Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Organocatalytic Asymmetric Friedel-Crafts Reaction of 2-Substituted Indoles with Aldehydes: Enantioselective Synthesis of a-Hydroxyl Ketones by Low Loading of Chiral Phosphoric Acid

Xiong-fei Deng,^a Ying-wei Wang, ^a Shi-qi Zhang, ^a Ling Li, ^a Guang-xun Li, ^{*b} Gang Zhao^{*a} and Zhuo Tang^{*b}

^a College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610041, P. R. of China

^b Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, P. R. of China

Correspondence and requests for materials should be addressed to: ligx@cib.ac.cn; gzhao18@sina.com; tangzhuo@cib.ac.cn

Contents

1. General information	2
2 General procedure for reactions	3
2. Analytical data	1
3. Analytical data	4
4. X-ray crystallography	13
Reference	14
NMR spectra of compounds	15
HPLC analysis of compounds	36

1. General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out in air and using undistilled solvents, without any precautions to exclude air and moisture unless otherwise noted. Reactions were monitored by thinlayer chromatography (TLC) on silica gel precoated glass plates. TLC plates were visualized with UV light (254 nm) or iodine treatment.

NMR spectra were recorded in CDCl₃, or DMSO-*d*₆ on a Varian Inova 400 (400 MHz for ¹H , 101 MHz for ¹³C and 376 MHz for ¹⁹F), using their residual solvent peaks as internal standard. Data were reported as follows: chemical shift (δ ppm), multiplicity (s = single, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration and assignment. High resolution mass spectra (HR-MS) were determined on a Bruker APEX III FT-MS (7 T magnet) with an ESI source. High-performance liquid chromatography (HPLC) was performed on Agilent 1200 Series or SHIMADZU LC6 A instrument equipped with a DAD detector on chiral columns (Chiralcel OD-H, CHIRALPAK IC, chiralpak AD-H or CHIRALPAK AS-H). Optical rotations were measured on an Autopol IV Polarimeter and reported as follows: [α] $_D^{20}$ (*c* in g per 100 mL, solvent).

2. General procedure for reactions

a. Preparation of the substrates

The substrates $1a-e^1$ and $2b-j^2$, were prepared according to the reported procedures, respectively.

b. Typical experimental procedure for the racemic reaction

To a tube, we added substrates 1a (0.2 mmol), 2a (1.2 equiv), diphenyl phosphate (1 mol%), and dichloromethane (2 mL).the mixture was stirred at 25°C until complete consumption of starting material as monitored by TCL (about 4 h).After the reaction was finished, the reaction mixture was concentrated in vacuum, and the resulting residue was purified by silica gel column charomatograpgy to afford the desired product **3a**.

c. Typical experimental procedure of the asymmetric reaction

To a tube, we added substrates 1a (0.1 mmol), 2a (1.2 equiv), C7 (0.1 mol%), and chloroform (1 mL). The mixture was stirred at 10 °C about 24 h. After the reaction was finished, the reaction mixture was concentrated in vacuum, and the resulting residue was purified by silica gel column charomatograpgy to afford the desired product 3a.

3. Analytical data

(S)-2-(2-(tert-butyl)-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one (3a)

Yellow solid, 96% yield (29.5 mg), M.P = 124~125 °C

HPLC Analysis: 97%ee ($t_{minor} = 17.0 \text{ min}$, $t_{major} = 19.3 \text{ min}$); Daicel Chiralpak IC Column, n-Hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254$ nm.

¹**H NMR** (400 MHz, DMSO-d₆) δ 10.67 (s, 1H), 7.75 (d, J = 7.3 Hz, 2H), 7.33 (t, J = 7.3 Hz, 1H), 7.23 (t, J = 7.6 Hz, 2H), 7.18 (d, J = 8.0 Hz, 1H), 7.14 (d, J = 8.0 Hz, 1H), 6.83 (t, J = 7.2 Hz, 1H), 6.71 (t, J = 7.4 Hz, 1H), 6.34 (d, J = 4.6 Hz, 1H), 5.25 (d, J = 4.7 Hz, 1H), 1.46 (s, 9H).

¹³**C NMR** (101 MHz, DMSO-d₆) δ 201.87, 145.18, 136.40, 135.13, 133.11, 128.75, 128.45, 127.33, 120.77, 119.19, 119.09, 111.41, 107.93, 70.46, 55.39, 34.01, 31.43.

HRMS (ESI): m/z calcd for $C_{20}H_{21}NO_2Na$ [M+Na]⁺ = 330.1465, found: 330.1471.

 $[\alpha]_{D}^{20} = +169.0^{\circ} (c \ 0.39, \text{DCM}).$

(S)-2-(2-(tert-butyl)-1H-indol-3-yl)-2-hydroxy-1-(4-methoxyphenyl)ethan-1-one (3b)

White solid, 92% yield (31.0 mg), M.P.= 121~123 °C.

HPLC Analysis: 93%ee (t_{minor} = 27.0 min, t_{major} = 32.3 min); Daicel Chiralpak IC Column, n-Hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, λ = 254 nm.

¹**H NMR** (400 MHz, DMSO-d₆) δ 10.36 (s, 1H), 7.48 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.0 Hz, 1H), 6.77 (d, *J* = 8.0 Hz, 1H), 6.51 (dd, *J* = 17.1, 8.2 Hz, 3H), 6.38 (t, *J* = 7.5 Hz, 1H), 5.95 (s, 1H), 4.80 (s, 1H), 2.98 (s, 3H), 1.19 (s, 9H).

¹³**C NMR** (101 MHz, DMSO-d₆) δ 199.9, 163.3, 145.0, 135.1, 130.9, 128.5, 127.2, 120.7, 119.1, 119.0, 114.1, 111.3, 108.5, 70.0, 55.9, 34.0, 31.4.

