FSupplementary Information (SI)

Optimized Aqueous Kinugasa Reactions for Bioorthogonal Chemistry Applications

 $Didier A. Bilodeau, Kaitlyn D. Margison, Noreen Ahmed, Miroslava Strmiskova, Allison R. Sherratt, John Paul Pezacki^{\star}$

[‡] Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5

Table of Contents

Materials and Synthetic Methods	. 2
Synthesis of Propiolamides	2
Synthesis N-Phenyl-Nitrone Derivatives	3
Procedure for isolation of B-lactam products for characterization	7
In vitro Micelle-Assisted Kinugasa/CuANCR reactions	. 8
Table S1. Diastereomeric ratios for screen of alkynes used in micelle-assisted Kinugas a reactions	8
Table S2. Screen of nitrones used in micelle-assisted Kinugasa Reaction	8
Micelle Assisted Kinugasa/CuANCR Reaction on Alkyne Beads	10
Figure S1. Quantification of Figure 2 CuANCR magnetic beads	.10
Figure S2. Fluorescence microscopy of micelle-assisted CuANCR with surfactants	.11
Table S3. Lipids used in screening of Kinugas a reaction on alkyne-tagged beads	.12
Figure S3. Time course of micelle-assisted CuANCR reaction in presence of β-TDM surfactant.	.13
Figure S4. Micelle-dependence of aqueous CuANCR labelling reaction.	.14
Figure S5. Micelle-dependence of aqueous CuANCR labelling reaction	.15
FigureS6.KineticsofaqueousKinugasaonalkyne-taggedbeads	.15
E5-TAT peptide modification procedures	17
Figure S7. Biotin conjugation of E5-TAT membrane peptide using CuANCR	.10
Figure S8. Size exclusion chromatography profile for modified E5-TAT	.11
Table S4. Results from SEQUEST-HT implementation in Proteome Discovery for unmodified E5-TAT samples.	.10
Table S5. Results from SEQUEST-HT implementation in Proteome Discovery for modified E5-TAT samples	11
NMR Spectra	20
References	45

Materials and Synthetic Methods

All reagents and solvents were purchased from Sigma-Aldrich, unless otherwise stated, and used without further purification. Deuterated solvents were purchased from Cambridge Isotope laboratories. Thin layer chromatography was performed on SiliCycle Siliaplate® silica gel plates (60 Å F254, layer thickness 200µm). Flash chromatography was performed using silica gel (60 Å, particle size 40–63 µm). Fluorescence microscopy was performed with a Nikon Ni-U ratiometric fluorescence microscope equipped with a LED excitation light source and Ultra-sensitive Andor iXon Ultra 897 cooled EMCCD camera. Images were acquired using a Nikon 60x oil dip objective lens and, if indicated, a 2x relay lens. Fluorescence images were obtained under strictly identical conditions of gain and exposure time, on focused beads, typically 2-5 s, and brightfield images were obtained using a 20-50 ms exposure. Images were ac- quired using Nikon NIS Elements software and processed with ImageJ. All ¹H and ¹³C NMR spectra were obtained on a Bruker Avance 300 or 400 spectrometer using a frequency of 300 MHz or 400 MHz for ¹H and 100 MHz for ¹³C and processed using iNMR 4.2.0 software. The following abbreviations were used to designate chemical shift multiplici- ties: s = singlet, d=doublet, t=triplet, m=multiplet or unresolved, br=broad signal and J=coupling constants in Hz.

Synthetic Methods

Synthesis of Propiolamides

N-Benzylprop-2-ynamide. 0.3 g of propiolic acid was added to 5mL DMF in a 25mL round bottom flask equipped with a stir bar. 1.71 g HATU, 0.49 mL benzylamine were added successively to reaction mixture. Lastly, 0.82 mL DIPEA was added and the reaction was let stir for 1 hour at room temperature. Following reaction completion by TLC, the reaction was concentrated in vacuo. Reaction contents were dissolved in 20mL of ethyl acetate and washed with 10 mL 70% brine 3 times. 60% yield of pure product was recovered following column chromatography using 1:1 EtOAc: Hexanes. ¹H NMR (300 MHz; CDCI₃): δ 7.37-7.30 (m, 5H), 6.10 (s, 1H), 4.50 (d, *J*=5.9 Hz, 2H), 2.80 (s, 1H). Spectral

data was consistent with previously reported data.1

N-(2-methoxyethyl)prop-2-ynamide. Under an Argon atmosphere, propiolic acid (0.3 g, 4.28 mmol) was dissolved in 10 mL of dry DMF, followed by the addition of HATU (1.71g, 4.50 mmol). 2-Methoxyethylamine (391 μL, 4.50 mmol) was slowly added over 15 minutes, followed by the addition of DIPEA (819 μL). The reaction was allowed to stir at room temperature for 6 hours, after which 10 mL of EtOAc was added. The mixture was extracted three times with 10 mL of a 50% brine solution. The organic layer was recovered, dried over Na₂SO₄, filtered and concentrated. Pure product (0.24 g) was obtained as a light yellow solid in 44% yield following flash column chromatography using 3:97 MeOH:DCM. ¹H NMR (400 MHz; CDCl₃): δ 6.26 (s, 1H), 3.52-3.46 (m, 4H), 3.37 (s, 3H), 2.79 (s, 1H); ¹³C NMR (CDCl₃, 100MHz) δ= 152.1, 73.2, 70.5, 58.8, 39.5. HRMS: for C₆H₉NO₂ (M+H): calculated: 128.0633; found: 128.0693.

Synthesis N-Phenyl-Nitrone Derivatives

General Nitrone Synthesis A

 \cap

300 mg (2.8 mmol) of phenylhydroxylamine and 3 mmol of *para*-substituted benzaldehyde were added to a dry 25 mL roundbottom flask. 5 mL of dry ethanol was added to the flask and the mixture was stirred for 2 hours at 35 °C. Pure products were obtained following filtration of the precipitated crude product and recrystallization from warm ethanol and hexanes.

N-Phenylhydroxylamine. A mixture of nitrobenzene (10.8 mL, 0.105 mol), NH₄Cl (6.5 g, 0.12 mol) and degassed H₂O (200 mL) under argon at r.t. was stirred vigorously while zinc dust (15.4 g, 0.21 mol) was added portion wise over 20 minutes. After addition was complete, the reaction mixture was stirred for an additional 20 minutes and was filtered while still warm. The resultant filter cake was washed with hot distilled water (50 mL) and the com- bined filtrate was saturated with NaCl, and extracted with 3x100 mL of EtOAc. The organic layers were combined, dried over Na₂SO₄ and concentrated under reduced pressure. The crude N-phenyl hydroxylamine was recrystal- lized from petroleum ether/EtOAc (8.2 g, 72 %), dried thoroughly and stored under an atmosphere of argon at - 20°C. ¹HNMR and MS data are in agreement with that reported previously. ²¹HNMR (300 MHz; CDCl₃): δ 7.32- 7.26 (m, 2H), 7.02-6.97 (m, 3H), 6.77 (dq, J = 2.5, 0.8 Hz, 1H).

