}$), 131.1 (d, J $=138 \mathrm{~Hz}), 129.3,128.6(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 125.4,121.4(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 117.6(\mathrm{~d}, J=$ 4.8 Hz), 21.3; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.1$.

3,4-Dimethylphenyl Diphenylphosphinate (3as) ${ }^{7}$.

White amorphous solid ($64 \mathrm{mg}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.87(\mathrm{~m}$, 4H), $7.54-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.8(\mathrm{~d}, J=8.3 \mathrm{~Hz})$, 138.1, 132.8, 132.3 (d, $J=2.8 \mathrm{~Hz}$), $131.8(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=138 \mathrm{~Hz})$, $130.4,128.5(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 121.8(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 117.7(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 19.8,19.0$; ${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.9$.

4-Bromophenyl Diphenylphosphinate (3at) ${ }^{7}$.

White amorphous solid ($35 \mathrm{mg}, 47 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.81$ (m, $4 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0(\mathrm{~d}, J=8.2 \mathrm{~Hz}$), 132.7, 132.6, $131.8(\mathrm{~d}, J=10.4$ $\mathrm{Hz}), 130.5(\mathrm{~d}, J=138 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 122.5(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 117.6(\mathrm{~d}, J=$ $1.1 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.3$.

4-Chlorophenyl Diphenylphosphinate(3au) ${ }^{7}$.

White amorphous solid (20 mg, 30\%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.80(\mathrm{~m}$, $4 \mathrm{H}), 7.62-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 149.4(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 132.7(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 130.5(\mathrm{~d}$, $J=138 \mathrm{~Hz}), 129.7,128.7(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 122.1(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 116.8 ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.3$.

Naphthalen-2-yl Diphenylphosphinate (3av) ${ }^{6}$.

White amorphous solid ($68 \mathrm{mg}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.86(\mathrm{~m}$, 4H), 7.77-7.66 (m, 4H), 7.56-7.31 (m, 9H), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.6(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}), 133.9,132.5(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.9,131.8,130.9(\mathrm{~d}, J=138 \mathrm{~Hz}), 130.7$, $129.8,128.7(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 127.6(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 126.6,125.3,120.7(\mathrm{~d}, J=4.9$ $\mathrm{Hz}), 117.2(\mathrm{~d}, J=5.1 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.8$.

2,3-Dihydroxypropyl Diphenylphosphinate and 1,3-Dihydroxypropan-2-yl Diphenylphosphinate (3aw).

Colorless oil ($56 \mathrm{mg}, 96 \%$), two isomers in $\sim 15: 1$ ratio: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major product: $\delta 7.85-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 4 \mathrm{H}), 4.11(\mathrm{dd}$, $J=11.0,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{br}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major product: $\delta 132.7(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=2.6 \mathrm{~Hz})$, 131.7 (d, $J=10.3 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=138 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=$ $137 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=13.3 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=13.3 \mathrm{~Hz}), 70.8(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 67.2(\mathrm{~d}, J$ $=6.3 \mathrm{~Hz}$), $62.7 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major product: $\delta 36.2$; HRMS (ESI-Orbitrap) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{PNa}$ 315.0757, found 315.0755.

Methyl Bis(4-methoxyphenyl)phosphinate (3bb) ${ }^{2}$.

Colorless oil ($58 \mathrm{mg}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{dd}, J=11.7,8.5 \mathrm{~Hz}$, $4 \mathrm{H}), 6.93$ (dd, $J=8.7,2.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.81$ (s, 6 H), $3.70(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.5(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 133.4(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 122.7(\mathrm{~d}, J=145$ 34.0.

Methyl Di-p-tolylphosphinate (3cb) ${ }^{2}$.

Colorless oil (48 mg, 93\%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{dd}, J=12.0,7.7 \mathrm{~Hz}$, $4 \mathrm{H}), 7.25(\mathrm{dd}, J=7.7,2.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.73(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=13.5$ $\mathrm{Hz}), 127.9(\mathrm{~d}, J=140 \mathrm{~Hz}), 51.4(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 21.6 ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 34.3.