HRMS (ESI): m/z calcd for $C_{21}H_{23}NO_3Na [M+Na]^+ = 360.1570$, found: 360.1579.

 $[\alpha]_{D}^{20} = +60.0^{\circ} (c \ 0.31, \text{DCM}).$

(S)-2-(2-(tert-butyl)-1H-indol-3-yl)-2-hydroxy-1-(3-methoxyphenyl)ethan-1-one (3c)

Yellow solid, 77% yield (26.0 mg), M.P.= 60~62 °C.

HPLC Analysis: 91%ee ($t_{minor} = 27.0 \text{ min}$, $t_{major} = 32.3 \text{ min}$); Daicel Chiralpak IC Column, n-Hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254$ nm.

¹**H** NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.49 (dd, J = 10.6, 5.1 Hz, 2H), 7.23 (d, J = 8.2 Hz, 2H), 7.15 (t, J = 8.0 Hz, 1H), 7.06 – 7.00 (m, 1H), 6.94 (dt, J = 15.1, 4.5 Hz, 2H), 6.32 (d, J = 4.2 Hz, 1H), 4.60 (d, J = 4.3 Hz, 1H), 3.69 (s, 3H), 1.64 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 201.43, 159.45, 144.65, 135.62, 134.17, 129.34, 126.91, 121.61, 121.32, 120.19, 119.85, 118.68, 113.37, 110.52, 108.46, 70.55, 55.33, 33.46, 31.09.

HRMS (ESI): m/z calcd for $C_{21}H_{23}NO_3Na [M+Na]^+ = 360.1570$, found: 360.1573.

 $[\alpha]_{D}^{20} = +92.4^{\circ} (c \ 0.21, \text{DCM})$

(S)-2-(2-(tert-butyl)-1H-indol-3-yl)-2-hydroxy-1-(4-nitrophenyl)ethan-1-one (3d)

Yellow solid, 68% yield (24.0 mg), M.P.= 58~60 °C.

HPLC Analysis: 95%ee ($t_{minor} = 32.0 \text{ min}$, $t_{major} = 37.8 \text{ min}$); Daicel Chiralpak IC Column, n-Hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254$ nm.

¹**H NMR** (400 MHz, CDCl₃) δ 8.21 (s, 1H), 8.06 (dd, *J* = 27.8, 9.0 Hz, 4H), 7.25 (d, *J* = 8.1 Hz, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.93 (t, *J* = 8.0 Hz, 1H), 6.35 (s, 1H), 4.36 (s, 1H), 1.64 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 200.61, 150.22, 145.24, 139.38, 134.13, 129.60, 126.61, 123.56, 121.98, 120.56, 118.15, 110.87, 107.07, 71.18, 33.45, 31.07.

HRMS (ESI): m/z calcd for $C_{20}H_{20}N_2O_4Na$ [M+Na]⁺ = 375.1315, found: 375.1325.

 $[\alpha]_{D}^{20} = +56.9^{\circ} (c \ 0.13, \text{DCM})$

(S)-2-(2-(tert-butyl)-1H-indol-3-yl)-1-(4-fluorophenyl)-2-hydroxyethan-1-one (3e)

Yellow solid, 91% yield (29.6 mg), M.P. = 125~126 °C.

HPLC Analysis: 94%ee ($t_{minor} = 12.4 \text{ min}$, $t_{major} = 14.1 \text{ min}$); Daicel Chiralpak IC Column, n-Hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254$ nm.

¹**H NMR** (400 MHz, DMSO-d₆) δ 10.74 (s, 1H), 7.89 (dd, *J* = 8.7Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 1H), 7.16 (dd, *J* = 8.7Hz, 3H), 6.90 (t, *J* = 7.2 Hz, 1H), 6.77 (t, *J* = 7.5 Hz, 1H), 6.37 (s, 1H), 5.34 (s, 1H), 1.52 (s, 9H).

¹³C NMR (101 MHz, DMSO-d₆) δ 200.4, 166.2, 163.7, 145.2, 135.1, 133.0, 131.4, 131.3, 127.3, 120.8, 119.1, 115.9, 115.7, 111.4, 107.8, 70.4, 34.0, 31.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ 103.79.

HRMS (ESI): m/z calcd for $C_{20}H_{20}FNO_2Na [M+Na]^+ = 348.1370$, found: 348.1368.

 $[\alpha]_{D}^{20} = +60.0^{\circ} (c \ 0.33, \text{DCM}).$

(S)-1-(4-bromophenyl)-2-(2-(tert-butyl)-1H-indol-3-yl)-2-hydroxyethan-1-one (3f)

Yellow solid, 90% yield (34.7 mg), M.P. = 124~125 °C.

HPLC Analysis: 95%ee ($t_{minor} = 9.9 \text{ min}$, $t_{major} = 11.6 \text{ min}$); Daicel Chiralpak IC Column, n-Hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254$ nm.

¹**H NMR** (400 MHz, DMSO-d₆) δ 10.75 (s, 1H), 7.73 (d, *J* = 8.5 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 6.91 (t, *J* = 7.4 Hz, 1H), 6.78 (d, *J* = 15.0 Hz, 1H), 6.37 (s, 1H), 5.38 (s, 1H), 1.53 (s, 9H).

¹³C NMR (101 MHz, DMSO-d₆) δ 201.2, 145.3, 135.5, 135.1, 131.8, 130.4, 127.2, 127.0, 120.8, 119.1, 119.0, 111.4, 107.6, 70.5, 34.0, 31.4.

HRMS (ESI): m/z calcd for $C_{20}H_{20}BrNO_2Na$ [M+Na]⁺ = 408.0570, found:408.0563.

