Supporting Information

Palladium(II)-Catalyzed Vinylic Geminal Double C-H Activation and Alkyne Annulation Reaction: Synthesis of Pentafulvenes

Jyotshna Phukon, and Sanjib Gogoi*

Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, AcSIR, India skgogoi1@gmail.com; sanjibgogoi@neist.res.in

Contents	Page
General Experimental	S 3
Experimental Procedures	S3-S10
Spectral and Analytical data	S11-S27
NMR spectra	S28-S73

1. General Information

All the commercially available reagents were used as received. Melting points were measured with a Buchi B-540 melting point apparatus and are uncorrected. All experiments were monitored by thin layer chromatography. TLC was performed on Merck TLC Silica gel 60 F₂₅₄ precoated plates. Column chromatography was performed on silica gel (100-200 mesh, Merck). NMR spectra were recorded on Bruker Avance III 500 MHz FTNMR spectrometer using tetramethylsilane (TMS) as an internal standard. HRMS data were recorded by electron spray ionization with a Q-TOF mass analyzer.

2.Reaction Procedures

2.1.General procedure for the synthesis of *N*-(2-(1-phenylvinyl)phenyl)acetamide: (i) Preparation of 2-(1-phenylvinyl)aniline:¹

To a solution of phenylacetylene (10 mmol) and aniline (10 mmol) in xylene (10 mL), 1.0 g of montmorillonite K10 was added. Then, the reaction mixture was heated at 130 °C for 5 hours. After cooling to room temperature, the reaction mixture was filtered, the solvent was removed in vacuum and the residue was purified by column chromatography on silica gel to afford 2-(1-phenylvinyl)aniline derivative.

$$R^{1} \xrightarrow{[l]{}} + R^{2} \xrightarrow{[l]{}} xylene \\ 5 h, 130 \ ^{\circ}C \\ R^{1} \xrightarrow{[l]{}} R^{2}$$

(ii) Preparation of N-(2-(1-phenylvinyl)phenyl)acetamide:²

A mixture of 2-(1-phenylvinyl)aniline (2.0 mmol) and 4-dimethylaminopyridine (30 mol %) in Ac_2O (6.0 mL) was stirred at room temperature under N₂ for 12 hours. Then Ac_2O was removed in vacuum and the residue was purified by column chromatography on silica gel to afford the acetyl derivative of 2-(1-phenylvinyl)aniline.

(iii) Preparation of *N*-(2-(prop-1-en-2-yl)phenyl)acetamide:³ A mixture of KO^{*t*}Bu (622 mg, 5.55 mmol) and methyltriphenylphosphonium bromide (1.98 g, 5.55 mmol) was stirred at room temperature for 30 minutes in anhydrous THF (20 mL). Then, 2 aminoacetophenone (500 mg, 3.7 mmol, in 5 mL THF) was slowly added into the reaction mixture at 0 °C. After addition of the 2-aminoacetophenone, the reaction mixture was stirred at room temperature for four hours.

The solvent was removed under vacuo and water was added into the reaction mixture. Then it was extracted with ethyl acetate and the residue obtained by removal of the extract under vacuo was purified by column chromatography on silica gel to afford 2-(prop-1-en-2-yl)aniline (271 mg, 54%). This aniline (250 mg, 1.88 mmol) and 4-dimethylaminopyridine (30 mol %) in Ac₂O (5.0 mL) was stirred at room temperature under N₂ for 12 hours. Then, Ac₂O was removed in vacuum and the residue was purified by column chromatography on silica gel to afford *N*-(2-(prop-1-en-2-yl)phenyl)acetamide (280 mg, 85%).

(iv) Preparation of *N*-(4-chloro-2-(1-phenylvinyl)phenyl)benzamide:⁴ Benzoyl chloride (168 mg, 1.2 mmol) was added dropwise to a stirring solution of 4-chloro-2-(1-phenylvinyl)aniline (229 mg, 1.0 mmol) in anhydrous DCM under nitrogen. Then, Et₃N (101 mg, 1.0 mmol) was added to the reaction mixture at room temperature and the resulting reaction mixture was allowed to stir for 18 hours. The reaction mixture was then extracted with dichloromethane (25 mL x 2) and the organic layer was washed with NaHCO₃ solution. The organic layer was dried over anhydrous Na₂SO₄, evaporated in vacuum and the residue was purified by column chromatography on silica gel to afford *N*-(4-chloro-2-(1-phenylvinyl)phenyl)benzamide (263 mg, 79%).

2.2. General procedure for the synthesis of pentafulvenes

A solution of phenylvinylacetamide (1, 0.5 mmol), alkyne (2, 1.0 mmol), $Cu(OAc)_2.H_2O$ (0.75 mmol) and $Pd(OAc)_2$ (10 mol %) in ^tAmOH (4 mL) was stirred at 100 °C under open air for 18 hours. The solvent was removed under vacuo and the crude reaction mixture was poured into water and extracted with ethyl acetate (25 mL x 3). The ethyl acetate layer was then washed with brine. Finally, it was dried over anhydrous Na₂SO₄ and the solvent was removed under vacuo. The crude product obtained was purified by silica gel (100-200 mesh) column chromatography using 25-30% EtOAc in Hexane as the eluent to afford pentafulvene **3**.

2.3. Procedure for the gram scale synthesis of pentafulvene 3ha:

A solution of phenylvinylacetamide **1h** (1.0 g, 3.69 mmol), alkyne **2a** (1.3 g, 7.38 mmol), $Cu(OAc)_2.H_2O$ (1.1 g, 5.54 mmol) and Pd(OAc)_2 (83 mg, 0.37 mmol) in ^tAmOH (20 mL) was stirred at 100 °C under open air for 18 hours. The solvent was removed under vacuo and the crude reaction mixture was poured into water and extracted with ethyl acetate (50 mL x 4). The ethyl acetate layer was then washed with brine. Finally, it was dried over anhydrous Na₂SO₄ and the solvent was removed under vacuo. The crude product obtained was purified by silica gel (100-200 mesh) column chromatography using 25% EtOAc in Hexane as the eluent to afford pentafulvene **3ha** (1.52 g, 66%).

2.4. Procedure for the one pot synthesis of cyclopenta[b]quinoline 4ab:

A solution of phenylvinylacetamide **1a** (119 mg, 0.5 mmol), alkyne **2b** (206 mg,1.0 mmol), $Cu(OAc)_2.H_2O$ (150 mg, 0.75 mmol) and Pd(OAc)_2 (11 mg, 10 mol%) in ^tAmOH (4 mL) was stirred at 100 °C under open air for 18 hours. Then, the reaction was allowed to cool down to room temperature and FeCl₃ (122 mg, 0.75 mmol) was added into the reaction mixture. It was then stirred at room temperature for 5 hours. The solvent was removed under the vacuo, water was added and the mixture was extracted with CH_2Cl_2 (25 mL x 3). This solvent extract was dried over anhydrous Na₂SO₄ and it was then removed under vacuo. The crude product obtained was purified by silica gel (100-200 mesh) column chromatography using 3% EtOAc in Hexane as the eluent to afford cyclopenta[*b*]quinoline **4ab** (170 mg, 56%).

2.5. Procedure for the transformation of 3ab to 4ab by bromination reaction: To a stirred solution of compound 3ab (38 mg, 0.06 mmol) in CHCl₃ (5 mL), Br₂ (11 mg, 0.07 mmol, diluted in CHCl₃) was added. The reaction mixture was allowed to stir for 8 hours at room temperature. The solvent was removed under vacuo and the crude product obtained was purified by silica gel (100-200 mesh) column chromatography using 3% EtOAc in Hexane as the eluent to afford cyclopenta[*b*]quinoline 4ab (27 mg, 77%).

3. Transformation of pentafulvene derivatives(3ab-ad,3af,3ba-ca) to 3*H*-cyclopenta[*b*]quinolines (4ab-ad,4af,4ba-ca):

(a) Synthesis of 9-phenyl-1,2,3,3-tetra-*p*-tolyl-3*H*-cyclopenta[*b*]quinoline (4ab):⁵ To a stirred solution of 3ab (19 mg, 0.030 mmol) in anhydrous CH_2Cl_2 (2.0 mL) and CH_3NO_2 (0.5 mL), FeCl₃ (7 mg, 0.045 mmol) was added. The mixture was stirred at room temperature for 5 h. Water was added and the mixture was extracted with CH_2Cl_2 . The organic phase was dried, concentrated and purified by silica gel column chromatography using 3% EtOAc in Hexane as the eluent to afford the title compound in 90% yield (white solid, 16 mg).