General Nitrone Synthesis B

16 mmol of *para*-substituted nitrobenzene and 1.7 g (16 mmol) of benzaldehyde were added to a dry 100 mL round- bottom flask. 29 mL of EtOH and 29 mL of H₂O were added, followed by 0.9 g (18 mmol) of NH₄Cl. The reaction mixture was cooled to 0°C, and 1.9 g of Zn power (29 mmol) was added over the course of 20 minutes. The reaction was allowed to warm to room temperature and stirred for 16 hours. The reaction was then filtered through Celite, and washed 3 times with60 mL DCM. The organic layers were combined, dried over Na₂SO₄, filtered, and concen- trated. Pure product was obtained following recrystallization from warm EtOAc and Hexanes.³

C,N-diphenyInitrone. The nitrone was synthesized according to General Nitrone Synthesis B. The product was ob- tained in 50% yield. ¹H NMR (300 MHz; CDCl₃): δ 8.42-8.39 (m, 2H), 7.93 (s, 1H), 7.80-7.77 (m, 2H), 7.50-7.48 (m, 6H). Spectral data was consistent with previously reported data.⁴

C-(4-nitrophenyl)-N-phenylnitrone. The nitrone was synthesized according to General Nitrone Synthesis A. The product was obtained in 75% yield. ¹H NMR (300 MHz; CDCl₃): δ 8.58-8.53 (m, 2H), 8.34-8.30 (m, 2H), 8.07 (s, 1H), 7.80-7.77 (m, 2H), 7.53 (dd, *J*=4.2, 2.5 Hz, 3H). Spectral data was consistent with previously reported data.⁴

C-(4-cyanophenyl)-n-phenylnitrone. The nitrone was synthesized according to General Nitrone Synthesis A. The product was obtained in 52% yield. ¹H NMR (400 MHz; CDCl₃): δ 8.48 (d, *J* = 8.4 Hz, 2H), 8.00 (s, 1H), 7.78-7.74 (m, 4H), 7.52 (t, *J* = 3.3 Hz, 3H). Spectral data was consistent with previously reported data.⁴

C-(4-methoxycarbonylphenyl)-*N*-phenylnitrone. The nitrone was synthesized according to General Nitrone Synthe- sis A. The product was obtained in 63% yield. ¹H NMR (300 MHz; CDCl₃): δ 8.45 (d, *J* = 8.5 Hz, 2H), 8.14 (d, *J* = 8.7 Hz, 2H), 8.00 (s, 1H), 7.78 (dd, *J* = 6.9, 2.9 Hz, 2H), 7.52-7.49 (m, 3H), 3.95 (s, 3H). Spectral data was consistent with previously reported data.⁵

C-(4-fluorophenyl)-*N*-phenylnitrone. The nitrone was synthesized according General Nitrone Synthesis A. The prod- uct was obtained in 54% yield. ¹H NMR (300 MHz; CDCl₃): δ 8.48-8.43 (m, 2H), 7.91 (s, 1H), 7.79-7.76 (m, 2H), 7.52-7.48 (m, 3H), 7.20-7.15 (m, 2H). Spectral data was consistent with previously reported data.⁴

C-(4-hydroxyphenyl)-*N***-phenylnitrone**. The nitrone was synthesized according to General Nitrone Synthesis A. The product was obtained in a 47% yield. ¹H NMR (300 MHz; CD₃OD): $\delta 8.40-8.35 \text{ (m, 2H)}$, 8.27 (s, 1H), 7.84-7.81 (m, 2H), 7.57-7.51 (m, 3H), 6.95-6.90 (m, 2H). Spectral data was consistent with previously reported data.⁵

C-(4-methoxyphenyl)-*N***-phenylnitrone**. The nitrone was synthesized according to General Nitrone Synthesis A. The product was obtained in 77% yield. ¹H NMR (300 MHz; CDCl₃): δ 8.43-8.39 (m, 2H), 7.86 (s, 1H), 7.80-7.76 (m, 2H), 7.51-7.44 (m, 3H), 7.02-6.99 (m, 2H), 3.89 (s, 3H). Spectral data was consistent with previously reported data.³

 \overline{N} -(4-chlorophenyl)-a-phenylnitrone. The nitrone was synthesized according to General Nitrone Synthesis B. The product was obtained in 53% yield. ¹H NMR (300 MHz; CDCl₃): δ 8.40-8.37 (m, 2H), 7.90 (s, 1H), 7.77-7.73 (m, 2H), 7.49 (q, J=3.3Hz, 4H), 7.45 (t, J=2.5Hz, 1H). Spectral data was consistent with previously reported data.³

MeO Ο

N-(4-methoxycarbonylphenyl)-*a*-phenylnitrone. The nitrone was synthesized according to General Nitrone Synthe- sis B. The product was obtained in 83% yield.⁵ ¹H NMR (300 MHz; CDCl₃): δ 8.43-8.39 (m, 2H), 8.19-8.15 (m, 2H), 7.98(s,1H), 7.89-7.85(m, 2H), 7.52-7.49(m, 3H), 3.96(s, 3H). Spectral data was consistent with previously reported data.⁵

Synthesis of Biotin-CMPO

The Biotin-CMPO was synthesized according to previously reported procedures.⁹ Biotin-PEG (91 mg, 0.20 mmol, 1 eq), CMPO (35 mg, 0.24 mmol, 1.2 eq) and HATU (76 mg, 0.20 mmol, 1 eq) were dissolved in DMF (175 μ L). DIPEA (52 μ L, 0.30 mmol, 1.75 eq) was added all at once and the mixture was stirred for 45 minutes. Reaction progress was confirmed by LC-MS. The reaction was concentrated under reduced pressure and stored at -20 °C overnight. The crude was purified using preparatory HPLC with MeCN/H₂O/Formic acid (0.1%) as eluent, running gradient of 10 to 60% acetonitrile over 15 minutes. The product eluted at 7.5-8 minutes and its presence was confirmed by MS; the fractions were pooled and concentrated under reduced pressure. Some starting material was also isolated. The product was obtained as colourless oil (20.1 mg, 0.035 mmol, 17.5 % yield). MS (ESI+) calcd (C₂₆H₄₅N₅O₇S): 572.30 [M+H]+, found 572.1; ¹H NMR (400 MHz, MeOD-d4) δ 7.24 (s, 1H), 4.52 (dd, 1H, J=4.9, 7.7 Hz), 4.33 (dd, 1H, J=4.4,

7.8 Hz), 3.64 (m, 9H), 3.55 (dt, 4H, J=4.7, 6.0, 6.1 Hz), 3.36 (m, 2H), 3.25 (m, 3H), 2.95 (dd, 1H, J=4.9, 12.7 Hz), 2.71 (dd, 3H, J=10.6, 14.1 Hz), 2.22 (t, 3H, J=7.4, 7.4 Hz), 1.79 (ddd, 5H, J=4.0, 6.4, 12.8 Hz), 1.69 (s, 3H), 1.62 (m, 3H), 1.47 (dd, 2H, J=7.5, 15.2 9 Hz); ¹³**C NMR** (100 MHz, MeOD-d4) δ 174.6, 170.8, 141.1, 79.1, 70.1, 69.9, 69.8, 68.6, 68.5, 62.0, 60.2, 55.6, 39.7, 37.0, 36.4, 35.5, 31.0, 29.0, 28.8, 28.4, 28.1, 25.5, 25.0, 21.5. Spectral data was consistent with previously reported data.⁶