 $[\alpha]_{D}^{20} = +40.8^{\circ} (c \ 0.39, DCM)$

(S)-2-(2-(tert-butyl)-1H-indol-3-yl)-2-hydroxy-1-(4-(trifluoromethyl)phenyl)ethan-1-one (3g)

Yellow solid, 90% yield (33.8 mg), M.P.= 71~72 °C.

HPLC Analysis: 95%ee ($t_{minor} = 8.2 \text{ min}, t_{major} = 9.4 \text{ min}$); Daicel Chiralpak IC Column, n-Hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, T= 30°C, $\lambda = 254 \text{ nm}$.

¹**H** NMR (400 MHz, DMSO-d₆) δ 10.76 (s, 1H), 7.95 (d, J = 8.1 Hz, 2H), 7.72 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.0 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 6.92 (t, J = 7.4 Hz, 1H), 6.80 (t, J = 7.5 Hz, 1H), 6.45 (d, J = 4.6 Hz, 1H), 5.48 (d, J = 4.8 Hz, 1H), 1.51 (s, 9H).

¹³C NMR (101 MHz, DMSO-d₆) δ 201.6, 145.5, 140.3, 135.1, 129.1, 127.3, 125.8, 125.8, 120.8, 119.2, 119.0, 111.5, 107.2, 70.9, 33.9, 31.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ 63.33.

HRMS (ESI): m/z calcd for $C_{21}H_{20}F_3NO_2Na [M+Na]^+ = 398.1338$, foun-d:398.1333.

 $[\alpha]_{D}^{20} = +58.8^{\circ} (c \ 0.33, DCM)$

(S)-2-(2-(tert-butyl)-1H-indol-3-yl)-2-hydroxy-1-(thiophen-2-yl)ethan-1-one (3h)

Yellow solid, 97% yield (30.4 mg), M.P.= 70~72 °C.

HPLC Analysis: 95%ee ($t_{minor} = 24.2 \text{ min}$, $t_{major} = 27.2 \text{ min}$); Daicel Chiralpak ID Column, n-Hexane/ i-PrOH = 90/10, flow rate 1.0 mL/min, T= 30 °C, $\lambda = 254$ nm.

¹**H** NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.62 (dd, J = 3.8, 1.1 Hz, 1H), 7.47 (dd, J = 4.9, 1.0 Hz, 1H), 7.26 (t, J = 7.2 Hz, 2H), 7.05 (t, J = 7.6 Hz, 1H), 6.93 (t, J = 8.0 Hz, 1H), 6.91 – 6.86 (m, 1H), 6.17 (d, J = 3.3 Hz, 1H), 4.54 (d, J = 3.3 Hz, 1H), 1.64 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 193.95, 145.55, 139.33, 134.41, 134.12, 134.00, 127.84, 127.23, 121.72, 120.34, 118.69, 110.55, 108.30, 70.80, 33.44, 31.16.

HRMS (ESI): m/z calcd for $C_{18}H_{19}NO_2SNa [M+Na]^+ = 336.1053$, foun-d:336.1036.

 $[\alpha]_{D}^{20} = +88.2^{\circ} (c \ 0.25, DCM)$

(S)-2-(2-(tert-butyl)-1H-indol-3-yl)-2-hydroxy-1-(naphthalen-2-yl)ethan-1-one (3i)

Yellow solid, 85% yield(30.4 mg), M.P.= 56~58 °C.

HPLC Analysis: 89%ee ($t_{minor} = 20.2 \text{ min}$, $t_{major} = 26.8 \text{ min}$); Daicel Chiralpak IC Column, n-Hexane/ i-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254$ nm.

¹**H NMR** (400 MHz, DMSO-d₆) δ 10.73 (s, 1H), 8.46 (s, 1H), 7.86 (qd, J = 8.6, 3.2 Hz, 4H), 7.59 – 7.53 (m, 1H), 7.53 – 7.48 (m, 1H), 7.23 (dd, J = 12.1, 8.0 Hz, 2H), 6.94 – 6.83 (m, 1H), 6.82 – 6.72 (m, 1H), 6.57 (d, J = 4.9 Hz, 1H), 5.37 (d, J = 4.9 Hz, 1H), 1.59 (s, 9H).

¹³C NMR (101 MHz, DMSO) δ 201.77, 145.17, 135.12, 133.61, 132.11, 129.62, 129.58, 128.90, 128.35, 128.08, 127.41, 127.30, 124.56, 120.73, 119.16, 119.04, 111.36, 108.11, 70.49, 34.05, 31.46.

HRMS (ESI): m/z calcd for $C_{24}H_{23}NO_2Na [M+Na]^+ = 380.1621$, foun-d:380.1627.

 $[\alpha]_{D}^{20} = +49.7^{\circ} (c \ 0.31, \text{DCM})$

(S)-2-(2-(tert-butyl)-1H-indol-3-yl)-2-hydroxy-1-(naphthalen-1-yl)ethan-1-one (3j)

Yellow solid, 95% yield (33.9 mg), M.P.= 71~74 °C.

HPLC Analysis: 90%ee ($t_{minor} = 27.8 \text{ min}$, $t_{major} = 39.3 \text{ min}$); Daicel Chiralpak IC Column, n-Hexane/ i-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254$ nm.

¹**H** NMR (400 MHz, DMSO-d₆) δ 10.52 (s, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.86 (dd, J = 8.0, 4.2 Hz, 2H), 7.67 (d, J = 7.8 Hz, 1H), 7.50 (d, J = 6.9 Hz, 1H), 7.46 – 7.41 (m, 1H), 7.39 (d, J = 7.8 Hz, 1H), 7.36 – 7.30 (m, 1H), 7.22 (d, J = 7.9 Hz, 1H), 6.96 (t, J = 7.1 Hz, 1H), 6.90 (t, J = 7.3 Hz, 1H), 6.45 (d, J = 3.9 Hz, 1H), 5.58 (d, J = 3.9 Hz, 1H), 1.19 (s, 9H).