M.p.: 245-246 °C.¹H NMR (500 MHz, CDCl₃) δ 2.13 (s, 3H), 2.16 (s, 3H), 2.30 (s, 6H), 6.58 (d, J = 7.8 Hz, 2H), 6.64 (d, J = 8.0 Hz, 2H), 6.68-6.72 (m, 4H), 6.94-6.95 (m, 2H),7.00 (t, J = 7.7 Hz, 2H), 7.05 (d, J = 8.1 Hz, 4H), 7.09-7.12 (m, 1H), 7.29-7.32 (m, 1H), 7.38 (d, J = 8.2 Hz, 4H), 7.51-7.54 (m, 2H), 8.04 (d, J = 7.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 20.9, 21.0, 68.1, 125.6, 125.8, 126.4, 127.1, 127.5, 127.7, 127.9, 128.5, 129.3, 129.4, 129.5, 130.2, 130.5, 132.5, 132.6, 134.8, 135.2, 136.2, 138.5, 139.5, 140.9, 146.2, 151.8, 172.7. HRMS Calcd (ESI) m/z for C₄₆H₃₈N: [M+H]⁺ 604.3004, found: 604.3008. Anal. Calcd for C₄₆H₃₇N: C, 91.50; H, 6.18; N, 2.32. Found: C, 91.77; H, 6.37; N, 2.06. IR (CHCl₃): 1584, 1511, 1220 cm⁻¹.

(b) Synthesis of 1,2,3,3-tetrakis(4-methoxyphenyl)-9-phenyl-3*H*-cyclopenta[*b*]quinoline (4ac):⁵ To a stirred solution of 3ac (21 mg, 0.030 mmol) in anhydrous CH_2Cl_2 (2.0 mL) and CH_3NO_2 (0.5 mL), FeCl₃ (7 mg, 0.045 mmol) was added. The mixture was stirred at room temperature for 5 h. Water was added and the mixture was extracted with CH_2Cl_2 . The organic

phase was dried, concentrated and purified by silica gel column chromatography using 3% EtOAc in Hexane as the eluent to afford the title compound in 79% yield (white solid, 16 mg).

M.p.: 212-214 °C.¹H NMR (500 MHz, CDCl₃) δ 3.64 (s, 3H), 3.69 (s, 3H), 3.77 (s, 6H), 6.35 (d, *J* = 8.7 Hz, 2H), 6.46 (d, *J* = 9.0 Hz, 2H), 6.67 (d, *J* = 8.7 Hz, 2H), 6.73 (d, *J* = 9.0 Hz, 2H), 6.79 (d, *J* = 8.9 Hz, 3H), 6.97 (d, *J* = 8.3 Hz, 2H), 7.06 (t, *J* = 7.7 Hz, 2H), 7.13 (t, *J* = 6.8 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.40 (d, *J* = 8.9 Hz, 5H), 7.53 (t, *J* = 7.6 Hz, 2H), 8.05 (d, *J* = 8.0 Hz, 1H).¹³C NMR (125 MHz, CDCl₃) δ 54.8, 55.1, 67.2, 112.5, 112.9, 113.2, 125.6, 125.8, 126.8, 127.2, 127.5, 127.7, 128.0, 129.4, 130.3, 130.5, 130.6, 131.8, 132.3, 133.6, 134.8, 139.4, 139.8, 146.2, 151.8, 157.5, 158.0, 158.3, 172.9. HRMS Calcd (ESI) m/z for C₄₆H₃₈NO₄: [M+H]⁺ 668.2801, found: 668.2802. Anal. Calcd for C₄₆H₃₇NO₄: C, 82.73; H, 5.58; N, 2.10. Found: C, 82.90; H, 5.64; N, 2.00. IR (CHCl₃): 1592, 1497, 1220 cm⁻¹.

(c) Synthesis of 1,2,3,3-tetrakis(4-fluorophenyl)-9-phenyl-3*H*-cyclopenta[*b*]quinoline (4ad): To a stirred solution of 3ad (20 mg, 0.030 mmol) in anhydrous CH_2Cl_2 (2.0 mL), and CH_3NO_2 (0.5 mL), FeCl₃ (7 mg, 0.045 mmol) was added. The mixture was stirred at room temperature for 5 h. Water was added and the mixture was extracted with CH_2Cl_2 . The organic phase was dried, concentrated and purified by silica gel column chromatography using 3% EtOAc in Hexane as the eluent to afford the title compound in 89% yield (white solid, 17 mg).

M.p.: 226-228 °C.¹H NMR (500 MHz, CDCl₃) δ 6.51 (t, *J* = 8.6 Hz, 2H), 6.65-6.71 (m, 6H), 6.94-7.00 (m, 6H), 7.09 (t, *J* = 7.6 Hz, 2H), 7.19 (t, *J* = 7.8 Hz, 1H), 7.36-7.39 (m, 5H), 7.57-7.62 (m, 2H), 8.05 (d, *J* = 8.3 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 68.1, 114.3 (d, *J* = 21.4 Hz), 114.4 (d, *J* = 21.0 Hz), 115.0 (d, *J* = 21.0 Hz), 126.1 (d, *J* = 20.7 Hz), 127.3, 127.4, 128.5,

129.4, 130.2, 130.7 (d, J = 7.9 Hz),130.9 (d, J = 8.1 Hz),131.0 (d, J = 3.4 Hz), 132.0 (d, J = 7.8 Hz), 134.3, 136.5 (d, J = 3.3 Hz), 140.5, 141.0, 146.4, 151.1, 161.1 (d, J = 244.8 Hz), 161.6 (d, J = 251.0 Hz), 161.8 (d, J = 244.9 Hz), 171.4. HRMS Calcd (ESI) m/z for C₄₂H₂₆F₄N: [M+H]⁺ 620.2001, found: 620.2004. Anal. Calcd for C₄₂H₂₅F₄N: C, 81.41; H, 4.07; N, 2.26. Found: C, 81.56; H, 4.20; N, 1.90. IR (CHCl₃): 1587, 1495, 1219 cm⁻¹.

(d) Synthesis of 9-phenyl-1,2,3,3-tetra-*m*-tolyl-3*H*-cyclopenta[*b*]quinoline (4af): To a stirred solution of 3af (19 mg, 0.030 mmol) in anhydrous CH_2Cl_2 (2.0 mL) and CH_3NO_2 (0.5 mL), FeCl₃ (7 mg, 0.045 mmol) was added. The mixture was stirred at room temperature for 5 h. Water was added and the mixture was extracted with CH_2Cl_2 . The organic phase was dried, concentrated and purified by silica gel column chromatography using 3% EtOAc in Hexane as the eluent to afford the title compound in 88% yield (white solid, 16 mg).

M.p.: 151-153 °C.¹H NMR (500 MHz, CDCl₃) δ 1.96-1.98 (s, 6H), 2.25-2.29 (s, 6H), 6.41 (s, 1H), 6.50 (s, 1H), 6.59 (d, *J* = 7.2 Hz, 1H), 6.63-6.67 (m, 2H), 6.72-6.81 (m, 4H), 6.88 (s, 2H), 7.02 (s, 2H), 7.06-7.09 (m, 2H), 7.17 (s, 4H), 7.32-7.35 (m, 3H), 7.54-7.57 (m, 2H), 8.08 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 21.0, 21.1, 21.5, 68.8, 125.6, 125.8, 126.5, 126.6, 126.8, 126.9, 127.0, 127.3, 127.5, 127.8, 129.5, 130.3, 130.4, 131.5, 132.3, 134.7, 135.2, 135.4, 135.9, 136.2, 139.8, 141.2, 146.2, 152.4, 172.3. HRMS Calcd (ESI) m/z for C₄₆H₃₈N: [M+H]⁺ 604.3004, found: 604.3006. Anal. Calcd for C₄₆H₃₇N: C, 91.50; H, 6.18; N, 2.32. Found: C, 91.85; H, 6.27; N, 2.72. IR (CHCl₃): 1582, 1511, 1485, 1220 cm⁻¹.

