Electronic Supplementary Information

Rotaxanation as a sequestering template to preclude incidental metal insertion in complex oligochromophores

T. H. Ngo,*^a J. E. M. Lewis, ^{b,c} D. T. Payne,^d F. D'Souza,^e J. P. Hill,^f K. Ariga,^{f,g} G. Yoshikawa^{a,h} and S. M. Goldup^b

^aOlfactory Sensors Group, Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan. E-mail: NGO.Huynhthien@nims.go.jp. ^bDepartment of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK. E-mail: s.goldup@soton.ac.uk ^cDepartment of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK. ORCID 0000-0002-0844-316X

^dInternational Center for Young Scientists (ICYS), National Institute of Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan

^eDepartment of Chemistry, University of North Texas 1155 Union Circle, 305070, Denton, TX 76203 (USA). ^fInternational Centre for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.

^gDepartment of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan

^hMaterials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki 305-8571, Japan

Table of contents

Scheme S1 : Copper catalyzed click reaction of free base corrole and zin porphyrin using CuI and CuSO₄ as catalysts	2
Scheme S2: Reductive demetalation of S4	3
Scheme S3: Reductive demetalation of rotaxane copper corrole zinc porphyrin conjugates	า 4
References	4
Synthetic procedure and characterization	5
Diad 5a	5
Diad 5b	10
Diad 6	13
Diad 7	18
Rotaxanated triad 8a	22
Rotaxanated triad 8b	26
Free base triad 9	30
Rotaxanated pentad 10a	32
Rotaxanated pentad 10b	36
Free base pentad 11	38

Copper catalyzed click reaction followed by reductive demetallation

Since the catalytic activity of the click reaction derives from copper of oxidation state +1, CuI was employed as catalyst. The click reaction with free base corrole **S1** diacetylenyl zinc porphyrin **S2** was successful (63%) but partial and fully copper metalated conjugates were isolated. The purification of different derivatives of fully non-metalated, single metalated and double metalated corroles was not possible since copper center does not change the size or polarity of the conjugates much. Disproportionation of Cu(I) to metallic copper and Cu(II) was fast enough compared to the click reaction to facilitate copper metalation of corrole moieties. Corrole could also be metalated by the released copper ion after the click reaction. When access of CuSO₄ was used in the presence of ascorbic acid, fully metalated corroles-porphyrin triad **S3** was isolated in high yield (84%).

Scheme S1: Copper catalyzed click reaction of free base corrole and zin porphyrin using Cul and CuSO₄ as catalysts.

The pure free base corrole-porphyrin conjugates could not be obtained via click reaction starting from non-metalated precursors. We change the strategy to the reductive demetalation of the copper corrole-porphyrin conjugates described in previous reports.¹ When **S4** undergo the reductive metalation procedure² with $SnCl_2$ and HCl a number of mixtures of different products were observed on mass spectroscopy depending on the reaction time (Scheme 2). First observed product was of course the zinc demetalated product S5a with unreacted starting material. When the reaction continues first copper demetalation was observed but still in a mixture of starting material, S5a and S5b. After 2h the first indication of the presence of fully freebase S5c was observed but the mixture still contains S5a and S5b. The double copper demetalation occurred slower than our expectation and we were unable to purify each of the product because of the small difference in polarity and size. Therefore, the reaction was continued for a longer reaction time. When no more copper derivatives were observed, the other unexpected products were present, *i.e.* tin inserted derivative S5d and isocorrole derivatives S5e and S5f. Again, we cannot purify the obtained products. The different concentrations of reductant and acid (HCl in ethanol, HCl in ether) all gave the same inseparable mixtures.

Scheme S2: Reductive demetalation of S4

The same observations were made when rotaxane **S6** was subjected to the same reaction conditions resulting in a similar rotaxane derivative mixture (Scheme 3, left). Under the previously described demetalation condition on **S7**, containing a benzyl ether moiety in the macrocycle, not only provide the unwanted mixture but also the partially and fully non-interlocked derivatives were observed. The benzylic ether moiety was not stable under such reductive acidic condition and the macrocycle was decomposed (Scheme S3, right). When the reaction was carried on for longer reaction time a mixture of non-interlocked products as in Scheme S2 were observed.