¹³C NMR (101 MHz, DMSO) δ 204.94, 145.33, 136.81, 135.10, 133.49, 131.15, 130.11, 128.73, 127.74, 127.34, 126.65, 126.03, 125.29, 124.82, 120.94, 120.61, 118.93, 111.26, 106.31, 72.76, 33.57, 31.16.

HRMS (ESI): m/z calcd for $C_{24}H_{23}NO_2Na [M+Na]^+ = 380.1621$, foun-d:380.1627.

 $[\alpha]_{D}^{20} = +86.6^{\circ} (c \ 0.31, \text{DCM})$

(S)-2-(2-(tert-butyl)-5-methyl-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one (3k)

Yellow solid, 97% yield (31.2 mg), M.P.= 59~61 °C.

HPLC Analysis: 94%ee ($t_{minor} = 11.3 \text{ min}, t_{major} = 12.8 \text{ min}$); Daicel Chiralpak AD-H Column, n-Hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254$ nm.

¹**H** NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.97 – 7.89 (m, 2H), 7.42 (t, *J* = 7.4 Hz, 1H), 7.31 – 7.23 (m, 2H), 7.12 (d, *J* = 8.2 Hz, 1H), 6.99 (d, *J* = 16.6 Hz, 1H), 6.85 (dd, *J* = 8.2, 1.0 Hz, 1H), 6.29 (s, 1H), 2.28 (s, 3H), 1.63 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 201.68, 144.66, 134.54, 133.44, 132.47, 129.42, 128.78, 128.35, 127.15, 123.20, 118.34, 110.15, 107.84, 70.66, 33.43, 31.08, 21.58.

HRMS (ESI): m/z calcd for $C_{21}H_{23}NO_2Na$ [M+Na]⁺ = 344.17288, found:344.16129.

 $[\alpha]_{D}^{20} = +104.5^{\circ} (c \ 0.55, DCM)$

(S)-2-(2-(tert-butyl)-5-methoxy-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one (3I)

Yellow solid, 99% yield (33.4 mg), M.P.= 64~66 °C.

HPLC Analysis: 90%ee ($t_{minor} = 16.7 \text{ min}$, $t_{major} = 19.1 \text{ min}$); Daicel Chiralcel OD-H Column, n-Hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254$ nm.

¹**H** NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.93 (d, *J* = 7.2 Hz, 2H), 7.43 (t, *J* = 7.4 Hz, 1H), 7.31 – 7.24 (m, 2H), 7.14 – 7.05 (m, 1H), 6.67 (dq, *J* = 4.9, 2.4 Hz, 2H), 6.31 (d, *J* = 4.1 Hz, 1H), 4.60 (d, *J* = 4.2 Hz, 1H), 3.69 (s, 3H), 1.63 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 201.78, 154.35, 145.41, 134.48, 133.54, 129.18, 128.67, 128.39, 127.32, 111.78, 111.28, 108.24, 100.58, 70.57, 55.72, 33.46, 31.04.

HRMS (ESI): m/z calcd for $C_{21}H_{23}NO_3Na$ [M+Na]⁺ = 360.1570, found: 360.1574.

 $[\alpha]_{D}^{20} = +62.1^{\circ} (c \ 0.29, \text{DCM})$

(S)-2-(2-(tert-butyl)-5-fluoro-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one (3m)

Yellow solid, 95% yield (30.9 mg), M.P.= 115~117 °C.

HPLC Analysis: 95%ee ($t_{minor} = 14.1 \text{ min}$, $t_{major} = 16.0 \text{ min}$); Daicel Chiralpak IC Column, n-Hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254$ nm.

¹**H** NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 8.01 – 7.87 (m, 2H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.31 (dd, *J* = 14.3, 6.7 Hz, 2H), 7.15 (dd, *J* = 8.8, 4.4 Hz, 1H), 6.90 (dd, *J* = 10.2, 2.3 Hz, 1H), 6.78 (td, *J* = 9.0, 2.4 Hz, 1H), 6.33 (s, 1H), 4.67 (s, 1H), 1.67 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 201.24, 159.17, 156.84, 146.60, 134.22, 133.69, 130.63, 128.76, 128.45, 127.27, 111.27, 111.17, 110.07, 109.81, 108.69, 108.65, 103.95, 103.71, 70.25, 33.54, 30.98.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -123.37.

HRMS (ESI): m/z calcd for $C_{20}H_{20}FNO_2Na [M+Na]^+ = 348.1478$, found: 348.1370.

 $[\alpha]_{D}^{20} = +132.1^{\circ} (c \ 0.576, \text{DCM})$

(S)-2-(2-(tert-butyl)-5-chloro-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one (3n)

Yellow solid, 98% yield (33.4 mg), M.P.= 58~60 °C.

HPLC Analysis: 95%ee ($t_{major} = 10.8 \text{ min}, t_{minor} = 14.9 \text{ min}$); Daicel Chiralpak AD-H Column, n-Hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254 \text{ nm}$.

¹**H** NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.98 – 7.86 (m, 2H), 7.45 (t, *J* = 7.4 Hz, 1H), 7.29 (t, *J* = 7.8 Hz, 2H), 7.19 (d, *J* = 1.7 Hz, 1H), 7.13 (d, *J* = 8.6 Hz, 1H), 6.97 (dd, *J* = 8.6, 1.9 Hz, 1H), 6.29 (s, 1H), 4.64 (s, 1H), 1.64 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 201.16, 146.17, 134.23, 133.68, 132.51, 128.76, 128.45, 127.91, 125.90, 122.02, 118.13, 111.57, 108.27, 70.19, 33.53, 30.97.