(e) Synthesis of 1,2,3,3-tetraphenyl-9-(*p*-tolyl)-3*H*-cyclopenta[*b*]quinoline (4ba): To a stirred solution of 3ba (18 mg, 0.030 mmol) in anhydrous CH_2Cl_2 (2.0 mL) and CH_3NO_2 (0.5 mL), FeCl₃ (7 mg, 0.045 mmol) was added. The mixture was stirred at room temperature for 5 h. Water was added and the mixture was extracted with CH_2Cl_2 . The organic phase was dried, concentrated and purified by silica gel column chromatography using 3% EtOAc in Hexane as the eluent to afford the title compound in 86% yield (white solid, 14 mg).

M.p.: 247-248 °C.¹H NMR (500 MHz, CDCl₃) δ 2.25 (s, 3H), 6.72-6.81 (m, 8H), 6.86-6.91 (m, 5H), 6.94-6.98 (m, 1H), 7.22-7.27 (m, 6H), 7.32-7.35 (m, 1H), 7.47-7.49 (m, 4H), 7.53-7.57 (m, 1H), 7.63 (d, *J* = 8.5 Hz, 1H), 8.05 (d, *J* = 8.4 Hz, 1H).¹³C NMR (125 MHz, CDCl₃) δ 21.2, 69.4, 125.5, 125.8, 126.1, 126.9, 127.0, 127.1, 127.6, 127.9, 128.0, 128.1, 129.5, 129.6, 129.7, 130.2, 130.7, 131.6, 132.4, 135.5, 135.8, 136.7, 140.3, 141.4, 141.8, 146.5, 152.2, 172.3. HRMS Calcd (ESI) m/z for C₄₃H₃₂N: [M+H]⁺ 562.2535, found: 562.2532. Anal. Calcd for C₄₃H₃₁N: C, 91.94; H, 5.56; N, 2.49. Found: C, 91.70; H, 5.61; N, 2.52. IR (CHCl₃): 1590, 1497, 1220 cm⁻¹.

(f) Synthesis of 9-([1,1'-biphenyl]-4-yl)-1,2,3,3-tetraphenyl-3*H*-cyclopenta[*b*]quinoline[(4ca): To a stirred solution of 3ca (20 mg, 0.030 mmol) in anhydrous CH_2Cl_2 (2.0 mL) and CH_3NO_2 (0.5 mL), FeCl₃ (7 mg, 0.045 mmol) was added. The reaction mixture was stirred at room temperature for 5 h. Water was added and the mixture was extracted with CH_2Cl_2 . The organic phase was dried, concentrated and purified by silica gel column chromatography using 3% EtOAc in Hexane as the eluent to afford the title compound in 90% yield (white solid, 17 mg).

M.p.: 245-248 °C.¹H NMR (500 MHz, CDCl₃) δ 6.74-6.80 (m, 5H), 6.88-6.92 (m, 2H), 6.96-6.99 (m, 1H), 7.07 (d, *J* = 8.2 Hz, 2H), 7.21-7.30 (m, 9H), 7.36-7.41 (m, 2H), 7.46-7.54 (m, 9H), 7.57-7.61 (m, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 8.08 (d, *J* = 8.4 Hz, 1H).¹³C NMR (125 MHz, CDCl₃) δ 69.1, 125.7, 125.9, 126.0, 126.8, 126.9, 127.0, 127.2, 127.3, 127.9, 128.1, 128.7, 129.4, 129.6, 130.6, 132.4, 133.6, 135.4, 135.5, 139.7, 139.9, 141.0, 141.2, 141.5, 146.4, 152.4, 172.2. HRMS Calcd (ESI) m/z for C₄₈H₃₄N: [M+H]⁺ 624.2691, found: 624.2693. Anal. Calcd for C₄₈H₃₃N: C, 92.42; H, 5.33; N, 2.25. Found: C, 92.76; H, 5.30; N, 2.49. IR (CHCl₃): 1592, 1511, 1497,1221 cm⁻¹.

4. Measurement of fluorescence quantum yield (Φ_F):

Fluorescence quantum yields (Φ_F) of the compounds **4ab-ad**,**4af**,**4ba-ca** were calculated using quinine sulfate (in 0.5 M H₂SO₄ solution) as a standard ($\Phi_F = 0.54$). Emission spectra of these compounds were recorded from 340 to 620 nm with excitation at 320 nm. Absorbance (optical density, OD) of all these samples were recorded at 320 nm and quantum yields were calculated according to equation (1), in which Φ_{ref} is the quantum yield of the reference, A_{sample} and A_{ref} are the areas under the emission spectra of the samples **4ab-ad**,**4af**,**4ba-ca** and the reference, OD_{ref} and OD_{sample} are the absorbances of the reference and the sample which were measured at the excitation wavelength; n_{sample} and n_{ref} are the refractive indices of the sample and the reference in solution.

Sl. No	Compound	λ_{max} (nm)	$\lambda_{em}(nm)$	$\Phi_{ m F}$
1	4ab	323	405	0.59
2	4ac	327	431	0.12
3	4ad	318	399	0.10
4	4af	320	431	0.14
5	4ba	320	406	0.11
6	4ca	321	410	0.16

$$\boldsymbol{\Phi}\boldsymbol{F} = \boldsymbol{\Phi}\boldsymbol{ref}\left(\frac{Asample}{Aref}\right) x\left(\frac{ODref}{ODsample}\right) x\left(\frac{nref}{nsample}\right)^2 \qquad (1)$$

References:

- (a) X. Zhang, T.-L. Wang, C-D. Huo, X-C. Wang and Z.-J. Quan, *Chem. Commun.*, 2018, **54**, 3114; (b) T.-L. Wang, X.-J. Liu, C.-D. Huo, X.-C. Wang and Z.-J. Quan, *Chem. Commun.*, 2018, **54**, 499.
- K. Kazuhiro, M. Kazuna, M. Osamu and K. Hisatoshi, *Bull. Chem. Soc. Jpn.*, 2005, 78, 886.
- (a) A. Boelke, L. D. Caspers and B. J. Nachtsheim, *Org. Lett.*, 2017, **19**, 5344. (b) L. D. Caspers, P. Finkbeiner and B. J. Nachtsheim, *Chem. Eur. J.*, 2017, **23**, 2748.
- 4. M. Chaitanya and P. Anbarasan, Org. Lett., 2018, 20, 1183.
- 5. D. Li and F. Zeng, Org. Lett., 2017, 19, 6498.

5. Spectral and Analytical Data:

N-(2-(phenyl(2,3,4,5-tetraphenylcyclopenta-2,4-dien-1ylidene)methyl)phenyl)acetamide (3aa): A solution of N-(2-(1-phenylvinyl)phenyl)acetamide 1a (237 mg, 1.0 mmol), diphenylacetylene (2a, 356 mg, 2.0 mmol), Cu(OAc)₂.H₂O (300 mg, 1.5 mmol) and Pd(OAc)₂ (22 mg, 10 mol %) in ^tAmOH (8.0 mL) was stirred at 100 °C under open air for 18 hours. The solvent was removed under vacuo and the crude reaction mixture was poured into water and extracted with ethyl acetate (40 mL x 3). The ethyl acetate layer was then washed with brine. Finally, it was dried over anhydrous Na₂SO₄ and the solvent was removed under vacuo. The crude product obtained was purified by silica gel (100-200 mesh) column chromatography using 25% EtOAc in Hexane as the eluent to afford pentafulvene 3aa (red solid, 74% yield, 438 mg). M.p.: 204-207 °C.¹H NMR (500 MHz, CDCl₃) δ 1.85 (s, 3H), 6.67-6.70 (m, 4H), 6.72-6.77 (m, 12H), 6.94-7.05 (m, 11H) 7.11 (d, J = 6.7 Hz, 1H),7.16 (bs, 1H), 7.64 (d, J = 8.1 Hz, 1H). ¹³C NMR (125) MHz, CDCl₃) 24.2, 121.5, 123.2, 124.7, 125.2, 126.1, 126.9, 127.0. 127.2, 127.5, 128.2, 129.1, 129.8, 130.2, 130.4, 131.0, 132.0, 132.8, 132.9, 133.9, 134.0, 134.4, 135.1, 135.3, 136.0, 136.8, 140.3, 145.2, 145.3, 151.3, 167.8. HRMS Calcd (ESI) m/z for $C_{44}H_{34}NO$: $[M+H]^+$ 592.2640, found: 592.2639. Anal. Calcd for C₄₄H₃₃NO: C, 89.31; H, 5.62; N, 2.37. Found: C, 89.67; H, 5.68; N, 2.70. IR (CHCl₃): 3408, 1680, 1518, 1442 cm⁻¹.

