Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Sai Ruan, Xia Zhong, Quangang Chen, Xiaoming Feng, and Xiaohua Liu*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.

E-mail: liuxh@scu.edu.cn

Table of Contents

1.	General information	S2
2.	Typical procedure for guanidines preparation	S2
3.	Optimization of the reaction conditions	S3
4.	Substrate scope of the reaction	S9
5.	Attempts of other Michael acceptors	S11
6.	Typical procedure for the four-component reaction	S11
7.	The analytical and spectral characterization data of the products	S12
8.	NMR spectra	S40
9.	X-ray crystal structure of the product 3aa	S74
10.	Copies of the CD spectra of the products	S75
11.	References	S84

1. General information

¹H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, δ = 7.26), and spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration and assignment. ¹³CNMR spectra were collected on commercial instruments (100 MHz) with complete proton decoupling. Enantiomeric excesses (*ee*) were determined by HPLC or UPC² analysis using the corresponding commercial chiralpak column as stated in the experimental procedures at 35 °C. Optical rotations were reported as follows: $[\alpha]_D^{18}$ (*c*: g/100 mL, in solvent). HRMS was recorded on a commercial apparatus (ESI Source). All catalytic reactions were run in dried glassware. THF, toluene and diethyl ether (Et₂O) were distilled from sodium benzophenone ketyl. Ethyl acetate, CH₂Cl₂ was distilled over CaH₂.

2. Typical procedure for guanidines preparation

A solution of sulfonyl chloride **B** (10 mmol) was slowly added to a stirred solution of diamine **A** (10 mmol), NEt₃ (11 mmol) in dichloromethane (25 mL). The resulting mixture was stirred for another 2 hours, washed twice with water (25 mL) and dried over Na₂SO₄. The solvent was removed *in vacuo* to give a white solid **C**. To a solution of *N*-Boc protected *L*-Proline **D** in CH₂Cl₂ (40 mL) was added NEt₃ (11 mmol), isobutyl carbonochloridate (11 mmol) at 0 °C under stirring. After 10 min, **C** was added. The reaction was allowed to warm to room temperature for another 2 hours. The mixture was washed with 1 N KHSO₄ solution, saturated NaHCO₃ solution, and brine, dried over anhydrous Na₂SO₄ and concentrated to get a white solid **E**. Then, TFA (10 mL) was added to the CH₂Cl₂ (10 mL) solution of **E**, and stirred until the reaction finished (1-2 h). The pH value of the mixture was brought into the range of 10–12 by the addition of 2 N NaOH solution. The aqueous phase was extracted with CH₂Cl₂ (3 × 30 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated and purified through flash chromatograph as a white solid **F** (40% yield).

*n*BuLi (2.4 M in *n*-hexane, 3.3 eq., 13.2 mmol) was injected into a solution of **F** (4.0 mmol) in THF (30 mL) dropwise over 10 min under nitrogen atmosphere at -20 °C with well stirring. After additional 10 min, a solution of *N*,*N*-dicyclohexylcarbodiimide (1.2 eq., 4.8 mmol) in 10 mL of THF was added

dropwise within 10 min. The reaction was allowed to warm to room temperature and detected by TLC. After 16 h, the mixture was evaporated under reduced pressure to get rid of THF, and the pH value of the mixture was brought into the range of 0–1 by the addition of 3 M HBr. The aqueous phase was extracted with CH_2Cl_2 (3 × 10 mL), washed with water, dried over anhydrous Na_2SO_4 and evaporated in vacuum, and purified through flash chromatograph on silica gel to produce guanidinium salt **G**. The purified guanidinium salt **G** in CH_2Cl_2 (20 mL) was added 5 M NaOH (20 mL) and stirred until the basification finished (10 mins). The pH value of the mixture was kept in the range of 11–12. The aqueous phase was extracted with CH_2Cl_2 (5 × 20 mL). The combined organic phase was washed with 5 M NaOH, dried over anhydrous Na_2SO_4 and evaporated in vacuum. Finally, a white solid was obtained. Then it was dissolved in CH_2Cl_2 and filtration through Celite to remove the silicone gel, concentrate to get a kind of white foam. For other catalysts, the synthesis method could be found in the literature.¹

3. Optimization of the reaction conditions

Table 1: Screening of guanidines^[a]

entry	cat	yield (%) ^[b]	dr ^[c]	ee (%) ^[c]
1	G-1	21	94:6	8/5
2	G-2	18	>19:1	31
3	G-3	13	84:16	5/11
4	G-4	40	88:12	49/33
5	G-5	46	88:12	67/43
6	G-6	51	88:12	50/22
7	G-7	39	91:9	48/17
8	G-8	42	86:14	53/30
9	G-9	55	88:12	52/27
10	G-10	49	88:12	45/17
11	G-11	26	90:10	5/5
12	G-12	15	91::9	9/5
13	G-13	29	83:17	0/0
14	G-14	19	87:13	13/5

[a] Unless otherwise noted, all reactions were carried out with guanidine (10 mol%), CuCl(100 mol%), **1a** (0.10 mmol), TMSCN (0.10 mmol) and MeOH (0.10 mmol) in CH₂Cl₂ (0.5 mL) at 30 °C for 2 h, then **2a** (0.10 mmol) was added at 30 °C and reacted at 30 °C for 12 h. [b] Isolated yield. [c] Determined by HPLC analysis.

Table 2: Screening of the copper salt^[a]

Ph ^{N2}	D ₂ Me + TMSCN + MeOH	+ $N-Ph$ $G^{-5} (10 m) CuX (100) CH_2Cl_2, O$	nol%) 1 mol%) 30 °C Ph-N 0 P	≻CN CO₂Me
1a		2a	3aa	I
entry	CuX	yield (%) ^[b]	dr ^[c]	ee (%) ^[c]
1	CuCl	46	88:12	67/43
2	CuBr	60	88:12	73/47
3	CuI	5	80:20	0/0
4	CuBr•SMe ₂	trace	nd	nd
5	Cu(MeCN) ₄ PF ₆	trace	nd	nd
6	Cu(MeCN) ₄ BF ₄	trace	nd	nd

[a] Unless otherwise noted, all reactions were carried out with G-5 (10 mol%), copper salts (100 mol%), 1a (0.10 mmol), TMSCN (0.10 mmol) and MeOH (0.10 mmol) in CH₂Cl₂ (0.5 mL) at 30 °C for 2 h, then 2a (0.10 mmol) was added at 30 °C and reacted at 30 °C for 12 h. [b] Isolated yield. [c] Determined by HPLC analysis. nd: not detected.

Table 3: Screening of the solvents^[a]

Ph ^L CO ₂ t	_{Ne} + TMSCN + MeOł	$H + \bigvee_{O}^{O} \frac{G-5(10 \text{ r})}{CuBr(100 \text{ solvent})}$	nol%) 0 mol%) → Ph−N 30 °C → O	CN Ph
1a		2a	;	Baa
entry	solvent	yield (%) ^[b]	$dr^{[c]}$	ee (%) ^[c]
1	Toluene	trace	nd	nd
2	THF	trace	nd	nd

3	CH ₂ Cl ₂	60	88:12	73/47
3	CHCl ₃	43	86:14	65/43
4	AcOEt	nr	nd	nd
5	CH ₃ CN	nr	nd	nd
6	Et ₂ O	trace	nd	nd

[a] Unless otherwise noted, all reactions were carried out with G-5 (10 mol%), CuBr (100 mol%), 1a (0.10 mmol), TMSCN (0.10 mmol) and MeOH (0.10 mmol) in solvent (0.5 mL) at 30 \degree for 2 h, then 2a (0.10 mmol) was added at 30 \degree and reacted at 30 \degree for 12 h. [b] Isolated yield. [c] Determined by HPLC analysis. nd: not detected, nr: no reaction.