HRMS (ESI): m/z calcd for $C_{20}H_{20}CINO_2Na [M+Na]^+ = 364.1183$, found:364.1061.

 $[\alpha]_D^{20} = +62.0^\circ (c \ 0.84, \text{DCM})$

(S)-2-(2-(tert-butyl)-4-methoxy-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one (30)

Yellow solid, 93% yield (31.4 mg), M.P.= 163~165 °C.

HPLC Analysis: 96%ee ($t_{minor} = 10.8 \text{ min}$, $t_{major} = 16.7 \text{ min}$); Daicel Chiralpak AD-H Column, n-Hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254$ nm.

¹**H NMR** (400 MHz, CDCl₃) δ 8.21 (d, J = 32.5 Hz, 1H), 8.02 – 7.89 (m, 2H), 7.47 – 7.39 (m, 1H), 7.32 (t, J = 7.6 Hz, 2H), 7.00 (dd, J = 14.9, 7.0 Hz, 1H), 6.94 – 6.86 (m, 1H), 6.37 (d, J = 7.6 Hz, 1H), 6.19 (s, 1H), 4.84 (d, J = 4.5 Hz, 1H), 3.64 (s, 3H), 1.55 (s, 9H). ¹³C **NMR** (101 MHz, CDCl₃) δ 199 93, 152 21, 143 21, 135 64, 135 63, 132 43, 129 19, 128 12

¹³**C NMR** (101 MHz, CDCl₃) δ 199.93, 152.21, 143.21, 135.64, 135.63, 132.43, 129.19, 128.12, 122.43, 117.49, 109.00, 104.30, 100.17, 71.42, 54.21, 31.10, 1.06.

HRMS (ESI): m/z calcd for $C_{20}H_{20}CINO_2Na [M+Na]^+ = 360.1678$, found: 360.1571.

 $[\alpha]_{D}^{20} = +82.7^{\circ} (c \ 0.45, \text{DCM})$

(S)-2-hydroxy-2-(2-isopropyl-1H-indol-3-yl)-1-phenylethan-1-one (**3p**)

Yellow solid, 95% yield (27.8 mg), M.P.= 47~50 °C.

HPLC Analysis: 90%ee ($t_{minor} = 8.1 \text{ min}, t_{major} = 10.9 \text{min}$); Daicel Chiralpak IC Column, n-Hexane/ i-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254 \text{ nm}$.

¹**H NMR** (400 MHz, CDCl₃-d1) δ 8.03 (s, 1H), 7.91 (d, *J* = 7.2 Hz, 2H), 7.49 (d, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.4 Hz, 1H), 7.30 (t, *J* = 7.8 Hz, 2H), 7.24 (d, *J* = 7.2 Hz, 1H), 7.08 (pd, *J* = 7.1, 1.2 Hz, 2H), 6.23 (d, *J* = 4.8 Hz, 1H), 4.51 (d, *J* = 4.9 Hz, 1H), 3.51 – 3.32 (m, 1H), 1.38 (d, *J* = 7.0 Hz, 3H), 1.26 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 200.26, 143.26, 135.25, 134.01, 133.58, 128.63, 128.47, 126.38, 121.67, 120.25, 118.37, 110.63, 107.88, 69.12, 29.73, 25.64, 23.06, 22.33.

HRMS (ESI): m/z calcd for $C_{19}H_{19}NO_2Na$ [M+Na]⁺ = 316.1306, found:316.1317.

 $[\alpha]_{D}^{20^{\circ}C} = +94.3^{\circ} (c \ 0.23, DCM)$

(S)-2-hydroxy-2-(2-isobutyl-1H-indol-3-yl)-1-phenylethan-1-one (3q)

Yellow solid, 99% yield (30.4 mg), M.P.= 114~118 °C.

HPLC Analysis: 84%ee ($t_{minor} = 14.7 \text{ min}$, $t_{major} = 18.3 \text{ min}$); Daicel Chiralpak IC Column, n-Hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254$ nm.

¹**H** NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.96 – 7.79 (m, 2H), 7.52 – 7.38 (m, 2H), 7.29 (t, J = 7.8 Hz, 2H), 7.22 (d, J = 7.4 Hz, 1H), 7.15 – 6.97 (m, 2H), 6.16 (d, J = 4.2 Hz, 1H), 4.50 (d, J = 4.7 Hz, 1H), 2.82 – 2.60 (m, 2H), 2.13 – 1.95 (m, 1H), 0.99 (dd, J = 24.6, 6.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 200.13, 137.46, 135.29, 133.99, 133.58, 128.67, 128.47, 126.47, 121.67, 120.21, 118.31, 110.49, 110.12, 69.26, 35.56, 29.25, 22.88, 22.48.

HRMS (ESI): m/z calcd for $C_{20}H_{21}NO_2Na$ [M+Na]⁺ = 330.1465, found:330.1472.

 $[\alpha]_{D}^{20} = +97.2^{\circ} (c \ 0.29, \text{DCM})$

(S)-2-(2-hexyl-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one (3r)

Yellow solid, 98% yield (32.8 mg), M.P.= 95~98 °C.

HPLC Analysis: 80%ee ($t_{minor} = 18.8 \text{ min}$, $t_{major} = 20.4 \text{min}$); Daicel Chiralpak IC Column, n-Hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254$ nm.