N-(2-(phenyl(2,3,4,5-tetra-p-tolylcyclopenta-2,4-dien-1ylidene)methyl)phenyl)acetamide (3ab): Following the general procedure 2.2, the reaction was carried out by mixture of heating N-(2-(1а phenylvinyl)phenyl)acetamide 1a (119 mg, 0.5 mmol), 1,2di-p-tolylethyne (2b, 206 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^tAmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 76% yield (red solid, 246 mg). M.p.: 105-107 °C. ¹H NMR (500 MHz, CDCl₃) δ 1.87 (s, 3H), 2.07 (s, 3H), 2.08 (s, 3H), 2.20 (s, 3H), 2.21 (s, 3H), 6.53 (d, J =7.9 Hz, 2H), 6.56-6.65 (m, 10H), 6.70 (t, J = 7.5 Hz, 1H), 6.78-6.87 (m, 6H), 6.94-6.99 (m, 4H), 7.03 (d, J = 6.7 Hz,1H), 7.24 (bs, 1H), 7.65 (d, J = 8.1 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 21.1, 21.5, 24.6, 121.6, 123.4, 127.4, 127.7, 127.9, 128.0, 128.7, 129.4, 130.5, 130.7, 131.3, 132.3, 132.6, 132.8, 133.0, 133.4, 133.5, 133.8, 134.0, 134.1, 134.2, 134.6, 135.7, 135.8, 136.2, 141.0, 145.2, 145.4, 146.2, 150.5, 167.9. HRMS Calcd (ESI) m/z for C₄₈H₄₂NO: [M+H]⁺ 648.3266, found: 648.3268. Anal. Calcd for C₄₈H₄₁NO: C, 88.99; H, 6.38; N, 2.16. Found: C, 89.21; H, 6.49; N, 2.30. IR (CHCl₃): 3409, 1683, 1514, 1443 cm⁻¹.

N-(2-(phenyl(2,3,4,5-tetrakis(4-

methoxyphenyl)cyclopenta-2,4-dien-1-

ylidene)methyl)phenyl)acetamide (3ac): Following the general procedure 2.2, the reaction was carried out by heating a mixture of N-(2-(1-phenylvinyl)phenyl)acetamide (1a, 119 mg, 0.5 mmol), 1,2-bis(4-methoxyphenyl)ethyne (2c, 238 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^tAmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 63% yield (red solid, 224 mg). M.p.: 73–77 °C. ¹H NMR (500 MHz, CDCl₃) δ 1.85 (s, 3H), 3.61 (s, 3H), 3.62 (s, 3H), 3.68 (s, 3H), 3.70 (s, 3H),

6.30-6.34 (m, 4H), 6.52-6.56 (m, 4H), 6.60-6.63 (m, 5H), 6.66 (d, J = 8.3 Hz, 2H), 6.72 (t, J = 7.3 Hz, 1H), 6.84-6.90 (m, 2H), 6.93-6.99 (m, 5H), 7.04 (d, J = 7.1 Hz, 1H), 7.18 (s, 1H), 7.65 (d, J = 8.2 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 24.2, 54.8, 54.9, 55.0, 112.4, 112.6, 112.7, 121.5, 123.2, 127.1, 127.4, 127.6, 127.8, 128.6, 128.7, 129.3, 129.5, 131.5, 131.7, 131.9, 132.1, 132.7, 133.1, 133.2, 133.6, 135.8, 140.6, 144.5, 144.6, 145.7, 149.5, 156.6, 156.9, 157.7, 167.6. HRMS Calcd (ESI) m/z for C48H42NO5: [M+H]⁺ 712.3063, found: 712.3060. Anal. Calcd for C48H41NO5: C, 80.99; H, 5.81; N, 1.97. Found: C,80.86; H, 5.75; N, 2.08. IR (CHCl₃): 3401, 1687, 1502, 1441, 1244 cm⁻¹.

fluorophenyl)cyclopenta-2,4-dien-1-

ylidene)methyl)phenyl)acetamide (3ad): Following the general procedure 2.2, the reaction was carried out by heating a mixture of *N*-(2-(1phenylvinyl)phenyl)acetamide 1a (119 mg, 0.5 mmol), 1,2bis(4-fluorophenyl)ethyne (2d, 214 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^tAmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 78% yield (red solid, 259 mg). M.p.: 196–200 °C.¹H NMR (500 MHz, CDCl₃) δ 1.81 (s, 3H), 6.44-6.51 (m, 4H), 6.60-6.73 (m, 13H), 6.89 (t, J = 7.4 Hz, 1H), 6.95-7.00 (m, 3H), 7.05 (q, J = 8.1 Hz, 2H), 7.13 (d, J = 7.2 Hz, 1H), 7.32 (bs, 1H), 7.64 (d, J = 8.1 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 24.1, 113.9, 114.0 (d, J = 21.2 Hz, 114.1 (d, J = 20.5 Hz), 114.3 (d, J = 21.2 Hz), 122.1, 123.4, 126.4, 127.4, 127.9, 128.8, 129.5, 130.0, 130.6 (d, J = 3.2 Hz), 130.8 (d, J = 3.2 Hz), 131.7 (d, J =7.7 Hz), 131.8 (d, *J* = 7.9 Hz), 132.4 (d, *J* = 3.2 Hz), 132.5 (d, J = 3.2 Hz), 133.0, 133.1, 133.6, 133.9, 136.0, 139.9,144.1, 144.2, 144.4, 152.0, 160.3 (d, *J* = 243.6 Hz), 160.6

(d, J = 243.7 Hz), 161.2 (d, J = 245.6 Hz), 161.3 (d, J = 245.6 Hz), 167.4. HRMS Calcd (ESI) m/z for C₄₄H₃₀F₄NO: [M+H]⁺ 664.2264, found: 664.2268. Anal. Calcd for C₄₄H₂₉F₄NO: C, 79.63; H, 4.40; N, 2.11. Found: C, 79.81; H, 4.27; N, 2.03. IR (CHCl₃): 3422, 1638, 1509, 1444, 1222 cm⁻¹.

N-(2-(phenyl(2,3,4,5-tetrakis(4-

chlorophenyl)cyclopenta-2,4-dien-1-

ylidene)methyl)phenyl)acetamide (3ae): Following the general procedure 2.2, the reaction was carried out by mixture heating of *N*-(2-(1а phenylvinyl)phenyl)acetamide (1a, 119 mg, 0.5 mmol), 1,2-bis(4-chlorophenyl)ethyne (2e, 247 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^tAmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 68% yield (red solid, 247 mg). M.p.: 100-103 °C. ¹H NMR (500 MHz, CDCl₃) δ 1.78 (s, 3H), 6.56-6.64 (m, 7H), 6.72-6.78 (m, 4H), 6.86-6.90 (m, 2H), 6.92-7.01 (m, 8H), 7.06–7.14 (m, 4H), 7.63 (d, J = 8.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 24.1, 122.3, 123.6, 127.3, 127.5, 127.6, 128.0, 128.3, 129.6, 129.8, 130.2, 130.9, 131.3, 131.4, 131.6, 132.0, 132.4, 132.5, 132.9, 133.0, 133.1, 133.4, 133.5, 134.0, 134.1, 134.2, 134.8, 136.1, 139.7, 143.6, 143.8, 143.9, 152.9, 167.6. HRMS Calcd (ESI) m/z for C₄₄H₃₀Cl₄NO: [M+H]⁺ 728.1082, found: 728.1088. Anal. Calcd for C₄₄H₂₉Cl₄NO: C, 72.44; H, 4.01; N, 1.92. Found: C, 72.68; H, 4.30; N, 2.25.IR (CHCl₃): 3400, 1680, 1580, 1120 cm⁻¹.