Table 4: Screening the amount of copper salt and additives ^[a]

F	N₂ Ph└└CO₂Me +	TMSCN + MeOH + $(V - Ph) = CuBr (CuBr (Cu$	0 mol%) (<u>x mol%)</u> ► Ph−N ₂, 30 °C		N D ₂ Me
	1a	2a		3aa	
entry	CuBr [x mol	%] Additive [mg]	yield (%) ^[b]	dr ^[c]	ee (%) ^[c]
1	100	-	60	88:12	73/47
$2^{[d]}$	50	-	65	89:11	73/49
3 ^[e]	50	-	71	88:12	74/49
4 ^[e]	40	-	66	88:12	74/49
5 ^[e]	30	-	trace	nd	nd
6 ^[e]	30	5 Å MS (20)	83	89:11	73/49
7 ^[e]	20	5 Å MS (20)	85	88:12	74/47
8 ^[e]	20	4 Å MS (20)	trace	nd	nd
9 ^[e]	20	3 Å MS (20)	trace	nd	nd
10 ^[e]	15	5 Å MS (20)	trace	nd	nd
11 ^[e]	10	5 Å MS (20)	trace	nd	nd
12 ^[f]	15	5 Å MS (20)+YB ₃ (1.7)	trace	nd	nd
13 ^[g]	15	5 Å MS (20)+HBr (5 mol%)	trace	nd	nd

[a] Unless otherwise noted, all reactions were carried out with G-5 (10 mol%), CuBr (x mol%), 1a (0.10 mmol), TMSCN (0.10 mmol) and MeOH (0.10 mmol) in CH₂Cl₂ (0.5 mL) at 30 °C for 2 h, then 2a (0.10 mmol) was added at 30 °C for 12 h. [b] Isolated yield. [c] Determined by HPLC analysis. [d] G-5 HCl (10 mol%). [e] G-5 HBr (10 mol%).[f] YB₃ (5 mol%: 1.7 mg). [g] HBr (5 mol%: 1.0 M, 5.0 uL).

N₂ Ph └ CO₂N 1a	_{/le} + TMSCN + MeOH	+ N-Ph G-5 •HBr (1 CuBr (20) 5 Å MS, CH ₂ C Then T, 24h, 2a	0 mol%) mol%) Ph-N Ph-N O	CN Ph 3aa
entry	T (°C)	yield (%) ^[b]	dr ^[c]	ee (%) ^[c]
1	0	67	95:5	87
2	-10	62	96:4	90
3	-20	61	96:4	92
4	-30	65	96:4	95
5	-40	62	96:4	96

Table 5: Screening of the temperature^[a]

[a] Unless otherwise noted, all reactions were carried out with G-5 HBr (10 mol%), CuBr (20 mol%), 5 Å MS (20 mg), **1a** (0.10 mmol), TMSCN (0.10 mmol) and MeOH (0.10 mmol) in CH₂Cl₂ (0.5 mL) at 30 °C for 2 h, then **2a** (0.10 mmol) was added at the corresponding temperature and reacted for 24 h. [b] Isolated yield. [c] Determined by HPLC analysis.

Table 6: Screening of the alcohols^[a]

	_{.Me} + TMSCN + ROH +	O N-Ph O 5 Å MS, CH ₂ Then -30 °C	(10 mol%) <u>0 mol%</u>) Cl ₂ , 30 °C, 2h, Cl ₂ , 24h,	CN Ph CO ₂ Me
entry	RUH	2a	dr ^[c]	3aa
1	МеОН	65	96:4	95
2	^{<i>i</i>} PrOH	60	96:4	95
3	^t BuOH	80	96:4	95
4	CF ₃ CH ₂ OH	trace	nd	nd
5	H_2O	60	95:5	95
6	HFIP	trace	nd	nd
7	Benzoic Acid	nr	—	—
8	Phenol	nr	—	—
9	—	nr	—	—

[a] Unless otherwise noted, all reactions were carried out with G-5 HBr (10 mol%), CuBr (20 mol%), 5 Å MS (20 mg), 1a (0.10 mmol), TMSCN (0.10 mmol) and alcohol (0.10 mmol) in CH₂Cl₂ (0.5 mL) at 30 °C for 2 h, then 2a (0.10 mmol) was added at -30 °C and reacted at -30 °C for 24 h. [b] Isolated yield. [c] Determined by HPLC analysis. HFIP: Hexafluoroisopropanol.

Ρ	N ₂ ^h CO ₂ Me + TMSCN + ^t BuOH +	O N-Ph O S Å MS, CH ₂ Cl ₂ , Then -30 °C, 24	$ \begin{array}{c} \text{mol}\%)\\ \begin{array}{c} \text{ol}\%)\\ \text{ol}\%)\\ \end{array} \\ \begin{array}{c} \text{Ph}-N\\ \text{h}, \end{array} \end{array} $	CN CO₂Me
	1a	2a	3a	a
entry	1a:TMSCN: ^t BuOH:2a	yield (%) ^[b]	dr ^[c]	ee (%) ^[c]
1	1:1:1:1	80	96:4	95
2	1.2:1.2:1.2:1	86	96:4	95
3	1.4:1.4:1.4:1	87	96:4	95
4 ^[d]	1.2:1.2:1.2:1	77	97:3	95

Table 7: Screening of the substrate ratio^[a]

[a] Unless otherwise noted, all reactions were carried out with G-5 HBr (10 mol%), CuBr (20 mol%), 5 Å MS (20 mg), 1a, TMSCN, and ^{*t*}BuOH in CH₂Cl₂ (0.5 mL) at 30 °C for 2 h, then 2a (0.10 mmol) was added at -30 °C and reacted at -30 °C for 24 h. [b] Isolated yield. [c] Determined by HPLC analysis. [d] CH₂Cl₂ (1.0 mL).

Table 8: Control experiments A^[a]

Table 9: Control experiments B

Method 1: CuBr (20 mol%) and 5 Å MS (20 mg) were added into the test tube, then under the protection of nitrogen, CH_2Cl_2 (0.5 mL) was added. Then the ^{*t*}BuOH (0.12 mmol), TMSCN (0.12

mmol) and α -diazoester **1a** (0.12 mmol) were added in sequence to the reaction which were stirred at 30 °C for 2 h. Subsequently, the reaction mixture was stirred at -30 °C for 5 min, *N*-phenyl maleimide **2a** (0.10 mmol) and catalyst **G-5** (10 mol%) dissolved in 0.2 mL of CH₂Cl₂ were added to the reaction. After the mixture was stirred at -30 °C for 24 h. Isolated yield. Ee and dr values were determined by UPC² analysis.

Method 2: The reactions were carried out with CuBr (20 mol%) and 5 Å MS (20 mg) were added into the test tube, then under the protection of nitrogen, CH₂Cl₂ (0.5 mL) was added. Then the ^{*t*}BuOH (0.12 mmol), TMSCN (0.12 mmol) and α -diazoester **1a** (0.12 mmol) were added in sequence to the reaction which were stirred at 30 °C for 2 h. Subsequently, the reaction mixture was stirred at -30 °C for 5 min, *N*-phenyl maleimide **2a** (0.10 mmol) and catalyst **G-5** HBr (10 mol%) dissolved in 0.2 mL of CH₂Cl₂ were added to the reaction. After the mixture was stirred at -30 °C for 24 h. Isolated yield. Ee and dr values were determined by UPC² analysis.

4. Substrate scope

Table 9: Substrate scope of α -aryl diazoacetates $\mathbf{1}^{[a]}$

	$Ar \xrightarrow{N_2} CO_2R_1 +$	TMSCN	+ ^t BuOH + N-Ph <u>C</u>	•HBr (10 mol%) uBr (20 mol%) > Ph-		
			∭ 5 A MS O Then -	, CH₂Cl₂, 30 °C, 2h, -30 °C, 24h,		R ₁
	1a		2a		3	
entry	1 : Ar	R_1	Additives	Yield $(\%)^{b}$	dr ^c	$ee(\%)^c$
1	1a : Ph	Me	5 Å MS (20 mg)	86 (3aa)	13:1	95
2	1b : Ph	Et	5 Å MS (20 mg)	81 (3ba)	13:1	96
3	1c : Ph	^{<i>i</i>} Pr	5 Å MS (20 mg)	68 (3ca)	13:1	96
4	1d : Ph	^t Bu	5 Å MS (20 mg)	trace (3da)	nd	nd
5	1e : 2-FC ₆ H ₄	Me	DABCO (50 mol%)	75 (3ea)	2:1	85/70
6^{a}	1f : 3-MeC ₆ H ₄	Me	DABCO (30 mol%)	87 (3fa)	13:1	89
7	1g : 4-MeC ₆ H ₄	Me	5 Å MS (20 mg)	71 (3ga)	13:1	95
8	1h : 4-MeOC ₆ H ₄	Me	DABCO (30 mol%)	68 (3ha)	13:1	93
9	1i : 4-FC ₆ H ₄	Me	5 Å MS (20 mg)	80 (3ia)	>19:1	93
10^{e}	1j : 4-ClC ₆ H ₄	Me	DABCO (30 mol%)	74(90) ^{<i>t</i>} (3ja)	>19:1	78(91) ¹
11^e	$1k: 4-BrC_6H_4$	Me	DABCO (30 mol%)	$69(74)^{t}$ (3ka)	>19:1	72(92) ^{<i>t</i>}
12^{e}	11 : 4-IC ₆ H ₄	Me	DABCO (30 mol%)	$59(70)^{t}$ (3la)	>19:1	70(88) ^{<i>t</i>}
13 ^{<i>g</i>}	1m : 2-naphthyl	Me	DABCO (30 mol%)	99 (3ma)	15:1	92

[a] unless otherwise noted, all reactions were carried out with **G-5 HBr** (10 mol%), CuBr (20 mol%), 5 Å MS, **1** (1.2 equiv), TMSCN (1.2 equiv) and ¹BuOH (1.2 equiv) in CH₂Cl₂ (0.5 mL) at 30 °C for 2 h, then **2a** (0.10 mmol) and DABCO were added at -30 °C and reacted at -30 °C for 24 h. [b] Isolated yield. [c] Determined by UPC² and NMR analysis. [d] CuBr•SMe₂ (20 mol%). [e] **1a**/TMSCN/^tBuOH/**2a** (1.4/1.4/1), CuBr (40 mol%); [f] Date in parentheses was used CuBr (100 mol%), and DABCO (0.5 equiv). [g] CuBr (50 mol%), and at -30 °C for 12 h.