¹**H** NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.90 (d, J = 7.2 Hz, 2H), 7.49 (d, J = 7.1 Hz, 1H), 7.44 (t, J = 7.4 Hz, 1H), 7.30 (t, J = 7.8 Hz, 2H), 7.22 (d, J = 7.8 Hz, 1H), 7.07 (pd, J = 7.1, 1.3 Hz, 2H), 6.19 (s, 1H), 4.51 (s, 1H), 2.91 – 2.71 (m, 2H), 1.65 (ddd, J = 21.0, 14.0, 7.0 Hz, 3H), 1.44 – 1.28 (m, 5H), 0.90 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 200.04, 138.24, 135.28, 133.95, 133.59, 128.65, 128.47, 126.56, 121.64, 120.23, 118.24, 110.49, 109.30, 69.16, 31.74, 29.20, 26.32, 22.50, 13.99.

HRMS (ESI): m/z calcd for $C_{22}H_{26}NO_2 [M+H]^+ = 336.1019$, found:336.1036.

 $[\alpha]_{D}^{20} = +75.6^{\circ} (c \ 0.27, DCM)$

(S)-2-hydroxy-1-phenyl-2-(2-phenyl-1H-indol-3-yl)ethan-1-one (3s)

Yellow solid, 90% yield (29.4 mg), M.P.= 80~83 °C.

HPLC Analysis: 77%ee (t_{minor} = 15.5 min, t_{major} = 30.3min); Daicel Chiralpak AS-H Column, n-Hexane/i-PrOH =80/20, flow rate 1.0 mL/min, T = 30 °C, λ = 254 nm.

¹**H NMR** (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.65 (d, *J* = 7.3 Hz, 2H), 7.60 – 7.54 (m, 2H), 7.53 – 7.39 (m, 4H), 7.31 (t, *J* = 7.4 Hz, 1H), 7.24 (t, *J* = 3.9 Hz, 1H), 7.10 (td, *J* = 7.9, 4.0 Hz, 3H), 7.06 – 6.99 (m, 1H), 6.16 (d, *J* = 3.9 Hz, 1H), 4.70 (d, *J* = 3.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 199.67, 137.83, 136.02, 133.50, 131.79, 129.27, 128.86, 128.75, 128.63, 128.26, 126.50, 122.67, 120.67, 119.44, 111.08, 110.09, 69.87.

HRMS (ESI): m/z calcd for $C_{22}H_{17}NO_2Na$ [M+Na]⁺ = 350.1151, found:350.1160.

 $[\alpha]_{D}^{20} = +132.6^{\circ} (c \ 0.35, \text{DCM})$

(S)-2-(2-(4-fluorophenyl)-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one (3t)

Yellow solid, 95% yield (32.8 mg), M.P.= 121~124 °C.

HPLC Analysis: 92%ee ($t_{minor} = 9.4$ min, $t_{major} = 11.2$ min); Daicel Chiralpak IC Column, n-Hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254$ nm.

¹**H** NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.55 (t, *J* = 6.7 Hz, 4H), 7.46 (d, *J* = 7.9 Hz, 1H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.17 – 7.07 (m, 5H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.09 (d, *J* = 4.3 Hz, 1H), 4.72 (d, *J* = 4.6 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 199.50, 136.69, 135.92, 133.56, 130.65, 130.57, 128.56, 128.30, 127.90, 126.48, 122.86, 120.85, 119.42, 116.50, 116.28, 110.99, 110.46, 69.66.

¹⁹**F NMR** (376 MHz, CDCl₃) δ 111.94.

HRMS (ESI): m/z calcd for $C_{22}H_{16}FNO_2Na [M+Na]^+ = 368.1057$, found: 368.1069.

 $[\alpha]_{D}^{20} = +113.7^{\circ} (c \ 0.29, \text{DCM})$

(S)-2-(2-(4-chlorophenyl)-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one (3u)

White solid, 95% yield (34.3 mg), M.P.= 145~146 °C.

HPLC Analysis: 88%ee ($t_{minor} = 6.9 \text{ min}, t_{major} = 7.9 \text{min}$); Daicel Chiralpak IC Column, n-Hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, $\lambda = 254$ nm.

¹**H NMR** (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.58 – 7.53 (m, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 7.9 Hz, 1H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.23 (d, *J* = 8.1 Hz, 1H), 7.16 – 7.08 (m, 3H), 7.07 – 6.99 (m, 1H), 6.09 (d, *J* = 4.1 Hz, 1H), 4.74 (d, *J* = 4.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 199.46, 136.49, 136.06, 134.94, 133.61, 133.45, 130.12, 129.89, 129.47, 128.55, 128.32, 126.42, 122.97, 120.86, 119.42, 111.16, 110.50, 69.66.

HRMS (ESI): m/z calcd for $C_{22}H_{16}CINO_2Na [M+Na]^+ = 384.0762$, found: 384.0773.

 $[\alpha]_{D}^{20} = +100^{\circ} (c \ 0.24, \text{DCM})$

(S)-1-(2-(tert-butyl)-1H-indol-3-yl)-1-hydroxyheptan-2-one (3v)

Yellow oil, 30% yield (9.0 mg).

HPLC Analysis: 52%ee (t_{minor} = 14.7 min, t_{major} = 23.5 min); Daicel Chiralcel OD-H Column, n-Hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, λ = 254 nm.

¹**H** NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.24 (d, *J* = 7.9 Hz, 1H), 7.17 – 7.10 (m, 1H), 7.07 – 6.99 (m, 1H), 5.68 (s, 1H), 4.35 (s, 1H), 2.39 (ddd, *J* = 10.5, 8.3, 6.7 Hz, 2H), 1.60 (s, 9H), 1.58 (s, 2H), 1.22 – 1.12 (m, 4H), 0.82 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 211.98, 145.81, 134.07, 127.15, 121.75, 120.30, 118.69, 110.68, 106.90, 73.05, 37.86, 33.04, 31.20, 31.16, 23.47, 22.33, 13.83.