N-(2-(phenyl(2,3,4,5-tetra-m-tolylcyclopenta-2,4-dien-1-ylidene)methyl)phenyl)acetamide (3af): Following the general procedure 2.2, the reaction was carried out by mixture of *N*-(2-(1heating а phenylvinyl)phenyl)acetamide (1a, 119 mg, 0.5 mmol), 1,2-di-*m*-tolylethyne (**2f**, 206 mg, 1.0 mmol), Pd(OAc)₂(11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^tAmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 53% yield (red solid, 172 mg). M.p.: 101–102 °C. ¹H NMR (500 MHz, CDCl₃) δ 1.85 (s, 3H), 1.93 (s, 6H), 1.94 (s, 6H), 6.41-6.50 (m, 11H), 6.54 (s, 1H), 6.57-6.60 (m, 2H), 6.64 (s, 1H), 6.74-6.81 (m, 5H), 6.86-6.88 (m, 5H), 7.66 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 20.9, 21.0, 21.1, 21.2, 24.3, 122.9, 125.4, 125.9, 126.6, 126.7, 126.8, 127.0, 127.3, 127.4, 127.6, 128.2, 128.9, 129.5, 131.2, 131.3, 131.9, 132.4, 133.6, 133.7, 135.0, 135.2, 135.8, 135.9, 136.0, 136.6, 145.3, 150.4, 167.5. HRMS Calcd (ESI) m/z for C₄₈H₄₂NO: [M+H]⁺ 648.3266, found: 648.3264. Anal. Calcd for C₄₈H₄₁NO:C, 88.99; H, 6.38; N, 2.16. Found C, 89.05; H, 6.33; N, 1.88. IR (CHCl₃): 3410, 1680, 1579, 1444 cm⁻¹.

N-(2-(phenyl(2,3,4,5-tetrakis(3-

fluorophenyl)cyclopenta-2,4-dien-1-

vlidene)methyl)phenyl)acetamide (3ag): Following the general procedure 2.2, the reaction was carried out by heating mixture of *N*-(2-(1a phenylvinyl)phenyl)acetamide 119 (1a,mg, 0.5 mmol),1,2-bis(3-fluorophenyl)ethyne (2g, 214 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^tAmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 77% yield (brown solid, 256 mg). M.p.: 173–176 °C. ¹H NMR (500 MHz, CDCl₃) δ 1.78 (s, 3H), 6.39-6.44 (s, 3H), 6.46-6.56 (m, 6H), 6.72-6.79 (m, 5H), 6.90-7.08 (m, 10H), 7.22 (d, J

3ah (ratio of regioisomers: 7:7:1)

= 7.1 Hz, 1H), 7.68 (bs, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 24.0, 112.1 (d, J = 21.0 Hz), 112.5 (d, J = 20.9 Hz), 112.7, 113.6 (d, J = 21.4 Hz), 116.7 (d, J = 21.0 Hz), 116.9 (d, J = 21.0 Hz), 117.4 (d, J = 21.4 Hz), 121.9, 123.4, 125.8 (d, J = 21.0 Hz), 125.9 (d, J = 21.0 Hz), 126.0, 126.6, 127.5, 127.9, 128.6 (d, J = 8.4 Hz), 128.7 (d, J = 8.0 Hz), 128.8, 129.9, 130.5, 131.4, 132.2, 132.9, 133.6, 134.1, 136.1, 136.7 (d, J = 8.0 Hz), 136.8 (d, J = 8.0 Hz), 137.9, 138.0, 138.5 (d, J = 8.1 Hz), 139.7, 143.7, 144.0, 144.1, 155.7, 160.5 (d, J = 243.4 Hz), 161.6 (d, J = 243.5 Hz), 161.8 (d, J = 243.9 Hz), 167.5. HRMS Calcd (ESI) m/z for C₄₄H₃₀F₄NO: [M+H]⁺ 664.2264, found: 664.2266. Anal. Calcd for C₄₄H₂₉F₄NO: C, 79.63; H, 4.40; N, 2.11. Found: C, 79.91; H, 4.70; N, 2.42. IR (CHCl₃): 3412, 1668, 1436 cm⁻¹. Compound 3ah (ratio of regioisomers: 7:7:1): Following the general procedure 2.2, the reaction was carried out by of heating mixture N-(2-(1a phenylvinyl)phenyl)acetamide (1a, 119 mg, 0.5 mmol), 1fluoro-4-(*p*-tolylethynyl)benzene (**2h**, 210 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^tAmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 60% yield (red solid, 197 mg). M.p.: 105–108 °C.¹H NMR (500 MHz, CDCl₃) δ 1.83 (s, 3H), 2.06 (s, 3H), 2.22 (s, 3H), 6.30-7.20 (m, 24H), 7.40-7.80 (s, 2H).¹³C NMR (125 MHz, CDCl₃) δ 20.8, 21.1, 24.1, 24.2, 25.2, 29.6, 113.8, 113.9, 114.0, 114.1, 114.2, 121.4, 121.6, 121.8, 122.0, 123.2, 123.3, 123.4, 127.2, 127.3, 127.5, 127.6, 127.7, 127.8, 127.9, 128.2, 128.7, 129.1, 129.3, 129.4, 129.8, 130.1 (d, *J* = 19.7 Hz), 130.2 (d, *J* = 19.7 Hz), 130.3, 130.8, 131.2, 131.4, 131.8, 131.9, 132.0, 132.3, 132.4, 132.8, 133.4, 133.7, 133.8, 134.2, 134.5, 134.6, 134.7, 135.8 (d, *J* = 4.2 Hz), 135.9 (d, *J* = 4.4 Hz), 138.5, 140.2, 140.3, 140.4, 143.5, 143.8, 145.0, 145.2, 145.3, 145.4, 145.6, 145.7, 150.4, 151.0, 151.1,

3ai (ratio of regioisomers: 3:3:1):

151.7, 159.3, 159.5, 160.2 (d, J = 242.6 Hz), 160.5 (d, J = 242.9 Hz), 161.2, 161.2 (d, J = 244.4 Hz), 167.5, 169.1. HRMS Calcd (ESI) m/z for C₄₆H₃₆F₂NO: [M+H]⁺ 656.2765, found: 656.2764. Anal. Calcd for C₄₆H₃₅F₂NO: C, 84.25; H, 5.38; N, 2.14. Found:C,84.09; H, 5.60; N, 1.88. IR (CHCl₃): 3410, 1676, 1579, 1512, 1220 cm⁻¹.

Compound 3ai (ratio of regioisomers: 3:3:1): Following the general procedure 2.2, the reaction was carried out by heating a mixture of N-(2-(1phenylvinyl)phenyl)acetamide (1a, 119 mg, 0.5 mmol),1-((4-(*tert*-butyl)phenyl)ethynyl)-3-chlorobenzene (2i, 269 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^tAmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 53% yield (red solid, 204 mg). M.p.: 102–106 °C. ¹H NMR (500 MHz, CDCl₃) δ 1.14 (s, 9H), 1.22 (s, 9H), 1.82 (s, 3H), 6.50-6.72 (m, 9H), 6.72-6.84 (m, 3H), 6.85-7.65 (14H).¹³C NMR (125 MHz, CDCl₃) & 24.5, 31.3, 31.4, 34.4, 34.6, 34.7, 121.6, 122.0, 123.5, 124.2, 124.3, 124.4, 125.1, 125.6, 126.5, 126.6, 127.4, 127.6, 127.7, 127.8, 128.0, 128.4, 128.6, 128.8, 128.9, 129.1, 129.5, 129.6, 129.8, 130.0, 130.1, 130.2, 130.3, 130.4, 130.6, 130.7, 130.9, 131.3, 131.6, 131.7, 131.8, 131.9, 132.1, 132.3, 132.6, 132.7, 132.8, 132.9, 133.0, 133.1, 133.2, 133.3, 134.0, 134.1, 135.0, 135.4, 135.5, 135.9, 136.2, 137.2, 137.4, 139.1, 140.5, 140.6, 142.9, 143.4, 145.3, 145.5, 146.1, 147.8, 148.1, 148.2, 149.6, 149.8, 152.2, 153.3, 167.8. HRMS Calcd (ESI) m/z for C₅₂H₄₈Cl₂NO: [M+H]⁺ 772.3113, found: 772.3116. Anal. Calcd for C₅₂H₄₇Cl₂NO: C, 80.81; H, 6.13; N, 1.81. Found: C, 80.89; H, 6.03; N, 1.96. IR (CHCl₃): 3418, 1642, 1521 cm⁻¹.