Ph CO	₂ Me + TMSCN + ^t BuOH	+ N-R ₂ G-5 •HE CuBr	Br (10 mol%) (20 mol%) R₂−N	
	2		H_2Cl_2 , 30 °C, 2h, PC 24h O	CO ₂ Me
1a		2	3, 2111,	5
entry	2 : R ₂	yield (%) ^[b]	dr ^[c]	ee (%) ^[c]
1	$4-MeC_6H_4$	62 (3ab)	>19:1	92
2	$4-\text{MeOC}_6\text{H}_4$	70 (3ac)	16:1	92
3	$4-EtC_6H_4$	73 (3ad)	>19:1	93
4	$4-EtOC_6H_4$	65 (3ae)	>19:1	93
5	$4-i\Pr C_6H_4$	72 (3af)	>19:1	92
6	$4-FC_6H_4$	78 (3ag)	19:1	92
7	$4-ClC_6H_4$	68 (3ah)	16:1	93
8	$4-BrC_6H_4$	65 (3ai)	16:1	93
9	$4-IC_6H_4$	78 (3aj)	16:1	93
10	$2-FC_6H_4$	73 (3ak)	11:1	93
11	$2-MeC_6H_4$	85 (3al)	60:40	92
12	$3-FC_6H_4$	65 (3am)	16:1	91
13	Bn	36 (3an)	7:1	72
14	Me	54 (3ao)	5:1	50
15	Н	nr (3ap)		_

Table 10: Substrate scope of N-substituted maleimides $2^{[a]}$

[a] Unless otherwise noted, the reactions were carried out G-5 HBr (10 mol%), 5 Å MS (20 mg), 1a (0.12 mmol), TMSCN (0.12 mmol) and 'BuOH (0.12 mmol) in CH₂Cl₂ (0.5 mL) at 30 °C for 2 h, then 2 (0.10 mmol) was added at -30 °C and reacted at -30 °C for 24 h. [b] Isolated yield. [c] Determined by UPC² and NMR analysis .

5. Attempts of other Electrophiles

6. Typical procedure for the reaction

CuBr (2.9 mg, 20 mol%), catalyst G-5 HBr (7.8 mg, 10 mol%) and 5 Å MS (20 mg) were added into the test tube, then under the protection of nitrogen, CH_2Cl_2 (0.5 mL) was added. Then the ^{*t*}BuOH (0.12 mmol, 12.0 uL), TMSCN (0.12 mmol, 16.0 uL) and α -diazoester **1a** (0.12 mmol, 20.5 uL) were added in sequence to the reaction which were stirred at 30 °C for 2 h. Subsequently, the reaction mixture was stirred at -30 °C for 5 min, *N*-phenyl maleimide **2a** (0.10 mmol, 17.3 mg) and DABCO (0-50 mol%) dissolved in 0.2 mL of CH₂Cl₂ were added to the reaction. After the mixture was stirred at -30 °C for 24 h, it was purified by silica gel column chromatography (ethyl acetate/petroleum ether/CH₂Cl₂ 1/4/1) to afford the desired product. Then the purified product was used for HPLC or UPC² analysis.

7. The analytical and spectral characterization data of the product

Methyl (R)-2-cyano-2-[(S)-2,5-dioxo-1-phenylpyrrolidin-3-yl]-2-phenylacetate (3aa)

174.0, 172.8, 166.6, 131.2, 131.1, 130.0, 129.8, 129.3, 129.1, 126.5, 115.8, 55.3, 54.7, 47.1, 31.6. HRMS (ESI-FT) caled for C₂₀H₁₆N₂O₄K⁺ (M+K)⁺, m/z: 387.0742, observed: 387.0737. IR: 1750, 1715, 1500, 1387, 1244, 1193, 695, 623 cm⁻¹.

	10.002	407700	25.70
	14.614	114802	2.40
	17.326	162423	3.39
-	20.713	21366	0.45

Ethyl 2-cyano-2-[2,5-dioxo-1-phenylpyrrolidin-3-yl]-2-phenylacetate (3ba)

Color less oily, 81% yield, 13:1 dr, 96% ee, $[\alpha]_D^{23} = -52.3$ (*c*: 0.53, CH₂Cl₂); Determined by HPLC analysis [Daicel chiralcel ADH, *n*-Hexane/^{*i*}PrOH = 70/30, 1.0 mL/min, $\lambda = 254.0$ nm, t (major_{isomer}) = 24.52 min, 38.85 min; t (minor_{isomer}) = 13.11, 17.75 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.61 (m, 2H), 7.51 – 7.38 (m, 6H), 7.35 – 7.27 (m, 2H), 4.43 – 4.34 (m, 2H), 4.31 – 4.23 (m, 1H), 2.80 (dd, *J* = 18.8, 9.6 Hz, 1H), 2.65 (dd, *J* = 18.4, 6.4 Hz, 1H), 1.31 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 172.9,

166.0, 131.2, 129.9, 129.7, 129.3, 129.1, 126.6, 126.5, 115.9, 64.2, 55.5, 47.0, 31.7, 13.8. HRMS (ESI-FT) caled for $C_{21}H_{18}N_2O_4Na^+$ (M+Na)⁺, m/z: 385.1159, observed: 385.1169. IR: 1745, 1717, 1499, 1386, 1237, 1191, 1023, 730, 694 cm⁻¹.

	Retention Time	Area	% Area
1	13.111	426616	4.72
2	17.748	47087	0.52
3	24.519	233550	2.58
4	38.849	8333312	92.18

Isopropyl 2-cyano-2-[2,5-dioxo-1-phenylpyrrolidin-3-yl]-2-phenylacetate (3ca)

Color less oily, 68% yield, 13:1 dr, 96% ee, $[\alpha]_{D}^{23} = -45.2$ (*c*: 0.46, CH₂Cl₂); Determined by HPLC analysis [Daicel chiralcel IB, *n*-Hex ane /^{*i*}PrOH = 75/25, 1.0 mL/min, $\lambda = 254$ nm, t (major_{isomer}) = 10.73, 15.40 min, t (minor_{isomer}) = 14.26, 19.41 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.60 (m, 2H), 7.51 – 7.39 (m, 6H) , 7.34 – 7.28 (m, 2H), 5.19– 5.05 (m, 1H), 4.50 – 4.28 (m, 1H), 2.86 – 2.73 (dd, J = 18.4, 9.2 Hz, 1H), 2.61 – 2.45 (dd, J = 18.8, 6.8 Hz, 1H),

1.36 (d, J = 6.4 Hz, 2H), 1.21 (d, J = 6.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 172.9, 165.4, 131.4, 131.3, 129.9, 129.7, 129.3, 129.1, 126.6, 126.5, 116.0, 72.5, 55.7, 46.8, 31.7, 21.4, 21.3. HRMS (ESI-FT) caled for $C_{22}H_{20}N_2O_4Na^+$ (M+Na)⁺, m/z: 399.1315, observed: 399.1309. IR: 1749, 1715, 1490, 1386, 1244, 1179, 1070, 1014, 826, 731, 695 cm⁻¹.