HRMS (ESI): m/z calcd for $C_{21}H_{23}NO_2Na$ [M+Na]⁺ = 324.2042, found:324.1931.

 $[\alpha]_{D}^{20} = +13.3^{\circ} (c \ 1.31, \text{DCM})$

(S)-2-(2-(tert-butyl)-1-methyl-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one (3w)

Yellow solid, 70% yield (22.5 mg), M.P.= 115~118 °C.

HPLC Analysis: 10%ee (t_{minor} = 21.5 min, t_{major} = 27.0 min); Daicel Chiralpak ID Column, n-Hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, T = 30 °C, λ = 254 nm.

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (d, *J* = 7.4 Hz, 2H), 7.37 (t, *J* = 7.4 Hz, 1H), 7.26 (dt, *J* = 15.4, 7.8 Hz, 3H), 7.15 (d, *J* = 8.2 Hz, 1H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.92 (t, *J* = 7.5 Hz, 1H), 6.57 (s, 1H), 4.60 (s, 1H), 3.87 (s, 3H), 1.75 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 201.63, 144.65, 138.24, 134.38, 133.39, 128.69, 128.34, 125.99, 121.72, 119.95, 119.16, 108.88, 108.77, 71.10, 34.93, 33.77, 31.66.

HRMS (ESI): m/z calcd for $C_{21}H_{23}NO_2Na$ [M+Na]⁺ = 344.1621, found:344.1630.

 $[\alpha]_{D}^{20} = +11.5^{\circ} (c \ 0.13, \text{DCM})$

4. X-ray crystallography

Empirical formula	C ₂₀ H ₂₁ NO ₂
Formula weight	307.38
Ζ	4
Space group	C2
a/Å	14.3043(11)
b/Å	9.7587(7)
c/Å	12.3878(7)
α/°	90
β/°	105.846(7)
γ/°	90
Volume/Å3	1663.5(2)
ρ _{calc} g/cm3	1.227
μ/mm ⁻¹	0.623
F(000)	656.0
Temperature/K	296

Reference

- 1. W. Wu, S. Zou, L. Lin, J. Ji, Y. Zhang, B. Ma, X. Liu and X. Feng, *Chem. Commun.*, 2017, **53**, 3232-3235.
- 2. D. Gritzalis, J. Park, W. Chiu, H. Cho, Y. S. Lin, J. W. De Schutter, C. M. Lacbay, M. Zielinski, A. M. Berghuis and Y. S. Tsantrizos, *Bioorg. Med. Chem. Lett.*, 2015, **25**, 1117-1123.

NMR spectra of compounds

1H NMR (400 MHz, DMSO-d_6) and ^{13}C NMR (101 MHz, DMSO-d_6) of 3b

1H NMR (400 MHz, DMSO-d_6) and ^{13}C NMR (101 MHz, DMSO-d_6) of 3e

1H NMR (400 MHz, DMSO-d_6) and ^{13}C NMR (101 MHz, DMSO-d_6) of 3g

^{19}F NMR (376 MHz, CDCl_3) of 3g

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -200 -210 -11 (ppm)

1H NMR (400 MHz, DMSO-d_6) and ^{13}C NMR (101 MHz, DMSO) of 3i

10

0

30 20

¹H NMR (400 MHz, DMSO-d₆) and ¹³C NMR (101 MHz, DMSO) of **3**j

1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 3k

 1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 3l

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (101 MHz, CDCl₃) of **3m**

1H NMR (400 MHz, CDCl_3-d1) and ^{13}C NMR (101 MHz, CDCl_3) of 3o

1H NMR (400 MHz, CDCl_3-d1) and ^{13}C NMR (101 MHz, CDCl_3) of 3p

1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 3q

1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 3r

140 130 120 110 100 fl (ppm) -10

¹⁹F NMR (376 MHz, CDCl₃) OF 3t

1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 3v

110 100 f1 (ppm)

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 3w

HPLC analysis of compounds

(S)-2-(2-(tert-butyl)-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one (3a)

(S)-2-(2-(tert-butyl)-1H-indol-3-yl)-2-hydroxy-1-(4-methoxyphenyl)ethan-1-one (3b)

Results

peak	Ret.time	area	Conc.	height
1	27.343	2758738	3.655	56510
2	32.363	72723747	96.345	1125308
Totals		75482485	100.000	1181818

Ö ١Н ΗÒ *tert-*Bu 1000 1000 Volts Volts 500 500 16.673 22.507 0 0 5.0 7.5 0.0 2.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 Minutes

(S)-2-(2-(tert-butyl)-1H-indol-3-yl)-2-hydroxy-1-(3-methoxyphenyl)ethan-1-one (3c)

UV1000-254nm

Results

peak	Ret.time	area	Conc.	height
1	16.673	36926925	49.081	1151390
2	22.507	38310202	50.919	895311
Totals		75237127	100.000	2046701

UV1000-254nm

Results

peak	Ret.time	area	Conc.	height
1	17.982	5182384	4.685	155135
2	24.202	105438389	95.315	1980688
Totals		110620773	100.000	2135823

(S)-2-(2-(tert-butyl)-1H-indol-3-yl)-2-hydroxy-1-(4-nitrophenyl)ethan-1-one (3d)

7923	2.665	609564	34.195	1
225091	97.335	22265958	39.258	2
233014	100.000	22875522	Totals	Totals

(S)-2-(2-(tert-butyl)-1H-indol-3-yl)-1-(4-fluorophenyl)-2-hydroxyethan-1-one (3e)

 Z
 15.555
 00444149
 96.912
 Z180178

 Totals
 68561492
 100.000
 2271034

(S)-1-(4-bromophenyl)-2-(2-(tert-butyl)-1H-indol-3-yl)-2-hydroxyethan-1-one (3f)