3aj (ratio of regioisomers: 3:3:1:1)

Compound 3aj (ratio of regioisomers: 3:3:1:1): Following the general procedure 2.2, the reaction was carried out by heating a mixture of N-(2-(1phenylvinyl)phenyl)acetamide (1a, 119 mg, 0.5 mmol), 1methyl-4-(pent-1-yn-1-yl)benzene (2j, 158 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^tAmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 32% yield (orange solid, 88 mg). M.p.: 58-60 °C. ¹H NMR (500 MHz, CDCl₃) δ 0.24-0.34 (m, 3H), 0.46-0.57 (m, 3H), 0.80-1.06 (m, 4H), 1.60-2.26 (m, 4H), 1.92-2.38 (s, 9H), 6.66-7.01 (m, 8H), 7.02-7.24 (m, 5H), 7.27-8.30 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 13.7, 13.9, 14.0, 20.8, 21.2, 22.4, 24.5, 24.7, 24.9, 25.3, 28.4, 28.5, 28.6, 28.9, 120.6, 120.7, 121.0, 122.9, 123.6, 123.7, 127.0, 127.1, 127.5, 127.6, 127.7, 127.8, 127.9, 128.2, 128.7, 128.8, 128.9, 129.4, 129.7, 131.2, 131.8, 132.0, 132.1, 132.2, 132.3, 132.4, 132.5, 132.6, 132.7, 132.9, 133.2, 133.8, 133.9, 134.1, 134.5, 134.6, 135.5, 135.9, 136.2, 136.3, 136.4, 140.8, 142.3, 145.2, 145.7, 146.0, 146.1, 146.2, 146.7, 147.1, 147.8, 167.6, 168.0. HRMS Calcd (ESI) m/z for $C_{40}H_{42}NO$: $[M+H]^+$ 552.3240, found: 552.3266. Anal. Calcd for C₄₀H₄₁NO: C, 87.07; H, 7.49; N, 2.54. Found: C, 87.19; H, 7.28; N, 2.77. IR (CHCl₃): 3400, 1638, 1582, 1220 cm⁻¹.

Compound3ak, (ratio of regioisomers: 5:3:1): Following the general procedure 2.2, the reaction was carried out by of heating a mixture N-(2-(1phenylvinyl)phenyl)acetamide (1a, 119 mg, 0.5 mmol), ethyl 3-phenylpropiolate (2k, 174 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^tAmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 54% yield (gum, 158 mg). ¹H NMR (500 MHz, CDCl₃) δ 0.66-1.07 (m, 6H), 1.53 (s, 1.6H), 1.67 (s, 0.4H), 1.83 (s, 1H), 3.27-3.39 (m, 1.8H), 3.75-3.87 (m, 1.7H), 3.88-3.90 (m, 0.5H), 6.64-7.05 (m, 10H), 7.18 (t, J = 9.5 Hz, 1H), 7.24-7.45 (m, 8H), 7.78-7.82 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 13.5, 13.6, 13.9, 14.0, 23.0, 24.1, 24.4, 24.8, 60.6, 60.7, 60.8, 121.5, 123.4, 124.2, 124.6, 125.9, 126.4, 126.8, 127.0, 127.1, 127.2, 127.7, 127.8, 128.1, 128.2, 128.5, 129.0, 129.3, 130.0, 130.4, 130.8, 131.3, 132.3, 133.1, 134.2, 134.4, 134.6, 135.0, 136.8, 137.0, 137.3, 138.3, 141.3, 141.8, 142.2, 142.5, 143.7, 146.1, 148.0, 157.7, 158.7, 165.1, 165.3, 165.6, 165.7, 166.0, 166.8, 168.0, 168.1. HRMS Calcd (ESI) m/z for $C_{38}H_{34}NO_5Na$: [M+H]⁺606.2256, found: 606.2253. IR (CHCl₃): 3410, 1716, 1578, 1519, 1444, 1220 cm^{-1} .

2.14 (s, 3H), 6.65-6.80 (m, 17H), 6.89 (s, 1H), 6.96-7.04 (m, 9H), 7.30 (bs, 1H), 7.69 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 21.1, 24.3, 121.4, 123.2, 124.2, 125.2, 126.0, 126.1, 126.9, 127.0, 127.8, 128.3, 129.8, 130.3, 130.5, 131.1, 132.1, 132.9, 133.0, 133.9, 134.1, 134.4, 135.3, 135.5, 136.1, 136.2, 137.0, 137.6, 139.6, 144.6, 144.9, 145.1, 151.5, 167.5. HRMS Calcd (ESI) m/z for C₄₅H₃₆NO: [M+H]⁺ 606.2797, found: 606.2794. Anal. Calcd for C₄₅H₃₅NO: C, 89.22; H, 5.82; N, 2.31. Found: C, 89.03; H, 6.06; N, 2.46. IR (CHCl₃): 3406, 1686, 1577, 1517, 1442 cm⁻¹.

N-(2-((4-ethylphenyl)(2,3,4,5-tetraphenylcyclopenta-

2,4-dien-1-ylidene)methyl)phenyl)acetamide (3ca): Following the general procedure 2.2, the reaction was carried out by heating a mixture of *N*-(2-(1-(4ethylphenyl)vinyl)phenyl)acetamide 1c (133 mg, 0.5 mmol), diphenylacetylene (2a, 178 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^tAmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 54% yield (red solid, 167 mg). M.p.: 203–206 °C.¹H NMR (500 MHz, CDCl₃) δ 1.06 (t, J = 7.6 Hz, 3H), 1.86 (s, 3H), 2.41 (q, J = 7.6 Hz, 2H),6.67–6.77 (m, 17H), 6.89 (d, J = 7.5 Hz, 1H), 6.94-7.04 (m, 9H), 7.24 (bs, 1H), 7.66 (d, J = 8.2 Hz, 1H). ¹³C NMR (125) MHz, CDCl₃) δ 15.3, 24.3, 28.6, 121.3, 123.1, 124.5, 125.1, 126.0, 126.8, 126.9, 127.0, 127.1, 129.7, 130.3, 130.5, 131.0, 132.1, 132.7, 133.0, 133.9, 134.1, 134.3, 135.2, 135.4, 136.1, 136.9, 137.6, 144.6, 144.9, 145.0, 145.9, 151.6, 167.6. HRMS Calcd (ESI) m/z for C₄₆H₃₈NO: [M+H]⁺ 620.2953, found: 620.2958. Anal. Calcd for C₄₆H₃₇NO: C, 89.14; H, 6.02; N, 2.26. Found: C, 89.15; H, 6.31; N, 2.55. IR (CHCl₃): 3401, 1598, 1578, 1519, 1443, 1220 cm^{-1} .

3ca

3da

vlidene)methyl)phenyl)acetamide (3da): Following the

N-(2-([1,1'-biphenyl]-4-yl(2,3,4,5-

tetraphenylcyclopenta-2,4-dien-1-

N-(2-((4-fluorophenyl)(2,3,4,5-tetraphenylcyclopenta-2,4-dien-1-ylidene)methyl)phenyl)acetamide (3ea): Following the general procedure 2.2, the reaction was carried out by heating a mixture of *N*-(2-(1-(4fluorophenyl)vinyl)phenyl)acetamide 1e (128 mg, 0.5 mmol), diphenylacetylene (2a, 178 mg, 1.0 mmol), Pd(OAc)₂ (11mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^tAmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 74% yield (red solid, 226 mg). M.p.: 218–220 °C.¹H NMR (500 MHz, CDCl₃) δ 1.94 (s, 3H), 6.54 (t, *J* = 8.2 Hz, 2H), 6.68-6.73 (m, 6H), 6.77-6.83 (m, 9H), 6.70-7.06 (m, 10H), 7.25 (bs, 1H), 7.58 (d, *J*

3ea

= 8.1 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 24.2, 114.2 (d, *J* = 21.4 Hz), 114.4 (d, *J* = 20.9 Hz), 115.4, 115.5, 115.6, 121.9, 123.5, 124.8, 125.3, 126.1 (d, *J* = 3.7 Hz), 127.0, 127.1, 130.0, 130.2, 130.4, 131.0, 132.5, 132.6, 133.0, 133.1, 133.6, 133.7, 134.2, 134.3, 134.4, 134.5, 135.0, 135.2, 135.8, 135.9, 136.6, 136.7, 145.0, 145.3, 145.6, 149.9, 163.1 (d, *J* = 250.1 Hz), 167.7. HRMS Calcd (ESI) m/z for C₄₄H₃₃FNO: [M+H]⁺ 610.2546, found: 610.2549. Anal. Calcd for C₄₄H₃₂FNO: C, 86.67; H, 5.29; N, 2.30. Found: C, 86.72; H, 5.04; N, 2.12. IR (CHCl₃): 3410, 1674, 1598, 1504, 1443, 1224 cm⁻¹.