Scheme S3: Reductive demetalation of rotaxane copper corrole zinc porphyrin conjugates.

These observations entirely changed our synthetic strategy using rotaxane unit as a sacrificial template toward fully freebase corrole porphyrin conjugates (see main manuscript).

References

T. H. Ngo, D. Zieba, W. A. Webre, G. N. Lim, P. A. Karr, S. Kord, S. Jin, K. Ariga, M. Galli, S. Goldup, J. P. Hill and F. D'Souza, *Chem.*, 2016, **22**, 1301.
T. H. Ngo, W. Van Rossom, W. Dehaen, M. Maes, *Org. Biomol. Chem.* 2009, **7**, 439.

Synthetic procedure and characterization

Diad 5a

To a solution of porphyrin **2** (19 mg, 1.83×10^{-5} mol) and azidocorrole **1** (40 mg, 5.02 $\times 10^{-5}$ mol) in 10 mL dichloromethane was added the preprepared mixture of $[Cu(CH_3CN)_4]PF_6$ (6.8mg, 1.82×10^{-5} mol) and macrocycle **4a** (17.5 mg, 3.66×10^{-5} mol) in 2 mL DCM. The solution was stirred at room temperature under N₂ atmosphere. A drop of diisopropylethylamine was added. The reaction was monitored using tlc. After completion, the solvent was evaporated under reduced pressure. Purification by size extrusion chromatography (Biobeads SX-1) eluting with chloroform afforded diad **5a** (37 mg, 93%) as a purple solid.

¹H–NMR (300 MHz, CDCl₃, 25°C, TMS): δ = 9.95 (s, 1H, H_{triazole}), 9.03–9.00 (m, 10H, H_{ar}+H_β), 8.87 (d, ³*J*(H,H) = 4.2 Hz, 2H, H_β), 8.41 (d, ³*J*(H,H) = 4.8 Hz, 2H, H_β), 8.31(d, ³*J*(H,H) = 4.8 Hz, 4H, H_β), 8.12–8.02 (m, 10H, H_{ar}), 7.81–7.79 (m, 6H, H_{ar}), 7.58–7.53 (m, 2H, H_{ar}), 7.38 (d, ³*J*(H,H) = 7.5Hz, 2H, H_{ar}), 7.27 (s, 5H, H_{ar}), 7.20–7.14 (m, 2H, H_{ar}), 6.87(s, 6H, H_{ar}), 6.77–6.68 (m, 2H,H_{CH2}), 4.86 (s, 2H, H_{macrocycle}), 478–4.73 (m, 2H, H_{OCH2}), 4.44–4.25 (m, 4H, H_{macrocycle}), 2.69–2.63 (m, 16H, H_{macrocycle} +H_{mesityl}), 2.33–2.31 (m, 2H, H_{macrocycle}), 2.20–2.24 (m, 2H, H_{macrocycle}), 1.93(s, 12H, H_{mesityl}), 1.54 (s, 54H, H_{tBu}) ppm. ¹³C–NMR (75 MHz, CDCl₃, 25°C, TMS): δ 163.1, 158.0/157.7, 150.5/150.3, 148.7/148.6, 146.7, 142.0, 141.4/141.3, 139.3, 137.8, 137.0 (CH), 135.8, 134.3 (CH), 133.7, 133.1, 132.2 (CH), 131.9 (CH), 131.0, 129.7 (CH), 128.2 (CH), 127.8 (CH), 126.7 (CH), 124.6, 124.0 (CH), 122.5/122.4, 121.7 (CH), 121.2, 120.9/120.8 (CH), 120.3(CH), 115.6 (CH), 115.1 (CH), 109.8, 77.4, 66.9 (CH₂), 37.2 (CH₂), 35.1 (CH₂), 32.2, 31.9 (CH₃), 29.8 (CH₂), 25.2 (CH₂), 21.3 (CH₃) ppm. MS (ESI): calc: 1092.07 [M+2H²⁺]; found: 1092.08; calc: 728.38 [M+3H³⁺]; found: 728.06.

