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S1 Chemicals 

PHMG (≥ 99% purity) was supplied by Sinotech (China) and was used without any further purification. 

The Cation-Exchange Membranes (CEMs) used in this work were cut from a 50cm × 2m roll of type 2 CEM 

produced by Fujifilm Manufactory Europe. The ion-exchanging sites of the CEM are sulfonate groups.  

Poly(sodium 4-styrenesulfonate) (PSS, M.W. ≈ 70,000), branched polyethyleneimine (PEI, M.W. ≈ 25,000), 

sodium phosphate monobasic monohydrate (NaH2PO4·H2O), ≥ 99:5%, chloride standard for IC (1000 ± 4 

mg/L), and phosphate phosphorus standard for IC (1000 ± 4 mg/L),  sodium chloride (NaCl, ≥ 99%) and iron 

oxide nanoparticles in the form of Iron(II,III) oxide nanopowder with a 50-100 nm diameter were all 

purchased from Sigma-Aldrich. Hydrochloric acid solution (HCl, 1 M), sodium hydroxide solution (NaOH, 1 

M), sulphuric acid (H2SO4 95-97 %) were bought from Merck. Milli-Q water was purified using a Milli-Q IQ-

7000 unit.

S2 Coacervates – protocol of preparation and characterization

To study the optimal molar ratio between PSS and PHMG, five 50 mL solutions were created. Table S1 

shows the molar quantities and the molar ratio between the two polyelectrolytes. It is important to note 

that the PSS solution was added dropwise (over two min.) to the PHMG solution, and not the other way 

around. This was to ensure that PHMG’s positively charged groups were on the outside of the coacervates 

particles.

Table S1. Overview of the composition of the PHMG/PSS solutions.

Solution Number n(PHMG), (mol) n(PSS), (mol) Molar ratio 

(PHMG/PSS)

1 2.83×10-4 2.83×10-4 1:1

2 2.83×10-4 1.41×10-4 2:1

3 2.83×10-4 2.81×10-5 10:1

4 2.83×10-4 1.34×10-5 21:1

5 2.83×10-4 5.65×10-4 1:2



3



4

The size distribution and the zeta potential of the formed particles were analyzed, using dynamic 
light scattering (DLS) technique with a Malvern Zeta-sizer instrument. Table S2 displays the results of this 
analysis. The coacervates were positively charged for the PHMG:PSS function group molar ratio equal to 
1:1 or for the solutions where the number of guanidinium groups was used in excess. As expected, when 
the PSS used was  in excess, charge reversal at the surface of the coacervates occurred. The solution with 
a PHMG:PSS equal to 2:1 was chosen for further experiments. This was because the formed coacervates 
formed visible agglomerates (see Fig. 2A in the main text) that were easily to separate by centrifugation. 

Table S2. Zeta sizer results from coacervate solutions analysis, for optimal ratio.

Ratio (PHMG:PSS) ζ-potential (mV) Size (nm)

1:1 11.5 ± 3.0 4041*

2:1 37.4 ± 5.0 5267*

10:1 46.0 ± 6.4 59

21:1 27.8 ± 5.6 40

1:2 -49.2 ± 8.5 3739*

* Low-quality data fit.

The fluctuation in the coacervate size (see Table S2) can be controlled by the careful balance of the charge 

ratio between functional groups located within polymer structure. When one of the polyelectrolytes is 

used in excess, the formed particles surface charge is rapidly saturated and their further growth is inhibited 

by electrostatic repulsion. In turn, particles continue to grow and agglomeration can be triggered close to 

the isoelectric point.1    

S3 Protocol – phosphate batch adsorption experiments using coacervates

In order to prove the ability of coacervates to adsorb phosphate, five solutions (50 mL each) containing 

PHMG:PSS at a ratio equal to 2:1 (concentration of PSS was varied from 1.5 mM to 50 mM) were prepared. 