N-(2-((2,3,4,5-tetraphenylcyclopenta-2,4-dien-1-

ylidene)(thiophen-3-yl)methyl)phenyl)acetamide (3fa): Following the general procedure 2.2, the reaction was carried out by heating a mixture of N-(2-(1-(thiophen-3vl)vinyl)phenyl)acetamide (1f, 122 mg, 0.5 mmol), diphenylacetylene (2a, 178 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^tAmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 59% yield (brown solid, 176 mg). M.p.: 200-202 °C. ¹H NMR (500 MHz, CDCl₃) δ 1.91 (s, 3H), 6.64 (d, J = 4.7 Hz, 1H), 6.67-6.72 (m, 5H), 6.77 (s, 4H),6.80-6.87 (m, 6H), 6.94-7.05 (m, 10H), 7.23 (s, 1H), 7.66 (d, J = 8.1 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 24.3, 121.5, 122.2, 123.2, 124.7, 124.9, 125.2, 126.1, 126.4, 126.9, 127.0, 127.1, 128.5, 129.9, 130.1, 130.2, 130.4, 130.7, 131.0, 132.2, 132.4, 133.5, 133.9, 134.2, 134.5, 135.1, 135.4, 136.0, 136.1, 136.9, 141.9, 144.6, 144.8, 145.1, 167.6. HRMS Calcd (ESI) m/z for C₄₂H₃₂NOS: [M+H]⁺ 598.2205, found: 598.2209. Anal. Calcd for C₄₂H₃₁NOS: C, 84.39; H, 5.23; N, 2.34. Found: C, 84.63; H, 5.20; N, 2.08. IR (CHCl₃): 3401, 1664, 1220 cm⁻¹.

Ph Ph Ph Ph Ph F HN G 3ia

N-(5-methoxy-2-(phenyl(2,3,4,5tetraphenylcyclopenta-2,4-dien-1-

vlidene)methyl)phenyl)acetamide (3ha): Following the general procedure 2.2, the reaction was carried out by of *N*-(5-methoxy-2-(1heating mixture a phenylvinyl)phenyl)acetamide 1h (134 mg, 0.5 mmol), diphenylacetylene (2a, 178 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^tAmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 61% yield (brown solid, 190 mg). M.p.: 152–155 °C. ¹H NMR (500 MHz, CDCl₃) δ 1.82 (s, 3H), 3.63 (s, 3H), 6.52 (dd, J = 8.9, 2.7 Hz, 1H), 6.57 (d, J = 2.3Hz, 1H), 6.70-6.72 (m, 3H), 6.75 (s, 5H), 6.83-6.87 (m, 7H), 6.93-7.05 (m, 10H), 7.18 (d, J = 6.8 Hz, 1H), 7.44 (d, J = 8.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 24.0, 55.5, 115.4, 119.2, 124.4, 124.8, 125.3, 126.2, 127.0, 127.1, 127.3, 127.7, 128.4, 129.2, 129.7, 130.0, 130.4, 130.6, 131.1, 131.7, 133.2, 134.2, 134.6, 135.0, 135.3, 135.5, 136.4, 137.0, 140.2, 145.1, 145.4, 145.5, 151.4, 155.2, 167.7. HRMS Calcd (ESI) m/z for C₄₅H₃₆NO₂: [M+H]⁺ 622.2746, found: 622.2748. Anal. Calcd for C₄₅H₃₅NO₂: C, C, 86.93; H, 5.67; N, 2.25. Found: C, 86.68; H, 5.60; N, 1.97. IR (CHCl₃): 3410, 1665, 1601, 1514, 1220 cm⁻¹.

N-(5-fluoro-2-(phenyl(2,3,4,5-tetraphenylcyclopenta-2,4-dien-1-ylidene)methyl)phenyl)acetamide (3ia): Following the general procedure 2.2, the reaction was carried out by heating a mixture of *N*-(5-fluoro-2-(1phenylvinyl)phenyl)acetamide (1i, 128 mg, 0.5 mmol), diphenylacetylene (2a, 178 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^{*t*}AmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 76% yield (red solid, 232 mg). M.p.: 205-208 °C. ¹H NMR (500 MHz, CDCl₃) δ 1.86 (s, 3H), 6.64-6.68 (m, 1H), 6.71 (d, *J* = 7.2 Hz, 4H), 6.74-6.76 (m, 6H), 6.83-6.87 (m, 5H), 6.92-7.06 (m, 11H), 7.15 (s, 1H), 7.57 (d, J = 8.9 Hz, 1H).¹³C NMR (125 MHz, CDCl₃) δ 24.1, 116.2 (d, J = 21.9 Hz), 116.3, 120.4 (d, J = 22.9 Hz), 124.0, 124.9, 125.6, 126.3, 126.4, 127.1, 127.3, 127.5, 127.8, 128.6, 129.4, 130.0, 130.3, 130.5, 131.1, 131.8, 132.3, 133.0, 134.1, 134.2, 134.9 (d, J = 7.5 Hz), 135.0, 135.2, 136.2, 136.7, 139.8, 145.8, 146.0, 149.4, 158.3 (d, J = 254.0), 167.7. HRMS Calcd (ESI) m/z for C₄₄H₃₃FNO: [M+H]⁺ 610.2546, found: 610.2549. Anal. Calcd for C₄₄H₃₂FNO:C, 86.67; H, 5.29; N, 2.30. Found:C, 86.88; H, 5.40; N, 1.98. IR (CHCl₃): 3410, 1676, 1600, 1517, 1228 cm⁻¹.

N-(4-chloro-2-(phenyl(2,3,4,5-tetraphenylcyclopenta-2,4-dien-1-ylidene)methyl)phenyl)acetamide (**3ja**): Following the general procedure 2.2, the reaction was carried out by heating a mixture of N-(5-chloro-2-(1phenylvinyl)phenyl)acetamide 1j (136 mg, 0.5 mmol), diphenylacetylene (2a, 178 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^tAmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 77% yield (red solid, 241 mg). M.p.: 212–215 °C. ¹H NMR (500 MHz, CDCl₃) δ 1.80 (s, 3H), 6.71 (t, J = 6.8 Hz, 4H), 6.76-6.78 (m, 5H), 6.83-6.92 (m, 7H), 6.95-7.07 (m, 11H), 7.18 (d, J = 7.5 Hz, 1H), 7.66 (d, J = 8.8 Hz, 1H).¹³C NMR (125 MHz, CDCl₃) δ 24.3, 122.9, 125.0, 125.6, 126.4, 127.1, 127.3, 127.5, 128.0, 128.4, 128.7, 129.4, 129.5, 130.0, 130.3, 130.5, 131.1, 131.3, 133.1, 133.2, 133.7, 133.9, 134.5, 134.9, 135.0, 135.2, 136.4, 136.7, 139.5, 145.8, 146.0, 146.2, 149.2, 167.6. HRMS Calcd (ESI) m/z for C₄₄H₃₃ClNO: $[M+H]^+$ 626.2251, found: 626.2247. Anal. Calcd for C₄₄H₃₂ClNO: C, 84.40; H, 5.15; N, 2.24. Found: C, 84.17; H, 5.37; N, 2.03. IR (CHCl₃): 3400, 1660, 1591, 1220 cm⁻¹.