(S) - 2 - (2 - (tert - butyl) - 1 H - indol - 3 - yl) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - hydroxy - 1 - (4 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - (1 - (trifluoromethyl)phenyl) ethan - 1 - one (3g) - 2 - (trifluoromethyl)phenyl ethan - 1 - one (3g) - 2 - (trifluoromethyl)phenyl ethan - 1 - one (3g) - (trifluoromethyl)phenyl ethan - 1 - one (3g) - 2 - (trifluoromethyl)phenyl ethan - 1 - one (3g) - 2 - (trifluoromethyl)phenyl ethan - 1 - one (3g) - (trifluoromethyl)phenyl ethan - (trifluoromethyl ethan - 1 - one (3g) - (trifluoromethyl)phenyl ethan - (trifluoromethyl ethan - (trifluoromethyl ethan - 1 - one (3g) - (trifluoromethyl etha

UV1000-254nm

Results

peak	Ret.time	area	Conc.	height
1	8.210	36307952	50.326	2028372
2	9.418	35837839	49.674	1942853
Totals		72145791	100.000	3971225

UV1000-254nm

Results

peak	Ret.time	area	Conc.	height
1	8.103	1209759	2.542	77800
2	9.268	46383886	97.458	2192818
Totals		47593645	100.000	2270618

(S)-2-(2-(tert-butyl)-1H-indol-3-yl)-2-hydroxy-1-(thiophen-2-yl)ethan-1-one (3h)

peak	Ret.time	area	Conc.	height
1	26.383	503297	3.005	10450
2	29.105	16242776	96.995	277594
Totals		16746073	100.000	288044

UV1000-254nm

Results

peak	Ret.time	area	Conc.	height
1	20.357	5910051	5.380	140634
2	26.787	103935601	94.620	1762465
Totals		109845652	100.000	1903099

(S)-2-(2-(tert-butyl)-1H-indol-3-yl)-2-hydroxy-1-(naphthalen-1-yl)ethan-1-one (3j)

Results

peak	Ret.time	area	Conc.	height
1	27.627	4855714	5.417	95260
2	38.148	84776257	94.583	1119702
Totals		89631971	100.000	1214962

 $(S)-2-(2-(tert-butyl)-5-methyl-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one~(\mathbf{3k})$

UV1000-254nm

Results

peak	Ret.time	area	Conc.	height
1	11.682	24378370	50.764	682450
2	14.002	23644238	49.236	517396
Totals		48022608	100.000	1199846

UV1000-254nm

Results

peak	Ret.time	area	Conc.	height
1	11.285	2192754	2.952	76455
2	12.802	72081945	97.048	1522871
Totals		74274699	100.000	1599326

1	17.550	70512201	97.369	868199
2	20.093	1905658	2.631	17730
Totals		72417859	100.000	885929

(S)-2-(2-(tert-butyl)-5-fluoro-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one~(3m)

peak	Ret.time	area	Conc.	heig
1	14.130	1736565	2.501	684
2	15.975	67698194	97.499	209489
Totals	5	100.000	2163374	694347

(S)-2-(2-(tert-butyl)-5-chloro-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one (3n)

UV1000-254nm

Results

UV1000-254nm

Results

peak	Ret.time	area	Conc.	height
1	10.798	80745597	97.474	1848941
2	14.912	2092101	2.526	43055
Totals		82837698	100.000	1891996

(S)-2-(2-(tert-butyl)-4-methoxy-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one (30)

(S)-2-hydroxy-2-(2-isopropyl-1H-indol-3-yl)-1-phenylethan-1-one (3p)

38391	5.855	/03000	8.172	1
1048037	96.165	19197762	10.990	2
1106428	100.000	19963422		Totals

(S)-2-hydroxy-2-(2-isobutyl-1H-indol-3-yl)-1-phenylethan-1-one (3q)

(S)-2-(2-hexyl-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one (3r)

23320908

545164

100.000

Totals

(S)-2-hydroxy-1-phenyl-2-(2-phenyl-1H-indol-3-yl)ethan-1-one (3s)

UV1000-254nm

Results

peak	Ret.time	area	Conc.	height
1	17.642	68690851	88.647	675142
2	33.777	8797434	11.353	41571
Totals		77488285	100.000	716713

(S)-2-(2-(4-fluorophenyl)-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one (3t)

Results

peak	Ret.time	area	Conc.	height
1	10.725	29531103	95.653	892061
2	13.107	1341986	4.347	32196
Totals		30873089	100.000	924257

(S)-2-(2-(4-chlorophenyl)-1H-indol-3-yl)-2-hydroxy-1-phenylethan-1-one (3u)

UV1000-254nm

Results

peak	Ret.time	area	Conc.	height
1	7.202	937449	5.882	59650
2	8.455	15000444	94.118	800166
Totals		15937893	100.000	859816

(S)-1-(2-(tert-butyl)-1H-indol-3-yl)-1-hydroxyheptan-2-one (3v)

1	14.680	768141	23.728	15910
2	23.462	2469197	76.272	33588
Totals		3237338	100.000	49498

(S) - 2 - (2 - (tert - butyl) - 1 - methyl - 1 H - indol - 3 - yl) - 2 - hydroxy - 1 - phenylethan - 1 - one (3w)

Results

peak	Ret.time	area	Conc.	height
1	21.462	30069520	49.805	562724
2	26.980	30304930	50.195	446731
Totals		60374450	100.000	1009455

UV1000-254nm

Results

peak	Ret.time	area	Conc.	height
1	21.922	22707661	54.788	472082
2	27.298	18739072	45.212	311329
Totals		41446733	100.000	783411