Methyl 2-cyano-2-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-2-(2-fluorophenyl)acetate (3ea)

Colorless oily, 75% yield, 2:1 dr, 85/70% ee, $[\alpha]_D^{25} = -22.3$ (*c*: 0.89, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OX-3, scCO₂/PrOH = 90/10, 1.5 mL/min, $\lambda = 229.0$ nm, t (major_{isomer}) = 7.45, 9.82, t (minor_{isomer}) = 9.32, 11.35 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.37 (m, 5H), 7.31 – 7.25 (m, 3H), 7.22 – 7.12 (m, 1H), 4.50 (dd, *J* = 9.6, 6.0 Hz, 1H), 3.90 (s, 3H), 3.13 (dd, *J* = 18.4, 9.6 Hz, 1H), 2.71 (dd, *J* = 18.4, 6.0 Hz,

1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 173.0, 165.5, 161.1 (J = 249.6 Hz, 1C), 158.6, 132.3 (J = 22.9 Hz, 1C), 131.3, 129.9 (J = 2.2 Hz, 1C), 129.3 (J = 2.2 Hz, 1C), 126.5, 125.4, 119.0 (J = 7.8 Hz, 1C), 117.6 (J = 22.4 Hz, 1C), 115.7, 54.8, 52.9, 44.9, 32.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.4 (s, 1F). HRMS (ESI-FT) calcd for [M+Na]⁺ C₂₀H₁₅FN₂O₄Na⁺, m/z: 389.0908, observed: 389.0904. IR: 1754, 1720, 1494, 1389, 1264, 1193, 896, 732, 703 cm⁻¹.

756454

4.74

4

11.350

Methyl 2-cyano-2-[2,5-dioxo-1-phenylpyrrolidin-3-yl]-2-(3-methyphenyl)acetate (3fa)

White solid, 87% yield, 13:1 dr, 90% ee, mp: 82-84 °C. $[\alpha]_D^{24} = -55.9$ (*c*: 0.54, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OX-3, scCO₂/PrOH = 90/10, 1.5 mL/min, $\lambda = 233.0$ nm, t (major_{isomer}) = 5.04, 5.95 min, t (minor_{isomer}) = 11.42, 12.43 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.37 (m, 5H), 7.36 – 7.24 (m, 4H), 4.40 (dd, J = 9.6, 6.4 Hz, 1H), 3.88 (s, 3H),

2.82 (dd, J = 18.8, 9.6 Hz, 1H), 2.55 (dd, J = 18.8, 6.4 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 172.9, 166.6, 139.8, 131.2, 130.9, 130.8, 129.6, 129.3, 129.1, 127.1, 126.5, 123.5, 115.9, 55.2, 54.6, 47.7, 31.7, 21.6. HRMS (ESI-FT) calcd for [**M**+**Na**]⁺ **C**₂₁**H**₁₈**N**₂**O**₄**Na**⁺, m/z: 385.1159, observed: 385.1157. IR: 1750, 1716, 1500, 1387, 1263, 1191, 734, 699 cm⁻¹.

Methyl -2-cyano-2-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-2-(p-tolyl)acetate (3ga)

White solid, 71% yield, 13:1 dr, 95% ee, mp: 150-154 °C. $[\alpha]_D^{16} = -89.7$ (*c*: 0.14, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OX-3, scCO₂/^{*j*}PrOH = 90/10, 1.5 mL/min, $\lambda = 218.0$ nm, t (major_{isomer}) = 6.16, 6.94 min, t (minor_{isomer}) = 14.27, 16.00 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.38 (m, 5H), 7.33 – 7.25 (m, 4H), 4.38 (dd, J = 9.6, 6.4 Hz, 1H), 3.87 (s, 3H), 2.82 (dd, J = 18.8, 9.6 Hz, 1H), 2.55 (dd, J = 18.4, 6.4 Hz, 1H), 2.39 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.0, 172.9, 166.8, 140.2, 131.2, 130.4, 129.3, 129.1, 128.1, 126.5, 126.4, 115.9, 55.0, 54.6, 47.0, 31.6, 21.1. HRMS (ESI-FT) calcd for $[M+Na]^+ C_{21}H_{18}N_2O_4Na^+$, m/z: 385.1159, observed: 385.1163. IR: 1748, 1713, 1501, 1388, 1243, 1193, 1019, 694 cm⁻¹.

Methyl -2-cyano-2-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-2-(4-methoxyphenyl)acetate (3ha)

White solid, 68% yield, 13:1 dr, 93% ee, mp: 145-147 °C. $[\alpha]_D^{24} = -68.0$ (*c*: 0.53, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OX-3, scCO₂/PrOH = 90/10, 1.5 mL/min, $\lambda = 234.0$ nm, t (major_{isomer}) = 8.07, 9.82 min, t (minor_{isomer}) = 17.03, 23.95 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.38 (m, 5H), 7.33 – 7.28 (m, 2H), 7.02 – 6.92 (m, 2H), 4.36 (dd, J = 9.6, 6.4 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 2.82 (dd, J = 18.8, 9.6 Hz, 1H), 2.55 (dd, J

= 18.8, 6.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 172.9, 166.9, 160.7, 131.2, 129.3, 129.1, 127.8, 126.5, 122.8, 116.0, 115.0, 55.5, 54.7, 54.5, 47.1, 31.6. HRMS (ESI-FT) calcd for [**M**+**Na**]⁺ **C**₂₁**H**₁₈**N**₂**O**₅**Na**⁺, m/z: 401.1108, observed: 401.1107. IR: 1748, 1714, 1608, 1511, 1389, 1260, 1186, 1029, 747, 697 cm⁻¹.

	Retention Time	Area	% Area
1	8.069	513137	3.19
2	9.823	14753883	91.81
3	17.031	315565	1.96
4	23.946	487872	3.04

Methyl 2-cyano-2-[2,5-dioxo-1-phenylpyrrolidin-3-yl]-2-(4-fluorophenyl)acetate (3ia)

White solid, 80% yield, >19:1 dr, 93% ee, mp: 160-162 °C. $[\alpha]_D^{16} = -46.2$ (*c*: 0.42, CH₂Cl₂); Determined by HPLC analysis [Daicel chiralcel IB, *n*-Hexane/^{*i*}PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major_{isomer}) = 9.91, 14.38 min, t (minor_{isomer}) = 17.04, 18.85 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.60 (m, 2H), 7.53 – 7.39 (m, 3H), 7.35 – 7.28 (m, 2H), 7.23 – 7.13 (m, 2H), 4.35 (dd, J = 9.6, 6.8Hz, 1H), 3.89 (s, 3H), 2.83 (dd, J = 18.4, 9.6 Hz, 1H), 2.54 (dd, J = 18.4, 6.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 172.6, 166.5,

164.7 (J = 249.8 Hz, 1C), 131.1, 129.3 (J = 8.2 Hz, 1C), 129.2, 128.7 (J = 8.5 Hz, 1C), 126.9 (J = 3.3 Hz, 1C), 126.5, 117.0 (J = 22 Hz, 1C), 115.7, 54.7, 54.7, 47.2, 31.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.4 (s, 1F). HRMS (ESI-FT) calcd for [**M**+**Na**]⁺ **C**₂₀**H**₁₅**FN**₂**O**₄**Na**⁺, m/z: 389.0908, observed: 389.0907. IR: 2360, 2341, 1752, 1717, 1509, 1390, 1263, 734, 700 cm⁻¹.

	Retention Time	Area	% Area
1	10.999	19283257	93.89
2	15.269	731013	3.56
3	18.534	512041	2.49
4	21.155	11380	0.06

Methyl 2-cyano-2-[2,5-dioxo-1-phenylpyrrolidin-3-yl]-2-(4-chlorophenyl)acetate (3ja)

White solid, 90% yield, >19:1 dr, 91% ee, mp: 75-78 °C. $[\alpha]_D^{24} = -60.7$ (*c*: 0.57, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OJ-3, scCO₂/MeOH = 90/10, 1.5 mL/min, $\lambda = 233.0$ nm, t (major_{isomer}) = 5.14 min, t (minor_{isomer}) = 7.18 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.55 (m, 2H), 7.51 – 7.39 (m, 5H), 7.34 – 7.27 (m, 2H), 4.35 (dd, J = 9.6, 6.4 Hz, 1H), 3.88 (s, 3H), 2.82 (dd, J = 18.4, 9.6 Hz, 1H), 2.52 (dd, J = 18.8, 6.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 172.6, 166.4, 136.5, 131.1, 130.0, 129.6,

129.4, 129.2, 128.0, 126.5, 115.5, 54.8, 47.1, 31.5. HRMS (ESI-FT) calcd for $[M+Na]^+ C_{20}H_{15}CIN_2O_4Na^+$, m/z: 405.0613, 407.0583, observed: 405.0612, 407.0580. IR: 1750, 1714, 1495, 1388, 1263, 1195, 1097, 1015, 734, 699 cm⁻¹.