Following the general procedure 2.2, the reaction was carried out by heating a mixture of N-(5-bromo-2-(1phenylvinyl)phenyl)acetamide 1k (158 mg, 0.5 mmol), diphenylacetylene (2a, 178 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^tAmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 68% yield (red solid, 228 mg). M.p.: 209–212 °C.¹H NMR (500 MHz, CDCl₃) δ 1.78 (s, 3H), 6.70 (t, J = 6.8 Hz, 4H), 6.73-6.77 (m, 5H), 6.82 (t, J = 6.8Hz, 4H), 6.89 (bs, 1H), 6.95-7.06 (m, 12H), 7.16-7.19 (m, 2H), 7.61 (d, J = 8.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 24.3, 116.3, 123.0, 125.0, 125.6, 126.4, 127.1, 127.3, 127.5, 128.0, 128.6, 129.4, 130.0, 130.3, 130.5, 131.1, 131.3, 132.3, 133.1, 133.8, 133.9, 134.5, 135.0, 135.2, 135.4, 135.5, 136.4, 136.7, 139.4, 145.8, 146.0, 146.3, 149.0, 167.5. HRMS Calcd (ESI) m/z for C₄₄H₃₃BrNO: [M+H]⁺ 670.1746, found: 670.1744. Anal. Calcd for C₄₄H₃₂BrNO: C, 78.80; H, 4.81; N, 2.09. Found: C, 78.84; H, 4.80; N, 2.37. IR (CHCl₃): 3408, 1672, 1600, 1504, 1220 cm^{-1} .

N-(5-bromo-2-(phenyl(2,3,4,5-tetraphenylcyclopenta-

(3ka):

2,4-dien-1-ylidene)methyl)phenyl)acetamide

N-(2-(phenyl(2,3,4,5-tetraphenylcyclopenta-2,4-dien-1ylidene)methyl)naphthalen-1-yl)acetamide (3la): Following the general procedure 2.2, the reaction was carried out by heating a mixture of *N*-(2-(1phenylvinyl)naphthalen-1-yl)acetamide 1l (144 mg, 0.5 mmol), diphenylacetylene (2a, 178 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 10 mol %) and Cu(OAc)₂.H₂O (150 mg, 0.75 mmol) in ^{*t*}AmOH (4.0 mL) at 100 °C for 18 h under air to afford the title compound in 70% yield (red solid, 225 mg). M.p.: 188–191 °C. ¹H NMR (500 MHz, CDCl₃) δ 2.24 (s, 3H), 6.31 (t, *J* = 9.4 Hz, 1H), 6.45-6.52 (m, 2H), 6.68-6.86 (m, 12H), 6.93-7.04 (m, 9H), 7.71 (s, 1H), 7.14-7.22 (m, 2H), 7.34-7.45 (m, 3H), 7.57-7.70 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 22.9, 123.9, 124.6, 124.8, 125.0, 126.2, 126.4, 126.9, 127.0, 127.2, 127.3, 127.4, 127.7, 129.0, 129.7, 130.0, 130.3, 130.5, 130.7, 131.2, 132.8, 133.9, 134.2, 134.3, 135.0, 135.4, 135.6, 135.9, 137.1, 138.3, 140.9, 140.9, 144.4, 144.7, 146.0, 153.0, 169.7. HRMS Calcd (ESI) m/z for C₄₈H₃₆NO: [M+H]⁺ 642.2797, found: 642.2794. Anal. Calcd for C₄₈H₃₅NO: C, 89.83; H, 5.50; N, 2.18. Found: C, 90.16; H, 5.42; N, 1.92. IR (CHCl₃): 3401, 2344, 1680, 1485, 1442, 1249 cm⁻¹.

7. NMR-spectra

S29

S31

200	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90)	80	70	60	50	40	30	20	10	0

t i	lemental (composition														
File	Edit V	iew Proces	ss Help													
	B	8 8	M 🗖	\times												
Si To Ele Nu Mo 14 Ele	ngle Ma lerance = mber of is noisotopic 905 formu ements Us	ss Analys 100.0 mDa diction: Off sotope peak Mass, Ever la(e) evaluat sed:	is / DBE cs used fo n Electron ted with 2	: min = or i-FIT = lons 640 resi	-1.5, n = 3 ults with	nax = 50.0 in limits (all results (up to 10	00) for each mass)								
-					0.05		1.000	1.000.00								
664	.2268	Carc. Mass 664.2268 664.2269 664.2269 664.2267 664.2267 664.2265 664.2265 664.2255 664.2255 664.2271 664.2271 664.2271	mDa 0.0 -0.1 -0.1 0.1 0.1 0.2 0.3 0.3 -0.3 -0.3 -0.3 0.4	0.0 -0.2 -0.2 0.2 0.2 0.3 0.5 0.5 -0.5 -0.5 -0.5 0.6	23.5 21.5 8.5 10.5 12.5 14.5 3.5 1.5 19.5 17.5 16.5	Pormula C33 H30 N9 07 C39 H26 N13 02 F4 C21 H34 N3 07 F8 C21 H27 N13 02 F9 C25 H31 N9 07 F5 C24 H27 N13 02 F9 C25 H35 N5 012 F C21 H36 N5 012 F6 C17 H32 N9 07 F10 C31 H32 N7 02 F7 C31 H29 N7 02 F7 C31 H28 N7 02 F7	482.2 480.6 480.1 480.1 480.4 481.7 481.5 482.0 481.8 482.0 481.8 480.2 480.8	8.158 6.569 6.112 6.133 6.432 7.698 7.519 8.042 7.839 6.180 6.180 6.784	0.03 0.14 0.22 0.22 0.16 0.05 0.05 0.05 0.03 0.04 0.21 0.11	29 27 21 25 29 21 17 35 31 23	H 30 26 34 27 31 35 36 32 33 29 28	9 13 3 13 9 5 5 9 3 7 15	7 2 7 2 7 12 12 7 7 2 7 7 2 7 7 7 7 7 7	4 8 9 5 1 6 10 3 7 2		
		664.2264	0.4	0.6	28.5	C44 H30 N O F4	482.8	8.839	0.01	44	30	1	1	4		
180 JP-1 100	72019_29 94_180720	19_5369 019_003 16	5 (4.251)	AM2 (Ar;	30000.0	(556.31,0.00,LS 1)	402.4	0.300	0.02		23	15	7	664	4.2268	1. TOF MS ES- 1.79€+007
																F
96																F
	-														665.2309	HN HN
														664.156	57 666 2390	3ad
	70.861	16 1:	39.9862	205.93	80 23	2.9893 301.0686 321 091	1.338.0902	433.1266	526.15	91 ;	562.25	84 622	2229	662.217	667.2501,708.2060 762.2921	860,6594 901,2821 936,0698 1005,0242 1034,5115 1140,7605
1	50	100	150		200	250 300	350 400	450	500		550	6	00	650	700 750 800	850 900 950 1000 1050 1100 1150
For H	Help, press	F1														
6	9 (e (Ð	A		100				7		٩.	-	-	📼 📓 📉 🥪 🦉 🚸 2:39 PM 7/18/2019

 $\int \int \int$

3ah (mixture of three regioisomers, ratio = \sim 7:7:1)

100 f1 (ppm)

a 2558 a 2558

(mixture of four regioisomers, ratio = \sim 3:3:1:1)

⁽mixture of three regioisomers, ratio = \sim 5:3:1)

168.1282 166.8057 165.7245 165.7245 165.7245 165.7248 165.7248 165.7248 165.7248 158.7485 158.7485 158.7485 158.7487 158.7487 158.7487 158.7487 158.7487 158.7487 158.7487 158.7485 141.3180 141.3180 141.3180 135.5553 136.5553 137.9556 138.25561 138.25561 138.25561 138.25561 138.25561 138.25561 138.25561 138.25561 138.25561 138.25651 138.25651 138.25651 138.25651 138.25651 128.4587857 128.4587857 128.4587857 128.4587857 128.458787

Determination of ratio of regioisomers:

Expanded form:

3aj (mixture of four regioisomers, ratio = ~ 3:3:1:1)

Ó

2.44 2.42 2.40 2.38 2.36 2.34 2.32 2.30 2.28 2.26 2.24 2.22 2.20 2.18 2.16 2.14 2.12 2.10 2.08 2.06 2.04 2.02 2.00 1.98 1.96 1.94 1.92 1.90 1.88 1.86 f1 (ppm)

.3644 .3512 .3512 .3512 .3332 .3332 .33367 .32889 .32710 .2889 .32710 .2763 0.7763 0.7763 0.6751-0.0186 387. 6929 7886 7708 3692

S73