## **Supporting Information**

## Twisted Schiff-base macrocycle showing excited-state intramolecular proton-transfer (ESIPT): assembly and sensing properties

Qing Yu, Xiaodong Zhang, Shou-Ting Wu, Huaiyu Chen, Qi-Long Zhang, Hong Xu, Ya-Li Huang, Bi-Xue Zhu and Xin-Long Ni

Synthesis of the hemi-**MH** (**L**): 5,5'-methylene-bis-salicylaldehyde (256.0 mg, 1 mmol) and phenylamine (93.0 mg, 1 mmol) were dissolved in methanol solution (40.0 mL) in a round bottomed flask for 10 min, and conc. H<sub>2</sub>SO<sub>4</sub> (12  $\mu$ L) was added to the solution. The resulting mixture was stirred at room temperature for 4 h. Then, the reaction mixture was filted to give the crude solid product, and the residue was washed with methanol three times to afford a light yellow solid compound L (345 mg, 85%). Single crystals were obtained from a crystal grown by evaporation of L (50.0 mg) in a solution of CHCl<sub>3</sub>. CCDC1969906. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  12.88 (s, 2H), 8.87 (s, 2H), 7.47 (d, *J* = 16 Hz, 2H), 7.41 (s, 2H), 7.39 (d, *J* = 12 Hz, 4H), 7.34 (d, *J* = 8 Hz, 4H), 7.30-7.22 (m, 6H), 6.88 (d, *J* = 12Hz, 2H), 3.87 (s, 2H) ppm.<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  163.84, 159.14, 148.68, 134.34, 132.60, 132.49, 129.99, 127.45, 121.90, 119.66, 117.25, 39.36 ppm.



Scheme S1 Synthetic route to the hemi-MH (L), and the X-ray structure.



**Fig. S1** X-ray structure of **MH**: (a) dihedral angle between C3 and C4 linked by hydrogen bonds O4-N4, (b) dihedral angle between C3 and C4 linked by hydrogen bonds O8-N9, (c, d) plausible rotation tendency between the C3 and C4, (e) top view of the coplanar arrangement of C1 and C2.



Fig. S2 UV-vis absorption spectra of MH (20.0  $\mu$ M) in THF solution.



Fig. S3 Fluorescence spectra of **MH** in the solid state. ( $\lambda_{ex} = 395$  nm)



Fig. S4 Fluorescence spectra of **MH** (20.0  $\mu$ M) in the range from pH = 2 to 14 in THF/water solution (1:1, v/v). ( $\lambda_{ex} = 395$  nm)



Fig. S5 Fluorescence spectra of L (20.0  $\mu$ M) in the range from pH = 2 to 14 in THF/water solution (1:1, v/v). ( $\lambda_{ex} = 395$  nm)



Fig. S6 <sup>1</sup>H NMR spectra of MH (1.0 mM, DMSO-*d*6) in the presence of DC1 and NaOD.



Fig. S7 <sup>1</sup>H NMR spectra of L (1.0 mM, DMSO-*d*6) in the presence of DC1 and NaOD.



Fig. S8 <sup>1</sup>H NMR spectra (DMSO-*d*6) of the mixture precursors (aldehyde and amine) of **MH**.



Fig. S9 Fluorescence spectra of **MH**, **L** and their precursors in THF/water solution (1:1, v/v) at pH 2.0 and pH 14, respectively.



Fig. S10 Fluorescence spectra of L (20.0  $\mu$ M) with different water fractions ( $f_w$ ). ( $\lambda_{ex} = 395$  nm)



Fig. S11 UV-vis spectra of **MH** probe (20.0  $\mu$ M) with addition of nitrate salts of Li<sup>+</sup>, Co<sup>2+</sup>, Cr<sup>3+</sup>, K<sup>+</sup>, Cd<sup>2+</sup>, Pb<sup>2+</sup>, Ca<sup>2+</sup>, Hg<sup>2+</sup>, Ba<sup>2+</sup>, Cu<sup>2+</sup>, Mg<sup>2+</sup>, Ni<sup>2+</sup>, Zn<sup>2+</sup>, Al<sup>3+</sup> and Fe<sup>3+</sup> (150  $\mu$ M) in THF/water solution (1:4, v/v).



Fig. S12 Fluorescence spectra of **MH** probe (20.0  $\mu$ M) with addition of nitrate salts of Li<sup>+</sup>, Co<sup>2+</sup>, Cr<sup>3+</sup>, K<sup>+</sup>, Cd<sup>2+</sup>, Pb<sup>2+</sup>, Ca<sup>2+</sup>, Hg<sup>2+</sup>, Ba<sup>2+</sup>, Cu<sup>2+</sup>, Mg<sup>2+</sup>, Ni<sup>2+</sup>, Zn<sup>2+</sup>, Al<sup>3+</sup> and Fe<sup>3+</sup> (150  $\mu$ M) in THF/water solution (1:4, v/v). ( $\lambda_{ex} = 395$  nm)



Fig. S13 Fluorescence spectra of **L** probe (20.0  $\mu$ M) in presence of various metal ions (150  $\mu$ M) (a), and in the presence of increasing concentration of Al<sup>3+</sup> ions in THF/water solution (1:1, v/v). ( $\lambda_{ex} = 395$  nm)



Fig. S14 Job plot of **MH** toward  $Cu^{2+}(a)$  and  $Fe^{3+}(b)$ .



Fig. S15 The 1:2 binding constants ( $K_a$ ) of MH with Cu<sup>2+</sup> and Fe<sup>3+</sup> was calculated (using the soft of KaleidaGraph 4.0) to be  $1.10 \times 10^3$  M<sup>-1</sup> and  $3.68 \times 10^6$  M<sup>-1</sup> for Cu<sup>2+</sup> and  $1.21 \times 10^3$  M<sup>-1</sup>, and  $2.36 \times 10^6$  M<sup>-1</sup> for Fe<sup>3+</sup>, respectively. The red solid line was obtained from the non-linear curve-fitting.



Fig. S16 Bar diagram of the competitive experiments of various metal cations on the fluorescence intensity of the probe /  $Cu^{2+}$  complex (a) and the probe /  $Fe^{3+}$  complex (b).



a)



b)





Fig. S18 SEM (a) and TEM (b) images of the precipitate of **MH** from THF/H<sub>2</sub>O (1:99, v/v).







b)

Fig. S19 SEM (a) and EDS (b) images of the precipitate of  $MH/Cu^{2+}$  from THF/H<sub>2</sub>O (1:4, v/v).



Fig. S20. MS spectrum of L.



Fig. S22 <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) of L.