Synthesis of N-hydroxysuccinimide ester alkyne

1-[(1-oxo-2-propynyl)oxy]-2,5-pyrrolidinedione. Synthesis was accomplished following a modified procedure.⁷ Pro- piolic acid (500 mg, 7.14 mmol) and N-hydroxysuccinimide (822 mg, 7.14 mmol) were suspended in EtOAc (39 mL) and cooled to 0°C. A solution of *N*,*N*-Dicyclohexylcarbodiimide (1.47 g, 7.14 mmol) in EtOAc (13 mL) was added dropwise over the course of 1 hour. The mixture was then stirred at 0 °C for 6 hours. The urea byproduct was re- moved by filtration and the filtrate was concentrated under reduced pressure to approximately 10 mL and then washed twice with brine (5 mL). The organic phase was dried with Na₂SO₄, then concentrated to approximately 1-2 mL. The concentrated organic phase was cooled to -5 °C; 1-2 mL of heptanes was then added and the mixture was

further cooled to -10 °C and the resulting solids were stirred for 2 hours. The solid precipitate was filtered, rinsed with cold heptanes and dried under vacuum to yield the product was a white solid (895 mg, 75% yield). ¹H NMR (300 MHz, CDCl₃): δ 2.87 (s, 4H), 3.31 (s, 1H). Spectral data was consistent with previously reported data.⁷

Procedure for isolation of β -lactam products for characterization

The reaction was conducted in 6 mL of argon degassed H_2O . 4 mL of acetonitrile was added to help solubilize organic reagents. L-Proline (36 mg, 0.63 mmol), CuSO₄•5H₂O (39 mg, 0.16 mmol), sodium ascorbate (249 mg, 1.26 mmol) and pyridine (51 µL, 0.63 mmol) were then added successively. Following the addition of N-benzylprop-2- ynamide (50 mg, 0.31 mmol), C,N-diphenylnitrone (62 mg, 0.31 mmol) was added and the mixture was allowed to stir for 1 hour at 25 °C. The reaction was then extracted 3x20 mL of EtOAc. The organic fractions were then dried over Na₂SO₄ and concentrated under reduced pressure. The dried residue was then purified by flash column chro- matography using 30% EtOAc in hexanes. The product was recovered as a white solid for analytical and characteri- zation purposes.

N-benzyl-2-oxo-1,4-diphenylazetidine-3-carboxamide, (3S, 4R) -rel-

¹H NMR (400 MHz; CDCl₃): δ 7.38 (d, J = 13.6 Hz, 4H), 7.29 (d, J = 14.0 Hz, 6H), 7.24 (s, 4H), 7.06 (s, 1H), 6.54 (t, J = 0.3 Hz, 1H), 5.41 (d, J = 2.6 Hz, 1H), 4.56 (dd, J = 14.8, 6.1 Hz, 1H), 4.41 (dd, J = 14.8, 5.5 Hz, 1H), 3.86 (d, J = 2.6 Hz, 1H); ¹³C NMR (100 MHz; CDCl₃): δ 163.5, 163.1, 137.6, 136.9, 133.9, 129.5, 129.25, 129.21, 129.01, 128.89, 128.82, 128.6, 127.86, 127.81, 127.5, 126.9, 126.2, 124.6, 77.3, 59.4, 58.3, 43.2, 29.9; HRMS (ESI-TOF): for C₂₃H₂₀N₂O₂ (M+Na⁺): calculated: 379.1525; found: 379.1422.

N-benzyl-2-oxo-1,4-diphenylazetidine-3-carboxamide, (3R, 4R) -rel-

¹**H NMR** (400MHz; CDCl₃): δ 7.33 (s, 5H), 7.28 (d, J=7.1Hz, 4H), 7.25 (s, 3H), 7.08 (d, J=6.9Hz, 1H), 7.03 (d, J=9.5 Hz, 2H), 6.77 (s, 1H), 5.37 (d, J=6.3Hz, 1H), 4.52 (d, J=6.2Hz, 1H), 4.39 (dd, J=14.9, 6.5Hz, 1H), 4.14 (dd, J=14.8, 5.1 Hz, 1H); ¹³**C NMR** (101 MHz; CDCl₃): δ 163.5, 163.1, 137.6, 136.9, 133.9, 129.5, 129.25, 129.21, 129.01, 128.89, 128.82, 128.6, 127.86, 127.81, 127.5, 126.9, 126.2, 124.6, 77.3, 59.4, 58.3, 43.2, 29.9; **HRMS (ESI-TOF):** for C₂₃H₂₀N₂O₂ (M+Na⁺): calculated: 379.1525; found: 379.1422.

In vitro Micelle-Assisted Kinugasa/CuANCR reactions

General Procedure

Reactions were conducted in 20 mL of argon degassed H₂O containing 10 mM sodium dodecyl sulfate (58 mg, 0.2 mmol). Sodium ascorbate (40 mg, 0.2 mmol), pyridine (8 μ L, 0.1mmol), L-proline (6 mg, 0.05 mmol) and CuSO₄ (6 mg, 0.025 mmol) were then added successively. Following the addition of alkyne **1-8** (0.05 mmol), C,N- diphenylnitrone (10 mg, 0.05 mmol) was added and the reaction was stirred for 30 minutes at 25 °C. 3 mL of brine was then added to the mixture, followed by an extraction with 3x20 mL of EtOAc. The organic fractions were then dried over Na₂SO₄ and concentrated under reduced pressure. An internal standard, 1,4-Dimethoxybenzene, was accurately weighed (approximately 0.1 mmol) and added to the dried reaction. NMR yields were obtained by com- paring relevant new cis/trans product peaks (β-lactam doublet peaks, 4.5-5.5 ppm range, H₄ from the representative product spectra) to the internal standard peak (6.83 ppm, s, 4H). Nitrone conversion was determined by comparing the calculated NMR yields of both the β-lactam products, while assuming that the minor product was *cis*.

TableS1. Diastereome	eric ratios for screen	of alkynes used ir	nmicelle-assisted	Kinugasa
reactions ^a				

Entry	Alkyne	Yield	trans: cis
1	<u> </u>	22 ^b	55:45
2		16 ⁵	70:30
3	$= - \langle \mathbf{OEt} \rangle_{\mathbf{OEt}}$	20 ^b	55:45
4	CN	32 ^b	77:23
5	O N H O Me	60	80:20
6	O N H H	64	68:32
7a/b	OEt	65/21°	74:26/ 55:45

^aIsolated yields extracted from micellare mulsions.^bEntries 1, 2, 3 and 4 were conducted in 3.5 mMCTAB (26 mg, 0.07 mmol) instead of SDS and in the absence of L-proline.^cEntry 7 bwas conducted in the absence of surfactant.