The coacervate solutions were stirred for 24 h. Next, the phosphate was added to each solution so that 

the final molar ratio was 2:1:1 ( PHMG:PSS:PO4
3). The obtained solutions were stirred for 24 h followed 

by centrifugation at 5000 rpm for 5 min using a Hermle Z 326 K centrifuge. Finally, 10 mL of a supernatant 

was taken and analyzed by ion chromatography (IC). The results of this analysis can be found in Figure 2B 

available in the main text of this study.
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S4 Fe3O4 NPs modification and batch adsorption experiment

Two separate aqueous solutions of PHMG (2.5 g/L) and Fe3O4 NP suspension (0.5 g/L) were prepared 

using a ultrasonication bath for 20 min. Next, the pH of both solutions was adjusted to 9.5 by the addition 

of concentrated HCl or NaOH (1 M). At this pH the surface of Fe3O4 NPs and the polyelectrolyte is expected 

to be negatively and positively charged, respectively.  Next, the Fe3O4 NP suspension was added drop-wise 

to the PHMG solution and stirred for 24 h at room temperature to ensure the complete adsorption of 

PHMG to the Fe3O4 NP surface. Afterward, the NPs were collected with a magnet and the supernatant 

solution containing the excess of the polymer was removed. The NPs were re-dispersed in Milli-Q water. 

This procedure was repeated 3 times. The resulting coated Fe3O4 NPs (PHMG@Fe3O4) were analyzed using 

thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and ZetaSizer (Malvern) 

allowing for the particle size distribution, functional group analysis and ζ-potential determinations. Bare 

Fe3O4 NPs were also analyzed and used as a blank. 

S4.1 TGA Analysis

The bare and modified NPs were dried in a Binder oven at 50 °C for 24 h. The TGA analysis was 

performed in a GA2/SF1100 STARe system from Mettler Toledo. Between 7 and 10 mg of dry NP were 

exposed to a temperature increase from room temperature up to 800 °C, at a rate of  5°C per min. The 

analysis was performed in a nitrogen instead of an air environment as the iron (II), present in the magnetite 

particles, will be oxidized to iron (III).  Working under nitrogen also means that the obtained result can be 

only treated qualitatively (we follow calcination rather than oxidation). The observed weight loss of the 

organic part informs about the degradation (carbonization) only and not the complete oxidation of the 

polymer. Figure S1 displays the TGA of modified and unmodified NPs. The presence of the PHMG coating 

was confirmed by analyzing the differences in weight loss between the two measurements. While the bare 

NPs are stable throughout the measurement, the modified NPs show a weight loss that we attributed to 

the polymer degradation. The weight loss of only 3% is not surprising as the PHMG forms a thin layer on 

the magnetite NPs surface.
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Figure S1. TGA result of Fe3O4 NP and PHMG@Fe3O4 NP in N2.

S4.2 FTIR analysis

For the FTIR measurements, the NPs were removed from the solution and dried in the way as described 

for the TGA experiments. Next, a KBr pellet was made using a manual press. Fig. S2 shows the two relevant 

regions between 4000 and 2700 cm-1 and 1000 and 500 cm-1, that correspond to the peaks of interest. In 

more detail, the broad peak with a center at 3437 cm-1 is associated with the O-H bond stretching, 

originating from the H2O molecules entrapped within the polyelectrolyte chain. Two peaks that indicate 

the presence of the polymer can be observed at 2925 and 2857 cm-1 and they are associated with the 

asymmetric and symmetric stretching of C-H bonds, respectively2,3. The intensity of these peaks could also 

signify that the amount of PHMG at the surface of NPs is rather low. The peak at 596 cm-1 confirms the 

presence of iron oxide as it is associated with the Fe-O bond4. The noise recorded in the spectral range 

between 4000 cm-1 and 3500 cm-1 is due to the water vapor present in the measurement chamber.5
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Figure S2. FTIR region spectra of coated and bare Fe3O4 NPs.