Methyl 2-cyano-2-[2,5-dioxo-1-phenylpyrrolidin-3-yl]-2-(4-bromophenyl)acetate (3ka)

Color less oily, 74% yield, >19:1 dr, 92% ee, $[\alpha]_D^{24} = -62.8$ (*c*: 0.37, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OJ-3, scCO₂/MeOH = 90/10, 1.5 mL/min, $\lambda = 235.0$ nm, t (major_{isomer}) = 6.52 min, t (minor_{isomer}) = 9.82 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.58 (m, 2H), 7.56 – 7.39 (m, 5H), 7.35 – 7.27 (m, 2H), 4.34 (dd, J = 9.6, 6.4 Hz, 1H), 3.89 (s, 3H), 2.82 (dd, J = 18.8, 9.6 Hz, 1H), 2.52 (dd, J = 18.8, 6.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ

173.7, 172.5, 166.3, 133.0, 131.1, 130.1, 129.4, 129.2, 128.2, 126.5, 124.6, 115.4, 54.9, 54.8, 47.1, 31.5. HRMS (ESI-FT) calcd for $[M+Na]^+ C_{20}H_{15}BrN_2O_4Na^+$, m/z: 449.0107, 451.0087, observed: 449.0114, 451.0092. IR: 1750, 1715, 1492, 1389, 1261, 1197, 733, 698 cm⁻¹.

Methyl -2-cyano-2-(2,5-dioxo-1-phenylpyrrolidin-3-yl)-2-(4-iodophenyl)acetate (3la)

Color less oily, 70% yield, >19:1 dr, 88% ee, $[\alpha]_D^{25} = -63.5$ (*c*: 0.38, CH₂Cl₂); Determined by UPC² analysis [Daicel chiracel OJ-3, scCO₂/MeOH = 90/10, 1.5 mL/min, $\lambda = 235.0$ nm, t (major_{isomer}) = 9.11,9.87 min, t (minor_{isomer}) = 12.96, 19.10 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.75 (m, 2H), 7.98 – 7.84 (m, 5H), 7.63 – 7.54 (m, 2H), 7.51 – 7.38 (m, 3H), 7.37 – 7.28 (m, 2H), 4.54 (dd, *J* = 9.6, 6.4 Hz, 1H), 3.88 (s, 3H), 2.81 (dd, *J* = 18.8, 9.6 Hz, 1H), 2.58 (dd, *J* = 18.4, 6.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 172.5, 166.2, 138.9,

131.1, 130.8, 129.3, 129.2, 128.3, 126.5, 115.4, 96.4, 55.0, 54.8, 47.0, 31.5. HRMS (ESI-FT) calcd for $[\mathbf{M}+\mathbf{Na}]^+ \mathbf{C_{20}H_{15}IN_2O_4Na^+}$, m/z: 496.9969, observed: 496.9969. IR: 1750, 1715, 1500, 1389, 1262, 1196, 1007, 735, 698 cm⁻¹.

	Retention Time	Area	% Area
1	8.585	1613971	13.68
2	9.200	9334372	79.10
3	12.108	321235	2.72
4	17.914	530998	4.50

Methyl 2-cyano-2-[2,5-dioxo-1-phenylpyrrolidin-3-yl]-2-(2-naphthyl)acetate (3ja)

White solid, 99% yield, 15:1 dr, 92% ee, mp: 76-78 °C. $[\alpha]_D^{25} = -90.5$ (*c*: 0.55, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OX-3, scCO₂/^{*i*}PrOH = 90/10, 1.5 mL/min, $\lambda = 235.0$ nm, t (major_{isomer}) = 12.42, 12.63 min, t (minor_{isomer}) = 27.99, 38.68 min]; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 1.2 Hz, 1H), 7.98 – 7.81 (m, 3H), 7.68 (dd, J = 8.4, 2.0 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.51 – 7.38 (m, 3H), 7.37 – 7.27 (m, 2H), 4.54 (dd, J = 9.6, 6.4 Hz, 1H), 3.88 (s, 3H), 2.81 (dd, J = 18.8, 9.6 Hz, 1H), 2.58 (dd, J = 18.4, 6.4 Hz, 1H). ¹³C NMR (100

MHz, CDCl₃) δ 174.1, 172.8, 166.6, 133.4, 133.0, 131.2, 130.0, 129.3, 129.2, 129.1, 128.5, 128.2, 127.8, 127.7, 127.5, 127.1, 126.5, 122.4, 115.9, 55.5, 54.7, 47.1, 31.6. HRMS (ESI-FT) calcd for [**M+Na**]⁺ **C**₂₄**H**₁₈**N**₂**O**₄**Na**⁺, m/z: 421.1159, observed: 421.1153. IR: 1752, 1721, 1264, 1194, 817, 731, 703 cm⁻¹.

	Retention Time	Area	% Area
1	12.419	1234498	3.39
2	14.629	33419784	91.86
3	27.987	252423	0.69
4	38.681	1474426	4.05

Methyl 2-cyano-2-[1-(p-tolyl)-2,5-dioxopyrrolidin-3-yl]-2-phenylacetate (3ab)

White solid, 62% yield, >19:1 dr, 92% ee, mp: 126-130 °C. $[\alpha]_D^{16} =$ -64.9 (*c*: 0.60, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OD-3, scCO₂/^{*i*}PrOH = 90/10, 1.5 mL/min, $\lambda = 232.0$ nm, t (major_{isomer}) = 5.93, 9.49 min, t (minor_{isomer}) = 10.91, 12.07 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.61 (m, 2H), 7.52 – 7.43 (m, 3H), 7.31 – 7.26 (d, *J* = 8.4 Hz, 2H), 7.22 – 7.14 (m, 2H), 4.39 (dd, *J* = 9.6, 6.4

Hz, 1H), 3.88 (s, 3H), 2.80 (dd, J = 18.4, 9.2 Hz, 1H), 2.53 (dd, J = 18.4, 6.4 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 173.0, 166.6, 139.2, 131.1, 130.0, 129.9, 129.8, 128.5, 126.5, 126.3, 115.8, 55.3, 54.6, 47.1, 31.6, 21.3. HRMS (ESI-TOF) calcd for [M+Na]⁺ C₂₁H₁₈N₂O₄Na⁺, m/z: 385.1159, observed: 385.1163. IR: 2360, 1751, 1715, 1514, 1245, 1197, 731, 698 cm⁻¹.

25311

0.28

4

12.069

Methyl 2-cyano-2-[1-(4-methoxyphenyl)-2,5-dioxopyrrolidin-3-yl]-2-phenylacetate (3ac)

White solid, 70% yield, 16:1 dr, 92% ee, mp: 126-130 °C. $[\alpha]_D^{15} = -64.9$ (*c*: 0.60, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OD-3, scCO₂/MeOH = 90/10, 1.5 mL/min, $\lambda = 229.0$ nm, t (major_{isomer}) = 6.29, 9.39 min, t (minor_{isomer}) = 11.68, 16.70 min]; ¹H NMR (400 MHz, CDCl3) δ 7.72 – 7.60 (m, 2H), 7.52 – 7.42 (m, 3H), 7.25 – 7.22 (m, 2H),

7.02 – 6.93 (m, 2H), 4.39 (dd, J = 9.2, 6.4 Hz, 1H), 3.88 (s, 3H), 3.82 (s, 3H), 2.80 (dd, J = 18.4, 9.2 Hz, 1H), 2.52 (dd, J = 18.4, 6.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 173.1, 166.6, 159.8, 131.1, 130.0, 129.8, 127.8, 126.5, 123.8, 115.8, 114.6, 55.5, 55.3, 54.6, 47.0, 31.5. HRMS (ESI-FT) calcd for [**M**+**Na**]⁺ **C**₂₁**H**₁₈**N**₂**O**₅**Na**⁺, m/z: 401.1108, observed: 401.1113. IR: 2361, 1753, 1721, 1514, 1264, 896, 731, 703 cm⁻¹.

Methyl 2-cyano-2-[1-(4-ethylphenyl)-2,5-dioxopyrrolidin-3-yl]-2-phenylacetate (3ad)

White solid, 73% yield, >19:1 dr, 93% ee, mp: 132-135 °C. $[\alpha]_D^{17} = -55.6$ (*c*: 0.54, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OJ-3, scCO₂/^{*i*}PrOH = 95/5, 1.5 mL/min, $\lambda = 237.0$ nm, t (major_{isomer}) = 9.30, 11.18 min, t (minor_{isomer}) = 12.41, 14.64 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.61 (m, 2H), 7.52 – 7.44 (m, 3H),

7.30 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 4.39 (dd, J = 9.2, 6.4 Hz, 1H), 3.87 (s, 3H), 2.80 (dd, J = 18.4, 9.2 Hz, 1H), 2.68 (q, J = 7.6 Hz, 2H), 2.53 (dd, J = 18.8, 6.4 Hz, 1H), 1.24 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 173.1, 166.6, 159.8, 131.1, 130.0, 129.8, 127.8, 126.5, 123.8, 115.8, 114.6, 55.3, 54.6, 47.1, 31.6, 28.6, 15.4. HRMS (ESI-TOF) calcd for [**M**+**Na**]⁺ **C**₂₂**H**₂₀**N**₂**O**₄**Na**⁺, m/z: 399.1315, observed: 399.1314. IR: 2360, 1753, 1721, 1515, 1390, 1264, 731, 703 cm⁻¹.