Table S2. Screen of nitrones used in micelle-assisted Kinugasa Reaction

Entry	X O	A R=OEt (%) yield	B R=NHBn (%) yield	C R=NH(CH₂)₂OCH₃ (%) yield
1	X= NO ₂ , Y=H	25	38	27
2	X=OCH ₃ , Y=H	53	45	50
3	X=F, Y=H	46	41	56
4	X=OH, Y=H	57	37	54
5	X=CN, Y=H	47	40	44
6	X=CO ₂ CH ₃ , Y=H	30	36	41
7	X=H, Y= CO ₂ CH ₃	59	65	63
8	X=H, Y= Cl	31	55	24

Micelle Assisted Kinugasa/CuANCR Reaction on Alkyne Beads

 5μ L of alkyne-tagged beads (corresponding to $3-5 \mu$ M of reactive alkyne groups, Click Chemistry tools) were washed in PBS prior to use. The reaction was carried out in PBS and consisted of 100 μ M CuSO₄, 2 mM freshly solu- bilized sodium ascorbate, 200 μ M L-proline, 50 μ M biotin-CMPO (or vehicle DMSO) to which the indicated amount of surfactant or water solvent was added. The reaction was started by addition of washed beads and was carried out with gentle shaking at 37 °C for the indicated amount of time. Beads were washed 1x with PBS containing 0.05% Tween20, then 3x with PBS prior addition of 5 μ g/mL FITC-streptavidin in PBS. The binding of streptavidin-FITC was carried out at room temperature for 30 minutes in the dark. The beads were washed three more times with PBS and resuspended in PBS containing 5% glycerol. 8 μ L of this solution was applied to a microscopy slide which were imaged using the Nikon Ni-U ratiometric fluorescence microscope equipped with a LED excitation light source and Ultra- sensitive Andor iXon Ultra 897 cooled EMCCD camera. Images were acquired using a Nikon 60x oil dip objective lens and, if indicated, a 2x relay lens. Fluorescence images were obtained under strictly identical conditions of gain and exposure time, on focused beads, typically 2-5 s, and brightfield images were obtained using a 20-50 ms exposure. Images were acquired using Nikon NIS Elements software and processed with ImageJ.

Figure S1. Quantification of Figure 2 CuANCR magnetic beads. Images were set to the same fluorescence inten- sity levels then converted to 8bit. Integrated density from the same area was then measured for 5 beads per image, which is from different fields of view for each sample

Figure S2. Fluorescence microscopy of micelle-assisted CuANCR with surfactants. Alkyne-tagged beads were labelled with 50μ M biotin-CMPO in presence of 1.5 mM of indicated surfactant (at or above CMC for all detergents) from Table S3. Labelling was carried out for 30 minutes at 37 °C after which beads were washed and incubated with 5μ g/mL FITC-streptavidin for another 30 minutes at room temperature in the dark. Images were acquired as indi- cated in the labelling protocol using a 60x objective with oil dip lens and background fluorescence (sample without biotin-CMPO) was subtracted using software ImageJ. Scale bar indicates 5μ m.

Table S3. Lipids used in screening of Kinugasa reaction on alkyne-tagged beads.

Structures are shown as well as approximate critical micellar concentrations (CMC) in water for each lipid.

^aValues obtained from <u>www.anatrace.com.</u>^bFCH; Fos-choline, α -DDM; n-Dodecyl- α -D-Maltopyranoside, β -TDM; N-Tetradecyl- β -D-Maltopyranoside, DMNG; Decyl Maltose Neopentyl Glycol.

Figure S3. Time course of micelle-assisted CuANCR reaction in presence of B-TDM surfactant. Alkyne-tagged beadswerelabelled with 50μ Mbiotin-CMPO in presence of 150μ M β -TDM, 100μ MCuSO₄, 2mMsodium ascor- bate and 200 μ M L-proline for 0-60 min, as indicated, after which beads were washed with PBS and were then in- cubated with 5μ g/mLFITC-streptavidin in the dark. Beads were again washed with 3x PBS and imaged using Nikon Ni-U ratiometric microscope equipped with a 60x objective lens and a 2x relay lens. Average background fluores- cence obtained in absence of biotin-CMPO was subtracted from all images. Scale bar indicates 5μ m.

Figure S4. Micelle-dependence of aqueous CuANCR labelling reaction. Labelling of alkyne beads with biotin-CMPO was performed as indicated in the experimental section, in a range of concentrations of β -TDM, both below and above the CMC of β -TDM of 10 μ M (See Table S3). Fluorescence images were acquired using the Nikon rati- ometric microscope Ni-U equipped with an oil-dip 60x objective lens. Background fluorescence was determined as average fluorescence of beads in absence of biotin-CMPO, and was subtracted from all images. Scale bar indicates 5 μ m.

Figure S5. Micelle-dependence of aqueous CuANCR labelling reaction. Labelling of alkyne-tagged beads with 50 μ M biotin-CMPO in 100 μ M CuSO₄, 2 mM sodium ascorbate and 200 μ M L-proline was performed in a range of concentrations of β -TDM, both below (blue area) and above (light red area) the CMC of β -TDM of 10 μ M (See Table S3). Each data point is an average above background fluorescence determined from at least five different beads.

Figure S6. Kinetics of aqueous Kinugasa on alkyne-tagged beads. Alkyne-tagged beads with β -TDM (150 μ M, red curve) and without lipid (0 μ M, blue curve). Alkyne beads (3-5 μ M alkyne groups) were incubated with 50 μ M biotin- CMPO, 100 μ M CuSO₄, 2 mM sodium ascorbate and 200 μ M L-proline in PBS for the indicated amount of time at 37 °C, and then stained with 5 μ g/mL FITC-streptavidin. Beads were washed in PBS before fluorescence imaging. Above background fluorescence of five beads from two independent view fields (10 beads total) was determined using ImageJ software, normalized and plotted against time of labelling (minutes). Data points were fitted to first order kinetics equation in Prism 4. See also Figure S3 for fluorescence imaging data.

E5-TAT peptide modification procedure

Two-Step Biotin Labeling of E5-TAT peptide

E5-TAT peptide (GLFEAIAEFIENGWEGLIEGWYGGRKKRRQRRR) (GenScript) samples were diluted (20μ M) in Phos- phate-Buffered Saline (PBS) containing varying concentrations of Fos-Choline 12 (FC12) (0.01% to 0.2%, CMC=0.047%). The peptide samples were then treated with 1-[(1-oxo-2-propynyl)oxy]-2,5-pyrrolidinedione (N-hy- droxysuccinimide ester alkyne) (300 μ M, DMSO stock) and allowed to stand for 1 hour at room temperature. Sodium ascorbate (300 μ M), L-proline (40 μ M), CuSO₄5H₂O (20 μ M) and Biotin-CMPO (300 μ M, DMSO stock) were then sequentially added to the samples, which were allowed to sit for an additional hour at room temperature. The sam- ples were then prepared for SDS-PAGE and Western blotting analysis.

Immunoblotting

Labeled E5-TAT peptide (GenScript) samples were loaded and analyzed using SDS-PAGE and western blotting. Sam- ples were ran using 12% stain-free polyacrylamide gel electrophoresis (TGX Stain-Free Fastcast Acrylamide kit, Bio- Rad). The proteins were then transferred to a PVDF membrane using the Trans-blot Turbo RTA Transfer Kit (Bio- Rad). Membrane was blocked using Tris-buffered saline with 0.05% Tween-20 (TBS-T) containing 3% W/V Bovine serum albumin (Sigma-Aldrich). Peptides were probed using anti-biotin antibody (1:1000, Invitrogen, MA5-11251) overnight at 4 °C. Blot was washed in TBS-T and probed for one 1 hour at room temperature with HRP-conjugated goat anti-mouse secondary antibody (1:20000, Jackson Immunoresearch Laboratories, Westgrove, PA). Bands were visualized using Clarity ECL western blotting substrate (Bio-Rad) according to the manufacturer's protocols. Inte- grated signal was calculated relative to negative control (no Biotin-CMPO) taking into account peptide loading using Image Lab software (Bio-Rad). Figure S7 shows a repeat experiment with the unmodified E5-TAT negative control.