S6

Generic Display Report

Diad 5b

To a solution of porphyrin **2** (20 mg, 1.92×10^{-5} mol) and azidocorrole **1** (40 mg, 5.02 $\times 10^{-5}$ mol) in 10 mL dichloromethane was added the preprepared mixture of $[Cu(CH_3CN)_4]PF_6$ (7.1 mg, 1.9×10^{-5} mol) and macrocycle **4b** (18.4 mg, 3.8×10^{-5} mol) in 2 mL DCM. The solution was stirred at room temperature under N₂ atmosphere. A drop of diisopropylethylamine was added. The reaction was monitored using t.l.c. After completion, the solvent was evaporated under reduced pressure. Purification by size extrusion chromatography (Biobeads SX-1) eluting with chloroform afforded diad **5b** (42 mg, quantitative) as a purple solid.

¹H–NMR (300 MHz, CDCl₃, 25°C, TMS): δ = 10.03 (s, 1H, H_{triazole}), 9.06–9.00 (m, 10H, H_{ar}+H_β), 8.87 (d, ³J(H,H) = 4.2 Hz, 2H, H_β), 8.45 (d, ³J(H,H) = 4.8 Hz, 2H, H_β), 8.37(d, ³J(H,H) = 4.8 Hz, 2H, H_β), 8.32 (d, ³J(H,H) = 4.2 Hz, 2H, H_β), 8.20 (d, ³J(H,H) = 8.1 Hz, 2H, H_{ar}), 8.13–8.09 (m, 8H, H_{ar}), 7.81–7.79 (m, 4H, H_{ar}), 7.71 (d, ³J(H,H) = 8.1 Hz, 2H, H_{ar}), 7.60–7.47 (m, 6H, H_{ar}), 7.27 (s, 3H, H_{ar}), 7.07–7.01 (m, 4H, H_{ar}), 6.91–6.87 (m, 4H, H_{ar}+H_{CH2}), 4.81–4.70 (m, 4H, H_{OCH2}), 4.52–4.41 (m, 4H, H_{macrocycle}), 4.30 (s, 4H, H_{macrocycle}), 2.60 (s, 6H, H_{mesityl}), 2.25–2.23 (m, 4H, H_{macrocycle}), 1.94(s, 12H, H_{mesityl}), 1.54 (s, 54H, H_{tBu}) ppm. ¹³C–NMR (75 MHz, CDCl₃, 25°C, TMS): δ 159.5/159.4, 156.3, 150.5/150.2, 148.6, 146.4, 142.0, 141.6/141.3, 139.3, 137.78, 137.3 (CH), 135.8, 135.0, 134.4 (CH), 133.6, 132.2 (CH), 131.8, 130.9 (CH), 130.2, 129.7 (CH), 128.7, 128.2 (CH), 127.7 (CH), 126.8 (CH), 124.8 (CH), 124.0 (CH), 73.5 (CH₂), 71.1 (CH₂), 67.0 (CH₂), 58.3 (CH₂), 52.8 (CH₂), 35.1 (CH₂), 31.9 (CH₂), 29.8 (CH₂), 25.2 (CH₂), 21.5 (CH₃), 21.3 (CH₃) ppm. MS (ESI): calc: 1094.05 [M+2H²⁺]; found: 1094.07; calc: 729.70 [M+3H³⁺]; found: 729.38.

Diad 6

To the solution of **diad 5a** (21 mg, 9.6×10^{-6} mol) in 10 mL DCM was added HBr·PPh₃ (20 mg, 5.83×10^{-5} mol). The mixture was stirred for 10 min and washed with water and brine. Purification by size extrusion chromatography (Biobeads SX-1) eluting with chloroform afforded **diad 6** (18mg, 88%) as a purple solid.