Methyl Di([1,1'-biphenyl]-4-yl)phosphinate (3db).

White amorphous solid ($65 \mathrm{mg}, 85 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94$ (dd, $J=$ $11.9,8.3 \mathrm{~Hz}, 4 \mathrm{H}$), $7.70(\mathrm{dd}, J=8.3,3.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.42(\mathrm{~m}$, $4 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 144.9 (d, $J=2.9 \mathrm{~Hz}), 139.8,132.1(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 129.5(\mathrm{~d}, J=139 \mathrm{~Hz}), 128.8$, 128.0, 127.3, 127.1, $51.5(\mathrm{~d}, J=6.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.3 ;$ HRMS (ESI-Orbitrap) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{PNa} 407.1171$, found 407.1169 .

Methyl Bis(4-chlorophenyl)phosphinate (3eb) ${ }^{2}$.

Yellow oil ($57 \mathrm{mg}, 95 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.68(\mathrm{~m}, 4 \mathrm{H})$, 7.47-7.40(m, 4H), $3.76(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.1$ (d, $J=3.5 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=139 \mathrm{~Hz}), 129.1(\mathrm{~d}, J=13.8 \mathrm{~Hz})$, $51.7(\mathrm{~d}, J=6.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.2$.

Methyl Bis(4-fluorophenyl)phosphinate (3fb) ${ }^{2}$.

Colorless oil ($50 \mathrm{mg}, 94 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.71(\mathrm{~m}, 4 \mathrm{H})$, 7.16-7.09 (m, 4H), $3.73(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2$ (dd, $J=254,3.5 \mathrm{~Hz}), 134.1(\mathrm{dd}, J=11.5,8.9 \mathrm{~Hz}), 126.8(\mathrm{dd}, J=142,3.4 \mathrm{~Hz}), 116.0$ (dd, $J=21.4,14.4 \mathrm{~Hz}), 51.5(\mathrm{~d}, J=6.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.3 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-105.9(\mathrm{~d}, J=1.2 \mathrm{~Hz})$.

Methyl Bis(4-(trifluoromethyl)phenyl)phosphinate (3gb) ${ }^{2}$.

Colorless oil ($55 \mathrm{mg}, 75 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94$ (dd, $J=11.9,8.1 \mathrm{~Hz}$, $4 \mathrm{H}), 7.73$ (dd, $J=8.2,2.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.82(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 134.6(\mathrm{~d}, J=137 \mathrm{~Hz}), 134.4(\mathrm{dd}, J=32.8,3.1 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=10.5 \mathrm{~Hz})$, $125.7(\mathrm{dq}, J=13.3,3.7 \mathrm{~Hz}), 123.4(\mathrm{~d}, J=272 \mathrm{~Hz}), 52.0(\mathrm{~d}, J=6.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.3 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.4.

Methyl Bis(3-methoxyphenyl)phosphinate (3hb) ${ }^{8}$.

Colorless oil ($58 \mathrm{mg}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.31(\mathrm{~m}, 6 \mathrm{H})$, $7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.77(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.6(\mathrm{~d}, J=16.5 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=135 \mathrm{~Hz}), 129.8(\mathrm{~d}, J=15.5 \mathrm{~Hz}), 123.8$ (d, $J=9.8 \mathrm{~Hz}$), $118.5(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 116.4(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 55.4,51.6(\mathrm{~d}, J=6.1$ $\mathrm{Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.2$.

Methyl Di-m-tolylphosphinate (3ib) ${ }^{2}$.

Colorless oil ($47 \mathrm{mg}, 91 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.55 (dd, $J=12.7,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 4 \mathrm{H}), 3.72$ (d, $J=11.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.34$ (s, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.3$ (d, $J=13.1 \mathrm{~Hz}$), 132.8 (d, $J=2.9 \mathrm{~Hz}$), $132.0(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=136 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=$ $13.8 \mathrm{~Hz}), 51.4(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 21.2 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.9$.

Methyl Bis(3-fluorophenyl)phosphinate (3jb).