Peptide Modification Analysis

2 mg of E5-TAT peptide dissolved in 1x phosphaste-buffered saline (pH 7.5) was treated with 15 equivalents of Nhydroxysuccinimide ester alkyne and left for one hour at room temperature. The peptide sample was then subjected to FPLC purification. The size exclusion chromatography profile was obtained for the alkyne modified E5-TAT using a Superdex 75 size exclusion column (FPLC ÄKTA pure, GE) at a concentration of 1 mg/ml in 1x phosphate-buffered saline (pH 7.5). Absorbance was recorded at 280 nm, with flow rate maintained at 0.8 mL/min (See Figure S8). 10 ug of purified modified and unmodified peptide were then subjected to desalting using C18 spin columns (Thermofisher Scientific) according to manufacturer's protocol. Samples were then subjected to mass spectrometry analysis. Pro- teome Discoverer 2.1 (Thermofisher Scientific) was used to evaluate the modification of peptide with the N-hydroxy- succinimide ester alkyne. Search engine: SEQUEST-HT implemented in Proteome Discovery was applied for all MS raw files. Search parameters were set to allow for dynamic modification of the Nhydroxysuccinimide ester alkyne (51.995 Da). The peptide-spectrum matches (PSMs) was used to evaluate the alkyne modification of peptides and only peptides for Sequest results of XCorr ≥ 2.5 were retained. The obtained PSMs showed modification of lysine residues K26 and K27 (both mono and di-substitution), modifications not found for the unmodified peptide sample.

Figure S7. Biotin conjugation of E5-TAT membrane peptide using CUANCK. Alkyne functionalization of E5-TAT (20 μ M) was carried out using N-hydroxysuccinimide ester alkyne (300 μ M). Biotin labelling was achieved by treating modified peptide with CuSO₄H₂O (20 μ M), sodium ascorbate (300 μ M), L-proline (40 μ M) and biotin-CMPO (300 μ M). (a) Western blot analysis of biotin labelled E5-TAT samples shown under varying percentages (%W/V) of detergent (FC12) ranging from (0.01-0.2%, CMC=0.05%). (b) TGX Stain-free protein loading control.

Figure S8. Size exclusion chromatography profile for modified E5-TAT run in 1x PBS, pH7.5 on a Super- dex 75 column (GE).

Table S4. Results from SEQUEST-HT implementation in Proteome Discovery for unmodified E5-TAT samples. XCorr values ≥ 2.5 are shown.