¹H–NMR (300 MHz, CDCl₃, 25°C, TMS): δ=9.95 (s, 1H, H_{triazole}), 8.89–8.86 (m, 12H, H_{ar}+H_β), 8.45 (d, ³*J*(H,H) = 4.5 Hz, 2H, H_β), 8.32–8.28 (m, 4H, H_β), 8.10–7.96(d, ¹⁰H, H_{ar}+H_β), 8.80–7.76 (m, 6H, H_{ar}+H_β), 7.56–7.52 (m, 2H, H_{ar}), 7.37 (d, ³*J*(H,H) = 7.5Hz, 2H, H_{ar}), 7.27 (s, 3H, H_{ar}), 7.19–7.14 (m, 4H, H_{ar}), 6.87(s, 6H, H_{ar}), 6.77–6.68 (m, 2H, H_{CH2}), 4.87 (s, 2H, H_{macrocycle}), 478–4.62 (m, 2H, H_{OCH2}), 4.45–4.23 (m, 4H, H_{macrocycle}), 2.68–2.62 (m, 10H, H_{macrocycle}), 2.60 (s, 6H, H_{mesityl}), 2.34–2.27 (m, 2H, H_{macrocycle}), 2.21–2.15 (m, 2H, H_{macrocycle}), 1.93(s, 12H, H_{mesityl}), 1.53 (s, 54H, H_{tBu}) ppm. ¹³C–NMR (75 MHz, CDCl₃, 25°C, TMS): δ 163.1, 157.9/157.7, 148.8/148.7, 146.6, 141.4, 140.8, 139.3, 137.8, 137.0 (CH), 135.7, 134.4/134.4 (CH), 133.0, 131.1, 129.8/129.7 (CH), 128.1 (CH), 127.7 (CH), 126.7/126.5 (CH), 124.1 (CH), 121.7 (CH), 121.4, 121.3 (CH), 121.0, 120.3(CH), 115.6 (CH), 115.1 (CH), 109.8, 66.9 (CH₂), 52.7 (CH₂), 37.2 (CH₂), 35.1 (CH₂), 31.0 (CH₃), 29.8 (CH₂), 25.2 (CH₂), 21.5 (CH₃), 21.2 (CH₃) ppm. MS (ESI): calc: 707.42 [M+2H²⁺]; found: 707.41; calc: 530.82 [M+4H⁴⁺]; found: 530.81.

Diad 7

To the solution of **diad 5b** (16.6 mg, 7.59×10^{-6} mol) in 10 mL DCM was added HBr•PPh₃ (20 mg, 5.83×10^{-5} mol). The mixture was stirred for 1h min and washed with water and brine. Purification by size extrusion chromatography (Biobeads SX-1) eluting with chloroform afforded diad **7** (10 mg, 82%) as a purple solid.

¹H–NMR (300 MHz, CDCl₃, 25°C, TMS): δ=8.90–8.89 (m, 16H, H_β), 8.52–8.47 (m, 4H, H_{ar}), 8.35–8.18 (m, 10H, H_{ar}), 8.09–8.08 (m, 10H, H_{ar}), 7.79 (s, 6H, H_{ar}), 7.72 (d, ³*J*(H,H) = 8.4 Hz, 2H, H_{ar}), 7.25 (s, 4H, H_{ar}), 5.97 (s, 2H, H_{CH2}), 2.58 (s, 6H, H_{mesityl}), 1.92(s, 12H, H_{mesityl}), 1.52 (s, 54H, H_{tBu}), -266 (s_{br}, 2H, NH) ppm. ¹³C–NMR (75 MHz, CDCl₃, 25°C, TMS): δ 148.8, 143.0, 142.6, 141.4, 139.3, 137.8, 135.7, 135.3/135.1/135.0 (CH), 133.8, 131.4 (CH), 129.8 (CH), 128.2 (CH), 127.0 (CH), 126.3 (CH), 124.3 (CH), 121.7/121.5 (CH), 121.1 (CH), 120.3 (CH), 119.1, 115.2 (CH), 109.1, 77.4 (CH), 66.9, 35.2, 31.9 (CH₃), 29.8 (CH₂), 21.5 (CH₃), 21.2 (CH₃) ppm. MS (ESI): calc: 821.48 [M+2H²⁺]; found: 821.49; calc: 547.99 [M+3H³⁺]; found: 548.00.

Rotaxanated triad 8a

To a solution of porphyrin **2** (16 mg, 2.04×10^{-5} mol) and azidocorrole **1** (54 mg, 8.11 $\times 10^{-5}$ mol) in 10 mL dichloromethane was added the preprepared mixture of $[Cu(CH_3CN)_4]PF_6$ (15.2 mg, 4.07×10^{-5} mol) and macrocycle **5a** (29.2 mg, 6.10×10^{-5} mol) in 2 mL DCM. The solution was stirred at room temperature under N₂ atmosphere. A drop of diisopropylethylamine was added. The reaction was monitored using t.l.c. After completion, the solvent was evaporated under reduced pressure. Purification by size extrusion chromatography (Biobeads SX-1) eluting with chloroform afforded triad **8a** (47.4 mg, 76%) as a purple solid.