S4.3 ζ-potential measurements of the PHMG@Fe3O4 NPs

The ζ-potential analysis was performed with a Malvern Zeta-Sizer. The dry NPs powder was dispersed 

in Milli-Q water and sonicated for 10 min. The results are summarized in Table S3. The ζ-potential after 

the modification is significantly higher as compared with the bare NPs. 

Table S3. ζ-potential analysis of Fe3O4 NPs and PHMG@Fe3O4 NPs (pH = 7).

Sample ζ-potential (mV)

6.23 ± 5.7Fe3O4 NPs

3.4 ± 5.1

48.6 ± 3.6

50.5 ± 3.6

PHMG@Fe3O4 NPs

51.9 ± 4.2
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S5 Membrane modification

The CEM was initially activated by argon plasma treatment (2 min) in a Harrick Plasma PDC-002-CE 

plasma cleaning equipment, at a high RF level. This step had the aim of generating free radicals, which 

could potentially react with the CEM surface and increase its charge. 6 Afterward, the membrane was 

placed in a Millipore filtration holder, simply to provide support for the coating process. Next, 2 mL 

(enough to cover the membrane surface) of a branched polyethyleneimine (PEI) solution with a 

concentration of 1 g/L was casted on top of the membrane. It was kept there for 5 min followed by 

thoroughly rinsing with MilliQ water. Next, 2 mL of a PSS (1 g/L) solution was placed at the membrane 

surface and kept for 5 min followed by a washing step. Finally, 3 mL of a 0.5 g/L solution of PHMG@Fe3O4 

NP was added and left for 24h, giving  8.6 mg/cm2 of the deposit at the membrane surface

S5.1 Membrane characterization

After the modification, the presence and stability of the coating were confirmed by scanning electron 

microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis before and after the membrane 

had been kept in demi-water for 1 h followed by thoroughly rinsing under a constant stream of MilliQ 

water. The SEM and EDS results before and after rinsing step are shown in Fig. S3. SEM micrographics are 

given on top of Fig. S3A and S3B, where the lighter areas correspond to the coated Fe3O4 NPs, and the 

darker areas correspond to the CEM material. The elongated features that can be observed on the carbon, 

oxygen and sulfur EDS results (see bottom of Fig. 3A and 3B), are the polypropylene (PP) fibers which are 

in the constitution of the Fuji CEM to enhance its mechanical properties. The carbon EDS results show this 

element abundancy (the area with most intense signal corresponds to the PP fibers). Again, for the carbon 

EDS mapping, the less intense areas show a pattern, which is related to the fact that the PHMG@Fe3O4 

NPs cover part of the membrane. The same pattern can be found on the iron, oxygen and sulfur EDX 

mapping images. The existence of areas with iron and oxygen showing a more intense signal (as compared 

with carbon and sulfur) confirms the presence of Fe3O4 NPs. Fig. 3B shows similar set of micrographics 

after thorough membrane rinsing. It can be observed that the membrane exhibits very similar morphology. 

The NPs count remains the same (see on the SEM images in Fig. 3A and 3B), and the iron and oxygen do 

not diminish on the corresponding EDS mapping micrographics and the images also look comparable. All 

combined results confirm the superior stability of the coating.

Furthermore, electrical resistance (ER) was measured in the electrodialysis setup which is described in 

section S6. A potentiometric measurement was used, by applying a current from 0 to ≈ 0.3 A and 
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measuring the potential difference across the membrane. The measurement was performed in a solution 

of 0.5 M sodium phosphate (NaH2PO4) (pH=5). As it can be observed in Table S4, the ER is reduced in the 

presence of the coating. A possible explanation for this is that the interface between the anionic coating 

and the CEM, resembling a bipolar membrane, is responsible for a higher water dissociation rate at a 

bipolar junction in the presence of externally applied current. This, in turn, can result in the formation of 

H+ or OH– ions which have higher mobility, and by carrying the current which is being applied, they reduce 

the resistance. Although this is likely the case, it is just a speculation as the pH at the surface of the 

membrane is very challenging to be measured.