Colorless oil (49 mg, 91\%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.53(\mathrm{~m}, 2 \mathrm{H})$, $7.53-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 162.6(\mathrm{dd}, J=250,18.7 \mathrm{~Hz}), 133.2(\mathrm{dd}, J=138,5.6 \mathrm{~Hz}), 130.8(\mathrm{dd}, J=$ $15.4,7.4 \mathrm{~Hz}), 127.4(\mathrm{dd}, J=9.5,3.2 \mathrm{~Hz}), 119.7(\mathrm{dd}, J=21.2,2.3 \mathrm{~Hz}), 118.5(\mathrm{dd}, J=$
$22.3,10.8 \mathrm{~Hz}), 51.9(\mathrm{~d}, J=5.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.9 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-110.9(\mathrm{~d}, J=5.6 \mathrm{~Hz}) ;$ HRMS (ESI-Orbitrap) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{PNa}$ 291.0357, found 291.0353.

Methyl Di-o-tolylphosphinate (3kb) ${ }^{2}$.

Colorless oil ($51 \mathrm{mg}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{dd}, J=13.3,7.7 \mathrm{~Hz}$, 2 H), 7.41 (dd, $J=7.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.33-7.24 (m, 2H), 7.24-7.13 (m, 2H), 3.75 (d, J $=11.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.7(\mathrm{~d}, J=11.1 \mathrm{~Hz})$, $133.6(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=12.6 \mathrm{~Hz}), 129.5(\mathrm{~d}, J=133$ $\mathrm{Hz}), 125.5(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 51.0(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 21.1(\mathrm{~d}, J=4.2 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 34.2.

Methyl Bis(3,5-dimethoxyphenyl)phosphinate (3lb).

Colorless oil ($67 \mathrm{mg}, 96 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.89(\mathrm{dd}, J=13.6,2.3 \mathrm{~Hz}$, $4 \mathrm{H}), 6.54(\mathrm{dd}, J=2.3,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 12 \mathrm{H}), 3.73(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 160.8(\mathrm{~d}, J=19.6 \mathrm{~Hz}), 132.5(\mathrm{~d}, J=137 \mathrm{~Hz}), 109.0(\mathrm{~d}, J=11.2$ $\mathrm{Hz}), 104.5(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 55.4,51.6(\mathrm{~d}, J=6.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 33.5; HRMS (ESI-Orbitrap) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{PNa} 375.0968$, found 375.0963 .

Methyl Bis(3,5-dimethylphenyl)phosphinate (3mb) ${ }^{2}$.

Colorless oil ($55 \mathrm{mg}, 95 \%$): ${ }^{1} \mathrm{H}$ NHR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 4 \mathrm{H}$), $7.14(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $138.2(\mathrm{~d}, J=13.8 \mathrm{~Hz}), 133.9(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=135 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=10.1$ $\mathrm{Hz}), 51.4(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 21.2 ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.5$.

Methyl Di(naphthalen-1-yl)phosphinate (3nb).

White amorphous solid ($60 \mathrm{mg}, 90 \%$) : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59(\mathrm{dd}, J=6.2$, $3.4 \mathrm{~Hz}, 2 \mathrm{H}$), 8.13 (dd, $J=15.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.03$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.89-7.86 (m, $2 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 6 \mathrm{H}), 3.85(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $134.1(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 133.7,133.6(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 128.9(\mathrm{~d}, J$ $=1.4 \mathrm{~Hz}), 127.5,127.4(\mathrm{~d}, J=134 \mathrm{~Hz}), 126.5(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 126.3,124.6(\mathrm{~d}, J=$ 15.0 Hz), $51.7(\mathrm{~d}, J=6.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.2 ;$ HRMS (ESI-Orbitrap) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{PNa} 355.0858$, found 355.0855.

Methyl Dibenzylphosphinate (3ob) ${ }^{2}$.

White amorphous solid ($27 \mathrm{mg}, 51 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.18(\mathrm{~m}$, $10 \mathrm{H}), 3.56(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.08(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 131.3(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 129.8(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 126.9(\mathrm{~d}$,
$J=3.1 \mathrm{~Hz}), 51.8(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 35.6(\mathrm{~d}, J=87.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 49.2.