¹H–NMR (300 MHz, CDCl₃, 25°C, TMS): δ =9.95 (s, 2H, H_{triazole}), 8.94 (d, ³J(H,H) = 4.2 Hz, 4H, H_β), 8.87 (d, ³J(H,H) = 3.9 Hz, 6H, H_β), 8.81–8.79 (m, 4H, H_β), 8.42 (d, ³J(H,H) = 4.5 Hz, 4H, H_β), 8.32 (d, ³J(H,H) = 3.9 Hz, 8H, H_β), 8.06–7.96 (m, 10H, H_{ar}), 7.79 (d, ³J(H,H) = 7.2 Hz, 4H, H_{ar}), 7.57–7.52 (m, 4H, H_{ar}), 7.38 (d, ³J(H,H) = 7.5 Hz, 6H, H_{ar}), 7.28 (s, 12H, H_{ar}), 7.21–7.16 (m, 6H, H_{ar}), 6.84 (s, 12H, H_{ar}), 6.67 (s_{br}, 2H, H_{CH2}), 4.88 (s, 4H, H_{macrocycle}), 4.72–4.55 (m, 4H, H_{macrocycle}), 4.42–4.24 (m, 4H, H_{macrocycle}), 2.63–2.61 (m, 30H, H_{mesityl}+H_{macrocycle}), 2.27–2.09 (m, 16H, H_{macrocycle}), 1.94 (s, 24H, H_{mesityl}), 1.88 (s, 12H, H_{mesityl}) ppm. ¹³C–NMR (75 MHz, CDCl₃, 25°C, TMS): δ 163.0, 157.8/157.6, 150.1, 149.8, 146.5, 141.2, 139.3/139.2, 137.7, 137.4, 136.9 (CH), 135.6, 134.8, 134.2 (CH), 133.7, 132.9, 132.3 (CH), 130.8, 130.5 (CH), 129.6, 129.0 (CH), 128.4 (CH), 127.6 (CH), 126.6/126.5 (CH), 124.5 (CH), 123.9 (CH), 121.6 (CH), 120.5 (CH), 120.2 (CH), 119.1, 115.5 (CH), 115.0 (CH), 109.7, 77.4 (CH), 66.8 (CH₂), 52.7 (CH₂), 37.1 (CH₂), 35.2 (CH₂), 32.1 (CH₂), 29.7, 25.1 (CH₂), 21.6 (CH₃), 21.4 (CH₃), 21.1 (CH₃) ppm. MS (ESI): calc: 1033.82 [M+3H³⁺]; found: 1033.84; calc: 775.62 [M+4H⁴⁺]; found: 775.63.

Rotaxanated triad 8b

To the solution of triad **8a** (20 mg, 6.51×10^{-6} mol) in 10 mL DCM was added HBr•PPh₃ (20 mg, 5.83×10^{-5} mol). The mixture was stirred for 10 min and washed with water and brine. Purification by size extrusion chromatography (Biobeads SX-1) eluting with chloroform afforded free base triad **8b** (18.5mg, 94%) as a purple solid.

¹H–NMR (300 MHz, CDCl₃, 25°C, TMS): δ=9.94 (s, 2H, H_{triazole}), 8.82–8.63 (m, 14H, H_β), 8.35 (d, ³J(H,H) = 4.5 Hz, 4H, H_β), 8.26–8.23 (m, 6H, H_β), 8.02 (d, ³J(H,H) = 7.5 Hz, 4H, H_{ar}), 7.96–7.88 (m, 6H, H_{ar}+H_β), 7.71 (d, ³J(H,H) = 7.8 Hz, 4H, H_{ar}), 7.54–7.46 (m, 4H, H_{ar}), 7.32 (d, ³J(H,H) = 7.8 Hz, 4H, H_{ar}), 7.24–7.22 (m, 12H, H_{ar}), 7.16 (d, ³J(H,H) = 7.2 Hz, 8H, H_{ar}), 6.80 (s_{br}, 12H, H_{CH2}), 6.61 (s_{br}, 2H, H_{CH2}), 4.81 (s, 4H, H_{macrocycle}), 4.67–4.58 (m, 4H, H_{macrocycle}), 4.39–4.28 (m, 4H, H_{macrocycle}), 2.61–2.55 (m, 30H, H_{mesityl}+H_{macrocycle}), 2.36–2.02 (m, 16H, H_{macrocycle}), 1.87 (s, 24H, H_{mesityl}), 1.81 (s, 12H, H_{mesityl}), -2.68 (s_{br}, 2H, H_{NH}) ppm. ¹³C–NMR (75 MHz, CDCl₃, 25°C, TMS): δ 163.1, 157.9/157.7, 141.3, 139.5/139.3, 137.8, 137.0 (CH), 135.7, 134.4 (CH), 133.0, 131.1, 132.3, 129.6, 129.2 (CH), 128.2 (CH), 127.8 (CH), 126.7/126.6 (CH), 124.2 (CH), 121.7 (CH), 120.3 (CH), 118.2, 115.5 (CH), 115.1 (CH), 114.7, 109.8, 77.4 (CH), 68.1, 66.8 (CH₂), 37.1 (CH₂), 35.3 (CH₂), 32.2 (CH₂), 29.8, 25.7 (CH₂), 25.2, 21.8 (CH₃), 21.6 (CH₃), 21.3 (CH₃) ppm. MS (ESI): calc: 608.11 [M+5H⁵⁺]; found: 608.13.

Generic Display Report

Free base triad 9

To a solution of porphyrin **2** (6 mg, 7.4×10^{-6} mol) and azidocorrole **1** (20 mg, 2.96×10^{-5} mol) in 10 mL dichloromethane was added the preprepared mixture of $[Cu(CH_3CN)_4]PF_6$ (5.5 mg, 1.48×10^{-5} mol) and macrocycle **5b** (14 mg, 2.96×10^{-5} mol) in 2 mL DCM. The solution was stirred at room temperature under N₂ atmosphere. A drop of diisopropylethylamine was added. The reaction was monitored using t.l.c. After completion, the solvent was evaporated under reduced pressure affording rotaxanated diad with ether moiety containing macrocycle as a purple solid. The obtained product was not further purified but subjected to following step.

The unpurified compound was dissolved in 10 mL DCM followed by the addition of HBr•PPh₃ (20 mg, 5.83×10^{-5} mol). The mixture was stirred for 10 min and washed with water and brine. Purification by size extrusion chromatography (Biobeads SX-1) eluting with chloroform afforded triad **9** (8.8 mg, 57%) as a purple solid.

¹H–NMR (300 MHz, CDCl₃, 25°C, TMS): δ= 9.94 (s_{br}, 8H, H_β), 8.78 (d, ³*J*(H,H) = 3.0 Hz, 4H, H_β), 8.55 (d, ³*J*(H,H) = 3.0 Hz, 10H, H_β), 8.38 (s, 10H, H_{ar}+H_β), 8.29 (s_{br}, 6H, H_{ar}), 7.77 (s_{br}, 6H, H_{ar}), 7.31 (s, 12H, H_{ar}), 6.04 (s_{br}, 4H, H_{CH2}), 2.67 (s, 6H, H_{mesityl}), 2.64 (s, 12H, H_{mesityl}), 1.97 (s, 24H, H_{mesityl}), 1.91 (s, 12H, H_{mesityl}), -2.51 (s_{br}, 2H, H_{NH}) ppm. ¹³C–NMR (75 MHz, CDCl₃, 25°C, TMS): δ 148.5, 142.9, 140.5, 139.4/139.3, 138.5, 137.8 (CH), 135.6, 135.3, 134.8 (CH), 130.1, 129.5, 128.1, 127.8 (CH), 127.2 (CH), 127.0/126.9 (CH), 126.2 (CH), 124.3 (CH), 123.7, 120.7, 120.3 (CH), 118.9, 118.5, 117.4, 115.1 (CH), 77.4 (CH), 29.8 (CH₂), 21.7 (CH₃), 21.5 (CH₃), 21.2 (CH₃) ppm. MS (ESI): calc: 693.67 [M+3H³⁺]; found: 693.69.

Rotaxanated pentad 10a

To a solution of zinc tetra-*meso*(4-ethynyl-phenyl)porphyrin (8.5 mg, 1.10×10^{-5} mol) and azidocorrole **1** (58.5 mg, 8.79×10^{-5} mol) in 10 mL dichloromethane was added the preprepared mixture of $[Cu(CH_3CN)_4]PF_6$ (16.3 mg, 4.37×10^{-5} mol) and macrocycle **5a** (31.5 mg, 6.58×10^{-5} mol) in 2 mL DCM. The solution was stirred at room temperature under N₂ atmosphere. A drop of diisopropylethylamine was added. The reaction was monitored using t.l.c. After completion, the solvent was evaporated under reduced pressure. Purification by size extrusion chromatography (Biobeads SX-1) eluting with chloroform afforded pentad **10a** (42 mg, 71%) as a purple solid.

¹H–NMR (300 MHz, CDCl₃, 25°C, TMS): δ = 9.99 (s, 4H, H_{triazole}), 9.03–9.92 (m, 12H, H_β), 8.87 (d, ³*J*(H,H) = 4.2 Hz, 8H, H_β), 8.41–8.39 (m, 8H, H_β), 8.30–8.29 (m, 16H, H_β+H_{ar}), 8.01–7.96 (m, 24H, H_{ar}), 7.79–7.77 (m, 8H, H_{ar}), 7.60–7.53 (m, 8H, H_{ar}), 7.39 (d, ³*J*(H,H) = 7.5 Hz, 8H, H_{ar}), 7.17 (d, ³*J*(H,H) = 7.5 Hz, 16H, H_{ar}), 6.87 (s, 32H, H_{ar}), 6.78 (s, 8H, H_{CH2}), 4.89 (s, 8H, H_{macrocycle}), 4.75–4.69 (m, 8H, H_{macrocycle}), 4.45–4.28 (m, 4H, H_{macrocycle}), 2.68–2.56 (m, 48H, H_{mesityl}+H_{macrocycle}), 2.40–2.28 (m, 16H, H_{macrocycle}), 2.18–2.05 (m, 16H, H_{macrocycle}), 1.92 (s, 48H, H_{mesityl}) ppm. ¹³C–NMR (75 MHz, CDCl₃, 25°C, TMS): δ 163.1, 157.8/157.7, 150.3, 146.6, 141.2, 139.2, 137.7, 137.0 (CH), 135.7, 134.3 (CH), 133.0 (CH), 129.1 (CH), 128.1 (CH), 127.7 (CH), 126.5 (CH), 124.0 (CH), 121.7 (CH), 120.3 (CH), 115.5 (CH), 109.8, 77.4 (CH), 66.8 (CH₂), 37.1 (CH₂), 35.3 (CH₂), 32.1 (CH₂), 25.2 (CH₂), 21.5 (CH₃), 21.2 (CH₃) ppm. MS (ESI): calc: 1071.11 [M+5H⁵⁺]; found: 1071.13.

Rotaxanated pentad 10b

To the solution of pentad **10a** (18 mg, 3.36×10^{-6} mol) in 10 mL DCM was added HBr•PPh₃ (20 mg, 5.83×10^{-5} mol). The mixture was stirred for 10 min and washed with water and brine. Purification by size extrusion chromatography (Biobeads SX-1) eluting with chloroform afforded pentad **10b** (15.3 mg, 86%) as a purple solid.

¹H–NMR (300 MHz, CDCl₃, 25°C, TMS): δ = 9.97 (s, 4H, H_{triazole}), 8.91–8.88 (m, 20H, H_β), 8.38 (d, ³J(H,H) = 4.5 Hz, 8H, H_β), 8.28 (d, ³J(H,H) = 4.8 Hz, 16H, H_{ar}+H_β), 8.08 (d, ³J(H,H) = 7.2 Hz, 8H, H_{ar}), 8.01–7.99 (m, 12H, H_{ar}), 7.77 (d, ³J(H,H) = 6.9 Hz, 8H, H_{ar}), 7.59–7.51 (m, 12H, H_{ar}), 7.38 (d, ³J(H,H) = 7.8 Hz, 8H, H_{ar}), 7.18–7.14 (m, 16H, H_{ar}), 6.86 (s, 32H, H_{ar}), 6.76 (s, 8H, H_{CH2}), 4.90 (s, 8H, H_{macrocycle}), 4.73–4.69 (m, 8H, H_{macrocycle}), 4.44–4.29 (m, 4H, H_{macrocycle}), 2.67–2.55 (m, 48H, H_{mesityl}+H_{macrocycle}), 2.36–2.28 (m, 16H, H_{macrocycle}), 2.18–2.04 (m, 16H, H_{macrocycle}), 1.89 (s, 48H, H_{mesityl}), -2.74 (s_{br}, 2H, H_{NH}) ppm. ¹³C–NMR (75 MHz, CDCl₃, 25°C, TMS): δ 163.1, 157.9/157.7, 146.6, 139.3, 137.8, 137.0 (CH), 135.7, 134.9, 134.3 (CH), 133.7, 133.0 (CH), 131.2, 129.6, 129.1 (CH), 128.1 (CH), 127.7 (CH), 126.5 (CH), 124.2 (CH), 121.7 (CH), 120.3 (CH), 115.6 (CH), 115.1, 77.4 (CH), 66.9 (CH₂), 37.2 (CH₂), 35.3 (CH₂), 32.2 (CH₂), 29.8, 25.2 (CH₂), 21.5 (CH₃), 21.2 (CH₃) ppm. MS (ESI): calc: 756.52 [M+7H⁷⁺]; found: 756.40.

Free base pentad 11

To a solution of zinc tetra-*meso*(4-ethynyl-phenyl)porphyrin (5 mg, 6.46 × 10⁻⁶ mol) and azidocorrole **1** (34.4 mg, 5.17 × 10⁻⁵ mol) in 10 mL dichloromethane was added the preprepared mixture of $[Cu(CH_3CN)_4]PF_6$ (10.6 mg, 2.84 × 10⁻⁵ mol) and macrocycle **5b** (24 mg, 5.17 × 10⁻⁵ mol) in 2 mL DCM. The solution was stirred at room temperature under N₂ atmosphere. A drop of diisopropylethylamine was added. The reaction was monitored using t.l.c. After completion, the solvent was evaporated under reduced pressure affording rotaxanated pentad with ether moiety containing macrocycle as a purple solid. The obtained product was not further purified but subjected to following step.

The unpurified compound was dissolved in 10 mL DCM followed by the addition of HBr•PPh₃ (20 mg, 5.83×10^{-5} mol). The mixture was stirred for 10 min and washed with water and brine. Purification by size extrusion chromatography (Biobeads SX-1) eluting with chloroform afforded pentad **11** (10.8 mg, 54%) as a purple solid.

¹H–NMR (300 MHz, CDCl₃, 25°C, TMS): δ = 8.94–8.83(m, 24H, H_β), 8.48 (s, 28H, H_{ar}), 8.29–8.23 (m, 44H, H_{ar}+H_β), 7.70 (s_{br}, 8H, H_{ar}), 7.21 (s, 48H, H_{ar}), 5.93 (s_{br}, 8H, H_{CH2}), 2.53 (s, 24H, H_{mesityl}), 1.87 (s, 48H, H_{mesityl}), -1.73 (s_{br}, 12H, H_{NHcor}), -2.66 (s_{br}, 2H, H_{NH}) ppm.

¹³C–NMR (75 MHz, CDCl₃, 25°C, TMS): δ 148.4, 143.0, 142.7, 140.6, 139.3, 137.8, 135.7(CH), 135.3/135.2(CH), 134.9, 133.8, 131.5, 130.3, 129.5, 128.1(CH), 127.3 (CH), 126.9 (CH), 126.3 (CH), 124.3 (CH), 120.7(CH), 120.4 (CH), 120.0, 115.2 (CH), 114.3, 109.1, 77.4 (CH), 54.5, 29.8 (CH₂), 21.5 (CH₃), 21.3 (CH₃) ppm. MS (ESI): calc: 675.72 [M+5H⁵⁺]; found: 675.73.