Figure S3. SEM-EDS analysis of the PHMG@NPs@CEM before (A) and after (B)  rinsing with water. The SEM and EDS 

micrographs were taken at an 100× and 500× amplification, respectively.

Table S4. Electrical resistance analysis of PHMG@NPs@CEM in 0.5M NaH2PO4 (pH=5).

Sample Electrical Resistance (Ω)

CEM 6.56 ± 0.08

PHMG@NPs@CEM 5.97 ± 0.09
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S6 Adsorption experiments in the electrodialysis cell. 

Fig. S4 shows a schematic illustration of the electrodialysis (ED) setup used for the adsorption-

desorption experiments. The prepared membrane was placed in ultrapure Milli-Q water for 1 h before the 

experiments. After this time it was placed into the setup (position between compartment 3 and 4), with 

the PHMG@Fe3O4 coated side facing towards the cathode. The feeding compartment (4) was filled with a 

0.2M NaH2PO4 solution (pH=5), and the receiving compartment (3) with a 0.2M NaCl solution. Both 

solutions were in constant flow triggered by a MasterFlex L/S pump operating at 327 rpm. During the 

phosphate adsorption step, a positive current of 100mA was applied for 90 seconds. After this time the 

sample from compartment 3 was collected for IC characterization. Next, the setup was emptied and the 

membrane was dipped in distilled water, in order to remove any remaining phosphate adhering to the 

membrane and the sample holder surface. Before the desorption step, the membrane was placed in the 

ED setup with the coating facing the anode. All compartments were filled and the positive current (100 

mA) was applied for 300 sec to promote desorption. During each experiment, five adsorption-desorption 

cycles were performed. A 10 mL aliquots were probed from the solution leaving the receiving 

compartment before the experiment was started, after each adsorption and desorption step. The 

concentration of phosphate in this solution was followed by IC.  
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Figure S4. Schematic Illustration of the ED setup. The investigated membrane (in our case, PHMG@NPs@CEM) was 

placed in a sample holder with an opening having 8.14 cm2 situated between compartments 3 and 4, these being the 

receiving and the feed compartment respectively. Compartments 2 and 3 contained 0.2 M solution of NaCl whereas 

compartments 4 and 5 contained 0.2 M solution of NaH2PO4.
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For the blank experiments, we repeated the protocol described above for the unmodified CEM in the 

(i) presence and (ii) absence of the applied electric current. For both scenarios, we observed a gradual and 

similar increase in phosphate concentration in the receiving compartment. This, in turn, suggest that it is 

physical adsorption of phosphate to the membrane support rather than transmembrane transport. Also, 

the phosphate concentration in the receiving compartment found during the blank experiment was always 

lower than that for the modified membrane. 

Fi

gure S5. [PO4
3-] in the receiving compartment of the electrodialysis cell measured during the adsorption/desorption 

experiment. Red bars – the membrane modified with the PHMG@NPs; Blue bars – the blank experiment with CEM 

and applied electric current; White bars – the blank experiment with CEM in the absence of the electric current. 

Clean and pattern bars correspond to the adsorption and desorption step respectively. 
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S7 Ion chromatography analysis 

All samples from adsorption/desorption experiments and batch adsorption experiments were 

filtered using a 0.45 μm Supor® PES filter and analyzed in an 881 Compact IC Pro, 150 mm A Supp 5 column, 

Metrohm equipment. A mixture of sodium carbonate and sodium bicarbonate (339 mg/L and 84 mg/L, 

respectively) was used as the eluent, and a 0.3M solution of H3PO4 was used as a regenerator. The samples 

produced in the coacervate-based experiment were additionally filtered using the 0.2 μm PVDF filter.
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