	Retention Time	Area	% Area
1	9.299	368282	94.19
2	11.185	14638092	2.37
3	12.414	482305	3.10
4	14.641	52437	0.34

Methyl 2-cyano-2-[1-(4-ethoxyphenyl)-2,5-dioxopyrrolidin-3-yl]-2-phenylacetate (3ae)

White solid, 65% yield, >19:1 dr, 93% ee, mp: 94-98 °C. $[\alpha]_D^{20} = -56.1$ (*c*: 0.54, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OJ-3, scCO₂/MeOH = 90/10, 1.5 mL/min, $\lambda = 235.0$ nm, t (major_{isomer}) = 7.92, 8.83 min, t (minor_{isomer}) = 14.22, 15.17 min; ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.47 (m, 2H), 7.45 – 7.31 (m, 3H), 7.17 – 7.05 (m, 2H), 6.94 – 6.79 (m, 2H), 4.31 (dd, J = 9.2, 6.4 Hz,

1H), 3.97 (q, J = 7.2 Hz, 1H), 3.80 (s, 3H), 2.72 (dd, J = 18.8, 9.6 Hz, 1H), 2.44 (dd, J = 18.8, 6.4 Hz, 1H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 173.1, 166.6, 159.2, 131.1, 130.0, 129.8, 127.7, 126.5, 123.6, 115.8, 115.1, 63.8, 55.3, 54.6, 47.0, 31.5, 14.7. HRMS (ESI-TOF) calcd for [M+Na]⁺ C₂₂H₂₀N₂O₅Na⁺, m/z: 415.1264, observed: 415.1263. IR: 1719, 1521, 1264, 731, 702 cm⁻¹.

Methyl 2-cyano-2-[1-(4-isopropylphenyl)-2,5-dioxopyrrolidin-3-yl]-2-phenylacetate (3af)

White solid, 72% yield, >19:1 dr, 92% ee, mp: 165-170 °C. $[\alpha]_D^{16} = -51.5 (c: 0.52, CH_2Cl_2)$; Determined by UPC² analysis [Daicel chiralcel OD-3, scCO₂/PrOH = 90/10, 1.5 mL/min, $\lambda = 244.0$ nm, t (major_{isomer}) = 5.26, 9.31 min, t (minor_{isomer}) = 8.46, 11.57 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.62 (m, 2H), 7.52 – 7.44 (m, 3H), 7.33 (d, *J* = 8.0 Hz,

2H), 7.24 – 7.18 (m, 2H), 4.39 (dd, J = 9.6, 6.4 Hz, 1H), 3.87 (s, 3H), 3.00 – 2.88 (m, 1H), 2.80 (dd, J = 18.8, 9.6 Hz, 1H), 2.53 (dd, J = 18.8, 6.4 Hz, 1H), 1.25 (d, J = 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 173.0, 166.6, 150.0, 131.1, 130.0, 129.8, 128.7, 127.4, 126.5, 126.3, 115.8, 55.3, 54.6, 54.6, 47.1, 34.0, 31.6, 23.9. HRMS (ESI-FT) calcd for [**M**+**Na**]⁺ **C**₂₃**H**₂₂**N**₂**O**₄**Na**⁺, m/z: 413.1472, observed: 413.1476. IR: 2961, 1751, 1716, 1514, 1391, 1245, 734, 700 cm⁻¹.

39094

0.30

4

11.568

Methyl 2-cyano-2-[1-(4-fluorophenyl)-2,5-dioxopyrrolidin-3-yl]-2-phenylacetate (3ag)

White solid, 78% yield, 19:1 dr, 92% ee, mp: 96-98 °C. $[\alpha]_D^{-16} = -47.9 (c:$ 0.24, CH_2Cl_2); Determined by UPC² analysis [Daicel chiralcel OD-3, $scCO_2^{i}$ PrOH = 94/6, 1.5 mL/min, λ = 227.0 nm, t (major_{isomer}) = 7.12, 14.71 min, t (minor_{isomer}) = 13.20, 21.37 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.60 (m, 2H), 7.53 – 7.43 (m, 3H), 7.35 – 7.27 (m, 2H),

7.21 – 7.11 (m, 2H), 4.41 (dd, J = 9.2, 6.4 Hz, 1H), 3.89 (s, 3H), 2.82 (dd, J = 18.4, 9.2 Hz, 1H), 2.54 (dd, J = 18.4, 9.2 Hz, 1H), 3.89 (dd, J = 18.4, 9.2 Hz, 1H), J = 18.4, 6.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 172.7, 166.6, 163.7 (J = 247.7 Hz, 1C), 130.9, 130.1, 129.8, 128.5 (*J* = 8.8 Hz, 1C), 127.1 (*J* = 3.2 Hz, 1C), 126.5, 116.5 (*J* = 22.9 Hz, 1C), 115.8, 55.3, 54.7, 47.0, 31.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.5 (s, 1F). HRMS (ESI-FT) calcd for [**M+Na**]⁺ C₂₀H₁₅FN₂O₄Na⁺, m/z: 389.0908, observed: 389.0898. IR: 1750, 1717, 1510, 1392, 1241, 1193, 1017, 969, 837, 730, 698 cm⁻¹.

593126

46098

3.43

0.27

14.713

21.371

4

Methyl 2-[1-(4-chlorophenyl)-2,5-dioxopyrrolidin-3-yl]-2-cyano-2-phenylacetate (3ah)

White solid, 68% yield, 16:1 dr, 93% ee, mp: 59-62 °C. $[\alpha]_D^{16} = -56.4$ (*c*: 0.39, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OD-3, scCO₂/PrOH = 90/10, 1.5 mL/min, $\lambda = 232.0$ nm, t (major_{isomer}) = 6.14, 10.87 min, t (minor_{isomer}) = 10.14, 15.63 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.61 (m, 2H), 7.51 – 7.42 (m, 5H), 7.30 – 7.24 (m, 2H), 4.40 (dd, J

= 9.6, 6.4 Hz, 1H), 3.89 (s, 3H), 2.82 (dd, J = 18.8, 9.6 Hz, 1H), 2.54 (dd, J = 18.8, 6.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 172.5, 166.5, 135.0, 130.9, 130.1, 129.8, 129.6, 129.5, 127.8, 126.5, 125.7, 115.8, 55.3, 54.7, 47.1, 31.6. HRMS (ESI-FT) calcd for [**M**+**Na**]⁺ **C**₂₀**H**₁₅**ClN**₂**O**₄**Na**⁺, m/z: 405.0613, 407.0585; observed: 405.0615, 407.0585. IR: 1749, 1710, 1493, 1388, 1244, 1192, 1092, 1017, 830, 730, 696 cm⁻¹.

	Retention Time	Area	% Area
1	6.138	31880220	93.26
2	10.140	1000078	2.93
3	10.886	1105004	3.23
4	15.633	197396	0.58

Methyl 2-[1-(4-bromophenyl)-2,5-dioxopyrrolidin-3-yl]-2-cyano-2-phenylacetate (3ai)

White solid, 65% yield, 16:1 dr, 93% ee, mp: 55-58 °C. $[\alpha]_D^{16} = -44.0$ (*c*: 0.54, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OD-3, scCO₂/PrOH = 92/8, 1.5 mL/min, $\lambda = 231.0$ nm, t (major_{isomer}) = 10.21, 19.38 min, t (minor_{isomer}) = 17.43, 27.76 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.57 (m, 4H), 7.52 – 7.44 (m, 3H), 7.25 – 7.17 (m, 2H), 4.40 (dd,

J = 9.2, 6.4 Hz, 1H), 3.89 (s, 3H), 2.81 (dd, J = 18.8, 9.6 Hz, 1H), 2.54 (dd, J = 18.4, 6.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 172.4, 166.5, 132.5, 130.9, 130.2, 130.1, 129.8, 128.0, 126.5, 123.0, 115.8, 55.3, 54.7, 47.1, 31.6. HRMS (ESI-FT) calcd for [**M**+**Na**]⁺ **C**₂₀**H**₁₅**BrN**₂**O**₄**Na**⁺, m/z: 449.0107, 451.0087; observed: 449.0114, 451.0095. IR: 1749, 1715, 1490, 1386, 1244, 1179, 1070, 1014, 969, 826, 731, 695 cm⁻¹.