Confidence	Identifyin	PSMAmbi	AnnotatedS equence Modification	ns # Protei	n # Protein: Master	ProteinA	# Missed Char	e Delt	Scor Delta	Cn Rank	Search En m/z [a] MH+ (Da] Deltal	[Deltam/z	Activation MS Order	Isolation	Ion Inject	RT [min]	First Scan	Spectrum lonsMatc	XCorr	Area	Apex RT [min]
High	SequestH	Unambiou	-1.GLFEAWEFIENGWE		1 1 peptide	peptide		4	1	0	9952	813 3978	.103 -1.91	043 -0.0019	CID/Collis MS2		140.5454	57.92243	23691	1 unmod Q/O	4,743893	66302815	57.8707351
High	SequestH	Unambiou	-1.GLFEAWEFIENGWE		1 1 peptide	peptide	-	4	-	0	1 995.2	841 3978	.114 0.851	268 0.000847	CID(Collis MS2		68,79325	38.47175	14662	1 unmod Q/O	4.411004		
High	SequestH	Unambigu	H GLEEAIAFEIENGWE		1 1 peotide	pentide			-	0	1 9952	798 3978	097 -3.4	447 -0.0034	CID(Collis MS2		117 4296	57 72387	23612	1 unmod 0/0	4.407228	50604561	57 78352354
High	SequestH	Unambigu	I-I GLEEAWEEIENGWE		1 1 peptide	pentide	1	8		ă.	1 498.1	441 3978	102 -2.29	217 -0.0011	CID(Collis MS2	0.812858	14 23745	37 35387	14110	1 unmod 0/0	3 94107		
High	SequestH	Unambigu	LI CLEEA MEEIENCWE		1 1 neolide	nentide				- i	1 995 3	83.4 3078	112 0.176	187 0.000175	CID/Collie MS2	0.6748/	25 58952	38.00.81	1.6490	1 unmod 0/0	3,025747		
High	SequestH	Linambiau	LICIFEAMERENOWE		1 1 peptide	nentide				- i	1 995 3	708 3078	007 -3.4	447 -0.0084	CID/Collie MS2	0.641611	11 71251	37 13008	13990	1 unmod 0/0	3,903/13/		
High	Caguatti	Linembiou			1 1 popula	poptido		-)			0061	902 2079	000 2.05	171 0.0000	CID/Collin MC2	0.041011	460	20.00202	1.49.40	1_unmod 0/0	2 951 401		
High	Converte	Unambigu			1 1 pepude	peptide		1			409.4	455 2079	112 0.530	312 -0.0025	CID(Collis MS2	10 5797	110 5001	30.00203	14040	1_unmod_0/0	2 000505	22260222	29 6270127
riigii	Orguestin	Unambigu			i pepude	peptide		-			400.1	400 3878	.113 0.030	350 0.000204	CID(COIIIS MO2	0.5400.00	118.0001	35.37 100	14700	1_unnou uro	0.000000	23305333	30.03791270
riign	Sequestri	Unambigu	-J.GLPEAWEPIENGWE		1 1 pepude	peptide	- <u>-</u>	1			9901	800 35	400 4.00	170 0.0027	CID(Collis MS2	0.512364	10.47782	37.33337	14090	1_unmod u/u	3.782 100		
riign	Sequestri	Unambigu	-J.GLPEAWEPIENGWE		1 1 pepude	peptide	- <u>-</u>				/90	42/ 38/6	.100 -1.28	1/2 -0.0010	CID(Collis MS2	0.265900	1.98/854	37.634/1	14300	1_unmod u/u	3///211		
High	SequestH	Unambigu	-J.GLFEAWEFIENGWE		1 1 peptide	peptide	-			0	995	2/9 39/8	.094 -4.24	252 -0.00422	CID(Collis MS2		4.251283	36.97043	13900	1_unmod U/U	3.749854		
High	SequestH	Unambigu	-J.GLFEAWEFIENGWE		1 1 peptide	peptide	-	8		0	498.1	44.7 3978	.107 -1.12	512 -0.0005	CID(Collis MS2	3.647695	33.04153	37.95887	14424	1_unmod U/U	3.683121		
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide		3	1	0	1 1326	707 3978	.105 -1.49	279 -0.0019	CID(Collis MS2	8.26472	67.84008	36.87024	13839	1_unmod Q/O	3.598034	2.01E+08	36.92218018
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide	4	1	1	4	1 569	.165 3978	.112 0.150	704 8.56E-0	CID(Collis MS2	0.79167	17.89352	38.83939	14830	1_unmod 0/0	3.580093		
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide		8	1	0	1 498.1	435 3978	.097 -3.45	822 -0.00173	CID(Collis MS2	4.422194	150	57.99996	23723	1_unmod 0/0	3.576095		
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide	-	4	1	0	1 995.2	809 3978	.102 -2.34	102 -0.0023	CID(Collis MS2		28.84985	37.91509	14404	1_unmod 0/0	3.573057		
High	SequestH	Unambigu	[-].GLFEAWEFIENGWE		1 1 peptide	peptide	(4	1	0	1 995.2	825 3978	.108 -0.68	301 -0.0006	CID(Collis MS2	1.961661	37.10049	38.27891	14575	1_unmod 0/0	3.556824		
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide	(1	1	0	1 569.1	655 3978	.115 0.902	195 0.000513	CID(Collis MS2	0.874546	31.81051	58.13913	23777	1_unmod 0/0	3.471104	2.68E+08	57.86439514
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide	(7	1	0	1 569.1	646 3978	.108 -0.70	845 -0.000	CID(Collis MS2	1.000393	0.425447	36.92422	13866	1_unmod 0/0	3.465834		
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide	(1	1	0	1 569.1	638 3978	.103 -2.10	468 -0.001	CID(Collis MS2	1.002694	17.83573	57.72175	23611	1_unmod 0/0	3.465371		
High	SequestH	Unambigu	-].GLFEAIAEFIENGWE		1 1 peptide	peptide	(7	1	- Ó	1 569.1	645 3978	.108 -0.81	585 -0.0004	CID(Collis MS2	1.203935	150	58.93848	24078	1_unmod 0/0	3.463707		
High	SequestH	Unambigu	-].GLFEAIAEFIENGWE		1 1 peptide	peptide	(E	1	Ú.	1 663.6	611 397	8.13 4.894	993 0.003245	CID(Collis MS2	22.58742	2.478719	38.2172	14545	1_unmod 0/0	3.461434		
High	SequestH	Unambigu	-].GLFEAWEFIENGWE		1 1 peptide	peptide	(8	1	ů.	498.1	456 3978	.114 0.715	0.000356	CID(Collis MS2	3.885144	26.04707	38.16812	14523	1_unmod 0/0	3.460276		
High	SequestH	Unambiou	-1.GLFEAWEFIENGWE		1 1 peptide	peptide	-	8	-	0	1 498.1	456 3978	114 0.776	377 0.000386	CID(Collis MS2	12.11564	51,86987	38.38544	14624	1 unmod Q/O	3.382535		
High	SequestH	Unambigu	H GLEEAIAFEIENGWE		1 1 peotide	pentide		1	-	6	1 569 1	649 397	8 11 -0 17	145 -9 7E-0	CID(Collis MS2	1.049062	1.045395	37 13212	13987	1 unmod 0/0	3.374755		
High	SequestH	Unambigu	H GLEEAIAFEIENGWE		1 1 peotide	pentide			-	6	1 995	278 397	8.09 -5.22	44F -0.005	CID(Collis MS2		8 156715	37 53065	14210	1 unmod 0/0	3 37105		
High	SequestH	Unambigu	I-I GLEEAWEEIENGWE		1 1 peptide	pentide	1	-		ă.	1 569 1	654 3978	114 0 795	195 0.000452	CID(Collis MS2	1 13002	3 30598	38.64684	14742	1 unmod 0/0	3 36351		
High	SequestH	Unambigu	LI CLEEA MEEIENCWE		1 1 neolide	nentide				- i	1 995 3	70.4 3078	006 -3.81	291 -0.0037	CID/Collie MS2	0.49777/	7.520231	3678901	13706	1 unmod 0/0	3 344 334		
High	Caguatti	Linembiou			1 1 popula	poptido		-			2064	200 2070	105 1.5	140 0.00012	CID/Collin MC2	0.270766	1.0202.01	27 20650	1 40.00	1_unmod 0/0	2.242000		
High	Converte	Unambigu			1 1 pepude	peptide		-			/304	407 2079	001 5.05	140 -0.0012	CID(Collis MS2	2,2100.46	21.00004	37,53633	1400	1_unmod_0/0	2.240.454		
riigii	Orguestin	Unambigu			i pepude	peptide		-			400.1	421 3810	-0.00	-0.0025	CID(COIIIS MO2	2.310040	21.00524	37.03023	00000	1_unnou uro	3.340434	0.005.00	C7.00400004
riign	Sequestri	Unambigu	-J.GLPEAWEPIENGWE		1 1 pepude	peptide	- <u>-</u>	1			0051	001 39/5	119 1.9/6	191 UUU1123	CID(Collis MS2	2.94302	12.04183	00.04700	23090	1_unmod u/u	3.339490	2000+08	57.864.39514
riign	Sequestri	Unambigu	[-].GLFEAINEFIENGWE		1 1 pepade	peptide	1				990.4	822 3976	.107 -1.05	123 -0.0010	CID(Collis MS2		38.09097	35.04/60	14/4:	1_unmod u/u	3.330.301		
High	SequestH	Unambigu	-J.GLFEAWEFIENGWE		1 1 peptide	peptide	-	4		0	5691	653 3978	.113 0.580	son 0.0003	CID(Collis MS2	0.498625	1.634333	37.91411	14403	1_unmod U/U	3.33414		
High	Sequestri	Unambigu	[-].GLFEAIAEFIENGWE		1 1 pepade	peptide	9	4		0	1 995.2	813 3978	.103 -1.91	042 -0.0019	CID(Collis MS2	0.415333	16.1498	37.72318	14308	1_unmod 0/0	32/9951		
High	Sequestri	Unambigu	[-].GLFEAIAEFIENGWE		1 1 pepade	peptide	9	•		0	1 /964	258 35	1/8.1 -2./4	232 -0.0021	CID(Collis MS2	0.10/358	0.812052	36.74545	13/70	1_unmod 0/0	32/1669		
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide		8	1	0	1 498.1	437 3978	.099 -:	.09 -0.0015	CID(Collis MS2	3.90362	12.37752	37.1765	14013	1_unmod Q/O	3.17528		
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide		1	1	0	1 569.1	669 3978	.125 3.48	0.001978	CID(Collis MS2	0.343771	3.301527	38.09709	14489	1_unmod 0/0	3.167206		
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide		1	1	0	1 569.1	664 3978	.121 2.620	387 0.001489	CID(Collis MS2	1.041488	4.288625	38.47027	14661	1_unmod 0/0	3.141017		
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide	-	6	1	0	1 796.4	261 3978	.102 -2.35	875 -0.0018	CID(Collis MS2		2.038975	37.66141	14275	1_unmod 0/0	3.120683		
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide	-	7	1	0	1 569.1	644 3978	.107 -0.92	325 -0.00053	CID(Collis MS2	0.414314	126.4324	58.40479	23878	1_unmod 0/0	3.113648	2.68E+08	57.86439514
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide	(8	1	0	1 498.1	425 3978	.089 -5.48	346 -0.00273	CID(Collis MS2	3.559865	9.118275	36.72212	13754	1_unmod 0/0	3.049924		
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide	(7	1	0	1 569.1	632 3978	.099 -3.07	127 -0.00175	CID(Collis MS2	2.451738	150	59.16166	24161	1_unmod 0/0	3.047627		
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide	(E	1	Û.	1 796.4	284 3978	.113 0.479	362 0.000382	CID(Collis MS2	1.001284	15.34889	38.97324	14888	1_unmod 0/0	3.042379		
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide	(1	1	Û.	1 569.1	666 3978	.122 2.835	385 0.001612	CID(Collis MS2	23.57321	1.962864	37.72219	14305	1_unmod 0/0	3.016861		
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide	(E	1	Û.	1 796.4	278 397	8.11 -0.28	748 -0.0002	CID(Collis MS2	0.337996	1.46574	37.11305	13978	1_unmod 0/0	3.008665		
High	SequestH	Unambigu	-].GLFEAIAEFIENGWE		1 1 peptide	peptide	(8	1	Ú.	1 498	145 3978	.109 -0.45	104 -0.00022	CID(Collis MS2	10.04417	31.69993	37.74597	14318	1_unmod Q/O	3.003617		
High	SequestH	Unambigu	-].GLFEAIAEFIENGWE		1 1 peptide	peptide	(1	1	Ú.	1 569.1	635 3978	.101 -2.53	428 -0.0014	CID(Collis MS2	32.46635	88.40292	42.07001	16175	1_unmod Q/O	2.929647		
High	SequestH	Unambigu	-].GLFEAIAEFIENGWE		1 1 peptide	peptide	(6	1	ů.	1 796	428 3978	.111 -0.05	733 -4.6E-0	CID(Collis MS2	0.457939	22.65708	38.7884	14809	1_unmod Q/O	2.91562		
High	SequestH	Unambigu	-].GLFEAWEFIENGWE		1 1 peptide	peptide	(7	1	ů.	1 569.1	659 3978	.118 1.654	293 0.00094	CID(Collis MS2	42.62213	1.078127	37.30757	14086	1_unmod 0/0	2.896043		
High	SequestH	Unambiou	-1.GLFEAWEFIENGWE		1 1 peptide	peptide	(1	-	0	1 569.1	638 3978	.103 -1.99	728 -0.00114	CID(Collis MS2	17.6507	150	59.35185	24230	1 unmod Q/Q	2,849425		
High	SequestH	Unambigu	-].GLFEAWEFIENGWE		1 1 peotide	peptide	-	7	1	0	1 569.1	663 3978	121 2.406	0.001367	CID(Collis MS2	1.048451	3.73346	38.27789	14574	1_unmod 0/0	2.839174		
High	SequestH	Unambigu	I-1.GLFEAWEFIENGWE		1 1 peptide	peptide	1	8	1	0	1 498.1	432 3978	.095 -4.07	193 -0.00200	CID/Collis MS2	1.028153	7.61597	36.9714	13901	1 unmod 0/0	2.828975	92560054	36.92717743
High	SequestH	Unambigu	I-1.GLFEAWEFIENGWE		1 1 pentide	peptide		1		0	1 569 1	646 3978	109 -0.60	105 -0.0003	CID(Collis MS2	0.893021	1.124049	37,52967	14206	1 unmod Q/Q	2,810067		
High	SequestH	Unambigu	1 GLEEAWEEIENGWE		1 1 peptide	pentide		6			663/	583 3978	113 0.568	338 0.000377	CID(Collis MS2	0.325852	9 706686	3878729	14806	1 unmod 0/0	2809453		
High	SequestH	Unambigu	I-I GLEEAWEEIENGWE		1 1 peptide	nentide		8		- i	1 4081	414 3078	104 -1 73	-0.0008	CID(Collis MS2	7 195000	150	57 78636	23637	1 unmod 0/0	2 790296	28966/17	57 78102491
High	Sanuae+Li	Linambier	LICIFEAMERENOWE		1 1 pepude	nentide		1	-		400	RDQ 3070	123 2 044	207 0.001004	CID/Collie MS2	0.222724	3 2315.64	38,41546	14030	1_unmod_0/0	2771050	2030047	57.7010245
High	Cequestin	Usambiau			1 1 pepade	pepude	1	-		1	00.10	col 3078	104 1 79	246 0.0050	CID/Collin MG2	1.00224124	140.0049	50.41040	24006	1 upmed 0/0	2,000200		
riigh	Sequestri	Unanibigu	COLEANER ENONE		1 1 pepude	peptide		1		1	0081	wa 38/6	510 5.040	196 0.0010	CID(Collid MS2	2,612,15	143.0046	UD.14401	24000	1_unmod_0/0	2.089229	2.665.000	£7.9632.000
riign	GequestH	Unambigu			1 pepade	peptide	1	9		1	8638	002 33/8	1.949	00 0.001292	GID(COIIS MS2	3.012451	10.31764	02.00040	23/1/	Laimod uru	2009000	2000:+08	DV.803.34223
riign	GequestH	Unambigu			1 pepade	peptide	1	1		1	7964	200 33/8	.104 -1.74	-0.0013	OD(Collis MS2	0.000000	11.00125	35.50048	14/24	Laimod uru	2.6/	0.05.00	C7.000.004.00
riigh	SequestH	Unambigu	-J.GLFEAREFIERGWE		1 1 peptide	peptide	1	1		1	/964	203 39/8	.102 -2.20	-0.0017	CID(Collis MS2	3.328261	150	00.00000	2369/	1_unmod 0/0	2619301	2.9E+08	57.86603165
High	SequestH	Unambigu	[-].GLFEAIAEFIENGWE		1 1 peptide	peptide	-	1		0	796.4	256 3978	.114 0.786	01/ U.000626	CID(Cons MS2	0.56899	3.841676	38.02688	14457	1_unmod 0/0	2.537992		
High	SequestH	Unambigu	I-LGLPEAWEFIENGWE		1 1 peptide	peptide		8	1	0	1 796.4	2/4 3978	.108 -0.74	//E -0.0005!	CID(Collis MS2		150	58.96535	24088	1 unmod 0/0	2.503753		