N-Hexyl-P,P-diphenylphosphinic Amide (5a) ${ }^{9}$.

Colorless oil (59 mg, 99\%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.82(\mathrm{~m}, 4 \mathrm{H})$, 7.53-7.37 (m, 6H), $2.94(\mathrm{q}, ~ J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{br}, 1 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 2 \mathrm{H})$, $1.38-1.13(\mathrm{~m}, 6 \mathrm{H}), 0.85(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.5(\mathrm{~d}$, $J=130 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 40.8$ (d, $J=1.7 \mathrm{~Hz}$), $32.1\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}\right.$), 31.4, 26.4, 22.5, 14.0; ${ }^{31} \mathrm{P}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 23.6.

N-Phenethyl-P,P-diphenylphosphinic Amide (5b) ${ }^{10}$.

White amorphous solid ($63 \mathrm{mg}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.76(\mathrm{~m}$, $4 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.14(\mathrm{~m}, 5 \mathrm{H}), 3.28-3.15(\mathrm{~m}, 2 \mathrm{H})$, 3.11-3.06 (m, 1H), $2.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.7$, $131.7(\mathrm{~d}, J=122 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 128.8,128.41$, 128.40, 126.3, 42.1 (d, $J=1.3 \mathrm{~Hz}$), 38.3 (d, $J=7.1 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.8$.
N-Benzyl-P,P-diphenylphosphinic Amide (5c) ${ }^{11}$.

Colorless oil ($60 \mathrm{mg}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.90(\mathrm{~m}, 4 \mathrm{H})$, 7.57-7.41 (m, 6H), 7.41-7.23 (m, 5H), $4.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.7(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=129 \mathrm{~Hz}), 132.2(\mathrm{~d}$,
$J=9.5 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 128.5,127.7,127.4,44.7 ;{ }^{31} \mathrm{P}$ $\operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.8$.
N-Isopropyl-P,P-diphenylphosphinic Amide (5d) ${ }^{12}$.

White amorphous solid ($45 \mathrm{mg}, 86 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.87(\mathrm{~m}$, 4H), 7.50-7.33 (m, 6H), 3.44-3.27 (m, 1H), 2.72 (br, 1H), 1.22 (d, $J=6.4 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.0(\mathrm{~d}, J=129 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 131.7(\mathrm{~d}$, $J=2.6 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 43.8,26.2(\mathrm{~d}, J=5.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $(162 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 21.9$.

N-Cyclohexyl-P,P-diphenylphosphinic Amide (5e) ${ }^{13}$.

White amorphous solid ($45 \mathrm{mg}, 75 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.81$ (m, $4 \mathrm{H}), 7.50-7.36(\mathrm{~m}, 6 \mathrm{H}), 3.07-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.94(\mathrm{~m}, 2 \mathrm{H})$, $1.74-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.02(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 133.2(\mathrm{~d}, J=130 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 128.5(\mathrm{~d}$, $J=12.5 \mathrm{~Hz}), 50.6,36.6(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 25.3,25.1 ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 22.1.

N-(tert-Butyl)-P,P-diphenylphosphinic Amide (5f) ${ }^{14}$.

White amorphous solid ($11 \mathrm{mg}, 20 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.74(\mathrm{~m}$, $4 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 6 \mathrm{H}), 2.72(\mathrm{br}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $134.9(\mathrm{~d}, J=128 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=12.6$ Hz), $53.2(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 32.3(\mathrm{~d}, J=4.4 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.7$.

Diphenyl(pyrrolidin-1-yl)phosphine Oxide (5h) ${ }^{15}$.

Yellow oil ($53 \mathrm{mg}, 99 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.75(\mathrm{~m}, 4 \mathrm{H})$, 7.49-7.32 (m, 6H), 3.15-2.99 (m, 4H), 1.90-1.72 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 132.7(\mathrm{~d}, J=130 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 128.5(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}), 46.9(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 26.6(\mathrm{~d}, J=6.7 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 25.4.

Morpholinodiphenylphosphine Oxide (5i) ${ }^{15}$.