68318

0.30

4

27.760

Methyl 2-[1-(4-iodophenyl)-2,5-dioxopyrrolidin-3-yl]-2-cyano-2-phenylacetate (3aj)

White solid, 78% yield, 16:1 dr, 93% ee, mp: 76-79 °C. $[\alpha]_D^{-18} = -34.6$ (*c*: 0.18, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OD-3, scCO₂/PrOH = 90/10, 1.5 mL/min, $\lambda = 227.0$ nm, t (major_{isomer}) = 10.63, 19.32 min, t (minor_{isomer}) = 17.79, 27.63 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.76 (m, 2H), 7.70 – 7.57 (m, 2H), 7.51 – 7.43 (m, 3H),

7.14 – 7.00 (m, 2H), 4.40 (dd, J = 9.2, 6.4 Hz, 1H), 3.88 (s, 3H), 2.80 (dd, J = 18.8, 9.6 Hz, 1H), 2.52 (dd, J = 18.4, 6.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 172.4, 166.5, 138.5, 130.9, 130.9, 130.1, 129.8, 128.2, 126.5, 115.8, 94.7, 55.3, 54.7, 47.1, 31.6. HRMS (ESI-FT) calcd for [**M**+**Na**]⁺ **C**₂₀**H**₁₅**IN**₂**O**₄**Na**⁺, m/z: 496.9969; observed: 496.9974. IR: 2360, 1752, 1722, 1487, 1386, 1264, 1194, 731, 703 cm⁻¹.

Retention Time	Area	% Area
10.634	9366577	92.72
17.786	365453	3.62
19.319	347651	3.44
27.630	22396	0.22
	Retention Time 10.634 17.786 19.319 27.630	Retention Time Area 10.634 9366577 17.786 365453 19.319 347651 27.630 22396

Methyl 2-cyano-2-[1-(2-fluorophenyl)-2,5-dioxopyrrolidin-3-yl]-2-phenylacetate (3ak)

White solid, 73% yield, 11:1 dr, 93% ee, mp: 148-152 °C. $[\alpha]_D^{15} = -50.2$ (*c*: 0.51, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OX-3, scCO₂/MeOH = 90/10, 1.5 mL/min, $\lambda = 230.0$ nm, t (major_{isomer}) = 3.31, 3.68 min, t (minor_{isomer}) = 5.68, 6.78 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.60 (m, 2H), 7.52 – 7.40 (m, 4H), 7.32 – 7.20 (m, 3H), 4.55 – 4.36 (m, 1H), 3.88 (s, 3H), 3.00 – 2.52 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.2,

171.9, 166.5, 164.0, 158.6 (J = 250.0 Hz, 1C), 131.5 (J = 8.0 Hz, 1C), 131.1, 130.0, 129.8 (J = 22.9 Hz, 1C), 126.5, 124.9, 119.0 (J = 13.2 Hz, 1C), 116.8, 116.7, 54.7, 54.6, 47.3, 31.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -117.8, -119.9 (d, 1F). HRMS (ESI-FT) calcd for [**M+Na**]⁺ **C**₂₀**H**₁₅**FN**₂**O**₄**Na**⁺, m/z: 389.0908, observed: 389.0890. IR: 1750, 1721, 1504, 1388, 1240, 1194, 817, 761, 730, 680 cm⁻¹.

	Retention Time	Area	% Area
1	3.309	270453	3.23
2	3.680	7685474	91.78
3	5.676	57154	0.68
4	6.785	360956	4.31

Methyl 2-cyano-2-(2,5-dioxo-1-(o-tolyl)pyrrolidin-3-yl)-2-phenylacetate (3al)

3.87 (s, 3H), 2.93 - 2.74 (m, 1H, rotamer), 2.66 - 2.49 (m, 1H, rotamer), 2.25 and 2.16 (s, 3H, rotamer). ¹³C NMR (100 MHz, CDCl₃) δ 174.0 and 173.9 (rotamer), 172.8 and 172.7 (rotamer), 166.6, 136.2, 135.3, 131.4, 131.1, 130.3 and 130.3 (rotamer), 130.0 and 130.0 (rotamer), 129.9 and 129.8 (rotamer), 128.2 and 127.7 (rotamer), 127.3 and 126.9 (rotamer), 126.6 and 126.5 (rotamer), 116.1 and 115.8 (rotamer), 55.5 and 55.1 (rotamer), 54.6, 47.7 and 47.1 (rotamer), 31.8 and 31.7 (rotamer), 17.9 and 17.7 (rotamer). HRMS (ESI-FT) calcd for [M+Na]⁺ C₂₁H₁₈N₂O₄Na⁺, m/z: 385.1159, observed: 385.1164. IR: 1721, 1264, 896, 731, 703 cm⁻¹.

	Retention Time	Area	% Area
1	9.350	36869712	95.46
2	14.822	578301	1.50
3	16.477	1103569	2.86
4	21.880	71150	0.18

Methyl 2-cyano-2-[1-(3-fluorophenyl)-2,5-dioxopyrrolidin-3-yl]-2-phenylacetate (3am)

White solid, 65% yield, 16:1 dr, 91% ee, mp: 119-122 °C. $[\alpha]_D^{-16} = -72.5$ (*c*: 0.34, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OD-3, scCO₂/PrOH = 90/10, 1.5 mL/min, $\lambda = 235.0$ nm, t (major_{isomer})) = 4.06, 6.37 min, t (minor_{isomer})) = 5.95, 8.44 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.70 - 7.61 (m, 2H), 7.53 - 7.39 (m, 4H), 7.18 - 7.06 (m, 3H), 4.41 (dd, *J* =

9.2, 6.4 Hz, 1H), 3.89 (s, 3H), 2.83 (dd, J = 18.8, 9.6 Hz, 1H), 2.55 (dd, J = 18.4, 6.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 172.3, 166.5, 163.9 (J = 246.5 Hz, 1C), 132.4 (J = 10.1 Hz, 1C), 130.9, 130.5 (J = 8.8 Hz, 1C), 130.1, 129.8, 126.5, 122.2 (J = 3.3 Hz, 1C), 116.3 (J = 20.6 Hz, 1C), 115.8, 114.2 (J = 24.4 Hz, 1C), 55.3, 54.7, 47.1, 31.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.7 (s, 1F). HRMS (ESI-FT) calcd for [**M**+**Na**]⁺ **C**₂₀**H**₁₅**FN**₂**O**₄**Na**⁺, m/z: 389.0908, observed: 389.0898. IR: 1750, 1719, 1599, 1492, 1452, 1384, 1237, 1177, 843, 775, 730, 704 cm⁻¹.

4

8.443

72159

0.72

Methyl 2-(1-benzyl-2,5-dioxopyrrolidin-3-yl)-2-cyano-2-phenylacetate (3an)

Color less oily, 36% yield, 7:1 dr, 72% ee, $[\alpha]_D^{19} = -11.6$ (*c*: 0.63, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OX-3, scCO₂/MeOH = 95/5, 1.5 mL/min, $\lambda = 214.0$ nm, t (major_{isomer}) = 9.37, 14.39 min, t (minor_{isomer}) = 16.81, 23.99 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.54 (m, 2H), 7.46 – 7.41 (m, 3H), 7.39 – 7.34 (m, 2H), 7.33 – 7.27 (m, 3H), 4.70 (dd, J = 14.0, 30.4 Hz, 2H), 4.22 (dd, J = 9.2, 7.6 Hz, 1H), 3.89 (s, 3H), 2.61

(dd, J = 18.4, 9.6 Hz, 1H), 2.36 (dd, J = 18.4, 6.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 173.4, 166.6, 135.0, 131.1, 129.9, 129.7, 128.7, 128.7, 128.2, 126.4, 115.7, 54.8, 54.6, 47.0, 42.9, 31.5. HRMS (ESI-FT) calcd for [**M**+**Na**]⁺ **C**₂₁**H**₁₈**N**₂**O**₄**Na**⁺, m/z: 385.1159, observed: 385.1162. IR: 1751, 1711, 1399, 1264, 1169, 817, 731, 701 cm⁻¹.

Methyl 2-cyano-2-(1-methyl-2,5-dioxopyrrolidin-3-yl)-2-phenylacetate (3ao)

Colorless oily, 54% yield, 5:1 dr, 50% ee, $[\alpha]_D^{19} = -11.1$ (*c*: 0.21, CH₂Cl₂); Determined by UPC² analysis [Daicel chiralcel OX-3, scCO₂/^{*j*}PrOH = 85/15, 1.5 mL/min, $\lambda = 224.0$ nm, t (major_{isomer}) = 2.00, 2.38 min, t (minor_{isomer}) = 2.98, 3.67 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.32 (m, 5H), 4.15 (dd, *J* = 9.2, 6.4 Hz, 1H), 3.83 (s, 3H), 2.99 (s, 3H), 2.57 (dd, *J* = 18.4, 9.2 Hz, 1H), 2.30 (dd, *J* = 18.4, 6.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 172.7,

165.6, 130.1, 128.9, 128.7, 125.4, 114.7, 53.9, 53.6, 46.1, 30.4, 24.2. HRMS (ESI-FT) calcd for $[\mathbf{M}+\mathbf{Na}]^+ \mathbf{C_{15}H_{14}N_2O_4Na^+}, m/z: 309.0846, observed: 309.0845.$ IR: 1747, 1701, 1436, 1384, 1284, 1241, 1118, 978, 731, 695 cm⁻¹.

	Retention Time	Area	% Area
1	1.999	3150944	65.26
2	2.379	1035094	21.44
3	2.978	377262	7.81
4	3.673	264909	5.49

Di-tert-butyl 1-(1-cyano-2-methoxy-2-oxo-1-phenylethyl)hydrazine-1,2-dicarboxylate (5aa)

128.4, 128.2/127.9 (rotamer), 127.2/127.0(rotamer), 114.6, 82.2, 80.6, 76.3, 53.3, 27.1, 27.0, 26.9. HRMS (ESI-FT) calcd for $[M+Na]^+ C_{20}H_{27}N_3O_6Na^+$, m/z: 428.1792, observed: 428.1797. IR: 1739, 1264, 1153, 907, 731, 705 cm⁻¹.

	Retention Time	Area	% Area
1	13.978	57670214	49.40
2	16.439	59078987	50.60

Methyl 2-(1-benzyl-3-((tert-butoxycarbonyl)amino)-2-oxoindolin-3-yl)-2-cyano-2-phenylacetate (6aa)

Color less oily, 69% yield, 10:1 dr, 22% ee; Determined by HPLC analysis [Daicel chiralcel ADH, *n*-Hexane /^{*i*}PrOH = 80/20, 1.0 mL/min, λ = 228 nm, t (major_{isomer}) = 13.10, 22.61 min, t (minor_{isomer}) = 7.55, 9.33 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.32 (m, 1H), 7.27 – 7.21 (m, 2H), 7.20 – 7.06 (m, 6H), 6.97 – 6.83 (m, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.57 (s, 1H), 6.50 (d, J = 7.6 Hz, 1H), 4.92 – 4.76 (m, 1H), 4.72 – 4.55 (m, 1H), 3.83 (s, 3H), 1.17

(s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 166.6, 153.9, 144.2, 135.1, 130.3, 129.8, 129.0, 128.6, 128.3, 128.0, 127.5, 127.4, 125.8, 124.5, 122.3, 115.0, 109.5, 80.9, 65.8, 57.9, 54.7, 44.6, 28.0. HRMS (ESI-FT) calcd for $[M+Na]^+ C_{30}H_{29}N_3O_5Na^+$, m/z: 534.1999, observed: 534.1993. IR: 1724, 1611, 1486, 1263, 1241, 1162, 906, 731, 703 cm⁻¹.

8. NMR spectra

G-5 • HBr

3aa

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3ca

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

3fa

3ha

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

— -110.38

3ma

.667 .662 .652 .652 .644 .748 .7485 .7489 .7469 .7469 .7469 .7469 .7265 .7169 .7265 .7169 4.408 4.392 4.384 4.368 - 3.879 2.5500 2.5500 2.5500 2.5500 2.5500 2.5500 2.5500 2.5500 2.5500 2.5500 2.5500 2.5500 2.5381 2.00 1.96 2.01 3.06 1.00 1.00 0 7.5 7.4 7.3 f1 (ppm) 7.7 7.6 7.2 7.1 2.9 2.8 2.5 2.7 f1 (ppm) .6 "Н́СИ ■CO₂Me Ő Ρh 3ab 1.00 4.45 4.40 4.35 f1 (ppm) 4.50 4.30 2.01년 3.06 2.00 1.96년 1.001 1.00<u>1</u> 3.01₄ 1.00<u>H</u> 2.98₁ 4.5 4.0 f1 (ppm) 2.5 8.0 7.5 6.5 6.0 5.5 2.0 1.0 8.5 7.0 5.0 3.5 3.0 1.5 0.5 0.0 -0.5 139.242 131.088 129.996 129.956 129.956 129.757 129.757 126.516 126.285 - 115.773 174.079
172.954
166.622 55.307 54.634 -47.101 - 31.594 - 21.271 0 ″′H^{CN} 129 128 f1 (ppm) 131 130 127 126 ■CO₂Me Ö Ρ'n 3ab 100 90 f1 (ppm)

3ab

190 180 . 170

160

150

140

130

120

110

80

70

60

50

40

30

20

10

0

3ac

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl(ppm)

7.667 7.662 7.647 7.644 7.644 7.496 7.492 7.484 7.465 7.469 7.465 7.465 7.465 7.465 7.465 7.465 7.465 7.268 7.268 7.216 4.413 4.397 4.390 4.373 1.257 1.238 1.238 3.875 N 1.96 3.07 2.00 1.94 0.98 7.5 7.4 7.3 7.2 7.1 f1 (ppm) 7.8 7.7 7.6 4.50 4.45 4.40 4.35 4.30 4.25 f1 (ppm) HCN ■CO₂Me Ρh 3ad 3.12 . 1.00 2.05 . 1.00 2.7 2.6 f1 (ppm) 1.3 1.2 f1 (ppm) 1.1 1.4 2.9 2.8 2.5 2.4 3.12₌ 3.00H 1.00 2.03 1.00 1.00 1 1.96<u>4</u> 3.03<u>4</u> 2.00<u>4</u> 1.94<u>4</u> 0.98 4.0 f1 (ppm) 8.5 .0.8 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 $\int_{-126,024}^{-145,424} 131.093$ $\int_{-128,807}^{-128,807} 128.674$ -126.526 -115.787- 174.136 \ 172.994 - 166.631 - 15.420 - 55.323 \ 54.630 - 47.100 ~ 31.599 ~ 28.628 \cap 132 131 130 129 128 127 126 f1 (ppm) "H_{CN} •CO₂Me L Ö Ρh 3ad 210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm) 70 60 50 40 30 20 10 0 -10

3ae

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3af

140 130 120 110 100 f1 (ppm) 210 200 -10

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

4.424 4.408 4.384 - 3.887 2.853 2.829 2.806 2.806 2.806 2.783 2.569 2.553 2.553 2.553

3ah

210 200 190

180 170

160

80 70 60 50 40 10 0 -10

30 20

3ai

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3aj

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

3al

3am

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

5aa

9. X-ray crystal structure of the product 3aa

The colourless and block-shape crystals were selected and mounted for the single-crystal X-ray diffraction. The data set was collected by a Bruker D8 Venture Photon II at 241K equipped with micro-focus Cu radiation source ($K_{\alpha} = 1.54178$ Å). The structure solution was solved and refinement was processed by SHELXTL (version 6.14) program package^{2a, 2b}. The structure was analyzed by ADDSYM routine in PLATON suite and no higher symmetry was suggested^{2c}.

CCDC: 1901489

10. Copies of the CD spectra of the products 3

11. References

- (a) Z. P. Yu, X. H. Liu, L. Zhou, L. L. Lin and X. M. Feng, Angew. Chem. Int. Ed., 2009, 48, 5195;
 (b) S. X. Dong, X. H. Liu, X. H. Chen, F. Mei, Y. L. Zhang, B. Gao, L. L. Lin and X. M. Feng, J. Am. Chem. Soc., 2010, 132, 10650;
 (c) S. X. Dong, X. H. Liu, Y. L. Zhang, L. L. Lin and X. M. Feng, Org. Lett., 2011, 13, 5060;
 (d) S. Ruan, X. B. Lin, L. H. Xie, L. L. Lin, X. M. Feng and X. H. Liu, Org. Chem. Front., 2018, 5, 32.
- 2. (a) G. M. Sheldrick, Acta Cryst., 2008, A64, 112; (b) G. M. Sheldrick, Acta Cryst., 2015, A71, 3; (c) A. L. Spek, J. Appl. Cryst., 2003, 36, 7.