Table S5. Results from SEQUEST-HT implementation in Proteome Discovery for modified E5-TAT samples. XCorr values \geq 2.5 are shown.

Confidence	Identifyin	PSM Amb Annotate Modifications	# Protein	# Proteins Master P	r ProteinA	# Missed (Charge	DeltaScor DeltaC	n Rank	Search En m/z [Da] MH+ [Da]	DeltaM [Deltam	z Activation MS Order	Isolation	I lon Inject	RT [min]	First Scan	Spectrum Ions Matc	XCorr	Area	Apex RT[
High	SequestH	Unambigi [-].GLFEAI		1 1 peptide	peptide	0	4 1	(995.274	5 3978.076	-8.78398 -0.00	74 CID(Collis MS2	80.8643	6 15	40.8231	15274	2_mod_nc 0/0	4.024749	12725294	40.83605
High	SequestH	Unambigi [-].GLFEAI K26(alkyne); K27(alkyne		1 1 peptide	peptide	0	6 1	(681.187	9 4082.091	-2.44972 -0.00	67 CID(Collis MS2		34.08564	40.13075	15008	2_mod_nc 0/0	3.384698	49995360	40.1216
High	SequestH	H Unambigi [-].GLFEAI K27(alkyne)		1 1 peptide	peptide	0	6 0.1098	(672.521	9 4030.095	-2.7775 -0.00	87 CID(Collis MS2	38.7810	5 98.17399	39.18972	14631	2_mod_nc 0/0	3.282524	21085314	39.15646
High	SequestH	H Unambigi [-].GLFEAI		1 1 peptide	peptide	0	5 1	(796.423	5 3978.088	-5.73415 -0.00	56 CID(Collis MS2	1.45526	5 97.48626	41.52988	15547	2_mod_nc 0/0	3.023272	45186202	41.28741
High	SequestH	H Unambigi [-].GLFEAI		1 1 peptide	peptide	0	5 1	(796.425	4 3978.098	-3.35601 -0.003	67 CID(Collis MS2	2.94886	1 150	41.02731	15351	2_mod_nc 0/0	3.017358		
High	SequestH	H Unambigi [-].GLFEAI		1 1 peptide	peptide	0	7 1	(569.167	1 3978.126	3.802278 0.0021	61 CID(Collis MS2	17.4287	1 150	59.36454	23572	2_mod_nc 0/0	2.962573		
High	SequestH	H Unambigi [-].GLFEAI		1 1 peptide	peptide	0 .	4 1	(995.28	4 3978.114	0.789897 0.0007	86 CID(Collis MS2	1.93346	9 150	57.95038	23046	2_mod_nc 0/0	2,92249	6468897	57.95372
High	SequestH	H Unambigi [-].GLFEAI		1 1 peptide	peptide	0	8 1	(498.143	2 3978.094	-4.19461 -0.000	09 CID(Collis MS2	13.4634	2 150	38,76765	14458	2_mod_nc 0/0	2.884229		
High	SequestH	H Unambigi [-].GLFEAI		1 1 peptide	peptide	0	7 1	(569.165	9 3978.118	1.654293 0.000	94 CID(Collis MS2	4.58289	6 150	58.93892	23415	2_mod_nc 0/0	2.833701		
High	SequestH	H Unambigi [-].GLFEAI		1 1 peptide	peptide	0	5 1	(1 796.426	6 3978.104	-1.7450 -0.00	39 CID(Collis MS2	2.63560	5 150	57.89562	23025	2_mod_nc 0/0	2.819271	30472706	57.94647
High	SequestH	Unambig [-].GLFEAI K26(alkyne)		1 1 peptide	peptide	0 .	4 0.0679	(1008.27	8 4030.089	-4.25506 -0.00	29 CID(Collis MS2		(150	39.08386	14587	2_mod_nc 0/0	2.799827	4829720	39.09619
High	SequestH	H Unambigi [-].GLFEAI		1 1 peptide	peptide	0	7 1	(569.165	5 3978.115	1.009898 0.0008	74 CID(Collis MS2	3.5465	1 150	58.28682	23174	2_mod_nc 0/0	2.7794		
High	SequestH	H Unambigi [-].GLFEAI		1 1 peptide	peptide	0	6 1	(663.857	7 3978.11	-0.3522 -0.00	23 CID(Collis MS2	2.20701:	3 150	57.89298	23024	2_mod_nc 0/0	2,65208	41935704	57.98085
High	SequestH	H Unambigi [-].GLFEAI		1 1 peptide	peptide	0	6 1	(663.859	6 3978.121	2.501525 0.0016	59 CID(Collis MS2	46.8618	9 150	58.56418	23276	2_mod_nc 0/0	2.628621		
High	SequestH	H Unambigi [-].GLFEAI K26(alkyne); K27(alkyne		1 1 peptide	peptide	0	4 1	(1021.27	8 4082.089	-2.9515 -0.000	01 CID(Collis MS2		(15(40.16831	15023	2_mod_nc 0/0	2.584297	19352082	40.06479
High	SequestH	H Unambigi [-].GLFEAI		1 1 peptide	peptide	0	5 1	(796.430	4 3978.123	3.011215 0.0023	96 CID(Collis MS2		0 150	58.82111	23371	2_mod_nc 0/0	2.54528		
High	SequestH	Unambigi [-].GLFEAI K26(alkyne); K27(alkyne		1 1 peptide	peptide	0	5 1	(817.223	1 4082.086	-3.55281 -0.0	29 CID(Collis MS2		0 150	40.35887	15099	2_mod_nc 0/0	2.501196	65599408	40.05726

NMR Spectra

Synthesized Activated Alkynes

¹H NMR of Synthesized Nitrones

Characterization B-Lactams for Table 1

ppm 190 180 170 160 150 140

NMR Data for Table S2. Screen of Nitrone Reactivity

Table S2 yields were calculated based on ¹H NMR Spectra recorded with a frequency of 300MHz. NMR yields are reported using 1,4-Dimethoxybenzene as internal standard.

Table S2. Reaction 1C. Std= 2.50 mg

Table S2. Reaction 2B.Std= 2.90 mg

Table S2. Reaction 2C. Std= 2.47 mg

Table S2. Reaction 3A Std= 1.82 mg

Table S2. Reaction 3B. Std= 1.81 mg

Table S2. Reaction 3C. Std= 1.52 mg

Table S2. Reaction 4A.Std= 1.90 mg

Table S2. Reaction 4B. Std= 1.92 mg

Table S2. Reaction 5A.Std= 2.14 mg

Table S2. Reaction 5B. Std= 2.23 mg

Table S2. Reaction 5C. Std= 1.84 mg

Table S2. Reaction 6A. Std= 2.61 mg

Table S2. Reaction 6B. Std= 1.41 mg

Table S2. Reaction 6C.Std= 2.96 mg

Table S2. Reaction 7A. Std= 1.47 mg

Table S2. Reaction 7B. Std= 3.34 mg

Table S2. Reaction 7C.Std= 2.42 mg

Table S2. Reaction 8B. Std= 3.23 mg

Table S2. Reaction 8C. Std= 1.69 mg

References

- (1) Lanz, J.; Riedl, R. *ChemMedChem* **2015**, *10*, 451.
- (2) Chatterjee, A.; Maiti, D. K.; Bhattacharya, P. K. Org. Lett. 2003, 5, 3967.
- (3) Wang, C.; Wang, D.; Yan, H.; Wang, H.; Pan, B.; Xin, X.; Li, X.; Wu, F.; Wan, B. *Angew. Chem. Int. Ed* **2014**, 53, 11940.
- (4) Luo, Q.; Cao, C. T.; Cao, Z.; Cao, C. J. Phys. Org. Chem. 2016, 29, 406.
- (5) Ers, L.; Cordero, F. M.; Baffle, I.; Sarlo, F. De; Brandi, A. *Tetrahedron Lett.* **1999**, *40*, 6657.
- (6) Sherratt, A. R.; Chigrinova, M.; McKay, C. S.; Beaulieu, L.-P. B.; Rouleau, Y.; Pezacki, J. P. *RSC Advances* **2014**, *4*, 46966–46969.
- (7) Apotex Technologies Inc.; Bodhuri, P., Green, S.P., Karadeolian, A., Cammisa, E,G.; International Patent, W02014/121383A1, **2014**, 17-18.