Yellow oil ($42 \mathrm{mg}, 74 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.81(\mathrm{~m}, 4 \mathrm{H})$, 7.54-7.42 (m, 6H), 3.77-3.63 (m, 4H), 3.17-2.99 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 132.4(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=129 \mathrm{~Hz}), 128.7(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}), 67.2(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 45.0 ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.2$.

Diethyl Benzylphosphoramidate (5j) ${ }^{16}$.

Yellow oil ($24 \mathrm{mg}, 50 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.54(\mathrm{~m}, 4 \mathrm{H}$), $7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.15(\mathrm{~m}, 6 \mathrm{H}), 3.04(\mathrm{br}, 1 \mathrm{H}), 1.54(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.6(\mathrm{~d}, J=6.4 \mathrm{~Hz}$), 128.5, 127.33, 127.28, 62.4 (d, $J=$ $5.3 \mathrm{~Hz}), 45.3,16.1(\mathrm{~d}, J=7.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.5$.

Dibutyl Benzylphosphoramidate (5k).

Yellow oil ($18 \mathrm{mg}, 30 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.03(\mathrm{~d}$, $J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.00-3.83(\mathrm{~m}, 4 \mathrm{H}), 2.80(\mathrm{br}, 1 \mathrm{H}), 1.57(\mathrm{dt}, J=14.6,6.7 \mathrm{~Hz}, 4 \mathrm{H})$, 1.39-1.27 (m, 4H), $0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.6(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}), 128.5,127.34,127.28,66.2(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 45.4,32.4(\mathrm{~d}, J=7.1 \mathrm{~Hz})$, 18.8, 13.6; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.6$; HRMS (ESI-Orbitrap) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{PNa} 322.1543$, found 322.1539.

Diisopropyl Benzylphosphoramidate (51) ${ }^{16}$.

Yellow amorphous solid ($19 \mathrm{mg}, 35 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.19$ (m , $5 \mathrm{H}), 4.69-4.49$ (m, 2H), 4.05 (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.72$ (br, 1H), 1.30 (d, $J=6.0 \mathrm{~Hz}$, $6 \mathrm{H}), 1.25(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.7(\mathrm{~d}, J=7.2 \mathrm{~Hz}$), $128.5,127.3(2 \mathrm{C}), 70.9$ (d, $J=5.6 \mathrm{~Hz}), 45.4,23.8(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 23.7$ (d, $J=4.0 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.6$.

Diisobutyl Benzylphosphoramidate (5m).

Yellow amorphous solid ($45 \mathrm{mg}, 75 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.18$ (m , $5 \mathrm{H}), 4.08$ (d, $J=9.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.83-3.63 (m, 4H), 2.97 (br, 1H), 1.97-1.84 (m, 2H), $0.92(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 139.6 (d, $J=6.2 \mathrm{~Hz}$), 128.5, 127.3, 127.2, 72.3 (d, $J=5.9 \mathrm{~Hz}$), 45.3, 29.1 ($\mathrm{d}, J=7.4$ Hz), 18.7; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.4; HRMS (ESI-Orbitrap) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{PNa}$ 322.1543, found 322.1539.

References:

1. (a) H. R. Hays, J. Org. Chem., 1968, 33, 3690; (b) M. J. P. Harger and S. Westlake, Tetrahedron, 1982, 38, 1511.
2. L. Deng, Y. Wang, H. Mei, Y. Pan and J. Han, J. Org. Chem., 2019, 84, 949.
3. C. Li, T. Chen and L.-B. Han, Dalton Trans., 2016, 45, 14893.
4. Q.-Y. Li, T. R. Swaroop, C. Hou, Z.-Q. Wang, Y.-M. Pan and H.-T. Tang, Adv. Synth. Catal., 2019, 361, 1761.
5. S. Li, T. Chen, Y. Saga and L.-B. Han, RSC Adv., 2015, 5, 71544.
6. B. Xiong, K. Zeng, S. Zhang, Y. Zhou, C.-T. Au and S.-F. Yin, Tetrahedron, 2015, 71, 9293.
7. Y. Li, Q. Yang, L. Yang, N. Lei and K. Zheng, Chem. Commun., 2019, 55, 4981.
8. Q. Chen, J. Zeng, X. Yan, Y. Huang, C. Wen, X. Liu and K. Zhang, J. Org. Chem., 2016, 81, 10043.
9. A. Martínez-Asencio, D. J. Ramón and M. Yus, Tetrahedron, 2011, 67, 3140.
10. S. Wagner, M. Rakotomalala, Y. Bykov, O. Walter and M. Döring, Heteroatom Chem., 2012, 23, 216.
11. T. C. Jankins, Z.-Y. Qin and K. M. Engle, Tetrahedron, 2019, 75, 3272.
12. I. Fernández, P. Oña-Burgos, G. Ruiz-Gómez, C. Bled, S. García-Granda and F. López-Ortiz, Synlett, 2007, 611.
13. J. Xiao, Q. Su, W. Dong, Z. Peng, Y. Zhang and D. An, J. Org. Chem., 2017, 82, 9497.
14. V. Moodley, L. Mthethwa, M. N. Pillay, B. Omondi and W. E. van Zyl, Polyhedron, 2015, 99, 87.
15. Y. Wang, P. Qian, J.-H. Su, Y. Li, M. Bi, Z. Zha and Z. Wang, Green Chem., 2017, 19, 4769.
16. J. Fraser, L. J. Wilson, R. K. Blundell and C. J. Hayes, Chem. Commun., 2013, 49, 8919.
17. NMR Spectra for Products

3aa

$\stackrel{8}{5}$
$<_{16.48}^{16.55}$

3aa

$\begin{array}{lll}50 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 & 0\end{array}$

Ph
3aa
$\begin{array}{lllllllllllllllllllllllllllllllllll}52 & 50 & 48 & 46 & 44 & 42 & 40 & 38 & 36 & 34 & 32 & 30 & 28 & 26 & 24 & 22 & 20 & 18 & 16 & 14 & 12 & 10 & 8 & 6 & 4 & 2 & 0 & -2 & -4 & -6 & -8 & -10 & -12 & -14\end{array}$ f1 (ppm)

3ab

$$
\begin{gathered}
\mathrm{O} \\
\mathrm{\|} \\
\mathrm{Ph}-\mathrm{P}_{1}-\mathrm{O}^{n} \mathrm{Am} \\
\mathrm{Ph}
\end{gathered}
$$

3ae

[^0]

3ah

3ah

$6516015515014514013513012512011511010510095 \quad 90 \quad 85 \quad 80$ f1 (ppm)

甘

		¢ ¢
	-	Nicis
	$\xrightarrow{+}$	

$\stackrel{\otimes}{1}$

3aj

3an

		160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	3	30	20	10	
		-30.57																	

N

$\begin{array}{llllllllllllllllllllll}145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & \underset{\mathrm{f} 1(\mathrm{ppm})}{95} & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 4\end{array}$
$\stackrel{3}{9}$

$\begin{array}{llllllllllllllllllllllll}130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 \underset{f 1(\mathrm{ppm})}{20} & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -9\end{array}$

\%

$\begin{array}{llllllllllllllllllllllllllll}170 & 165 & 160 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45\end{array}$ f1 (ppm)

3jb

| 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | $\begin{array}{l}30 \\ \mathrm{f1}(\mathrm{ppm})\end{array}$ | 10 | 0 | -10 | -20 | -30 | -40 | -50 | -60 | -70 |
| :--- |

$\begin{array}{lll}150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10\end{array}$
$\stackrel{\stackrel{2}{4}}{\stackrel{1}{4}}$

$\begin{array}{llllllllllll}120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20\end{array}$

$\stackrel{\text { Nö }}{\text { Noig }}$

170	160	150	140	130	120	110	100	90 $\mathrm{f} 1(\mathrm{ppm})$	80	70	60	50	40	30	20	10

[^1]
-

$\bar{\square}$	§®	¢
\bigcirc	\%®\%	~~~

[^0]:

[^1]:

