Electronic Supplementary Information

Electrochemical activation of polymer chains mediated with radical transfer reactions

Yu-Ling Chang, Tzu-Chien Wei, and Ying-Ling Liu**

Department of Chemical Engineering, National Tsing Hua University, #101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan

* Correspondence to Professor Y.-L. Liu, E-mail: <u>liuyl@mx.nthu.edu.tw;</u> Fax:+886-3-5715408

Experimental methods

Materials. 4-bromobenzenediazonium tetrafluoroborate (BrPhN₂⁺BF₄⁻, 96%) and tetraethylammonium hexafluorophosphate (Et₄NPF₆, 98%) were purchased from Alfa Aesar and used as received. Polyethylene glycol (PEG, molecular weight: 2000 Da) was purchased from Fluka and used as received. Polyvinyl butyral (PVB) was received from Chang Chun Group, Taiwan (Product code: PVB B18FS). Polybenzoxazine PBz) was prepared in our laboratory (Li *et al., Adv. Mater. Interfaces* **2015**, *2*, 1500065). The number-averaged molecular weight and polydispersity of the utilized PBz are about 6,800 Da and 6.2, respectively. Carbon nanotubes (CNT, 97%) were received from the Carbon Nanotube Co. (Incheon, Korea). The used CNTs have an average diameter of about 20 nm and a length in 10-100 μm. Laboratory made reduced graphene oxide (rGO, *Chem. Mater.* **2014**, *26*, 2983-2990) was from Professor W. S. Hung (National Taiwan University of Science and Technology, Taiwan).

Measurements. Raman spectra were recorded with a Renishaw InVia Raman spectrometer using He-Ne laser of 632.8 nm as the incident radiation. High-resolution transmission electron microscopy (HRTEM) was conducted with a JEOL JEM-2010 HRTEM. X-ray photoelectron spectroscopy (XPS) measurements were recorded with an XPS instrument from Thermo VG-Scientific Co. (Model: Sigma Probe) using a Mg-K_{α} line as the radiation source. TGA measurements were carried out with a Thermal Analysis (TA) TGA Q-500 instrument under a nitrogen atmosphere. The heating rate is 10 °C min⁻¹ and the nitrogen gas flow rate is 100 mL min⁻¹. Differential scanning calorimetric (DSC) thermograms were recorded with a TA DSC Q-100 instrument under a nitrogen flow at 50 mL min⁻¹ and a heating rate of 10 °C min⁻¹. Atomic force microscopy (AFM) images were recorded with a Nano Scope IIIa instrument from the Digital Instruments (Germany). The measurements were carried out in tapping mode at a scan rate of 0.5 Hz with a 125 µm noncontact silicon cantilever (model NCH-50). The rGO samples dispersed in methanol (0.1 mg mL⁻¹) were applied to freshly cleaved mica surfaces by spin coating. A potentiostat/galvanostat instrument from Metrohm (Autolab PGSTAT204) was employed for electrochemical reactions.

Cyclic voltammetry (CV) analysis. CV tests on $BrPhN_2^+$ have been carried out (Figure S1) according to the reported method (Wang *et al., Macromolecules* **2017**, *50*, 7872–7879). A general five-necked electrochemical reaction cell equipped with Pt disk working electrode (WE), Pt wire counter electrode (CE) and Ag|Ag||0.1 M *n*-Bu₄NI in N,N-dimethylforamide (DMF) reference electrode (RE). The solution of Et_4NPF_6 in DMSO (0.1 M) was employed as the electrolyte and reaction medium. $BrPhN_2^+BF_4^-$ was dissolved in the electrolyte with a concentration of 7 mM. The RE was calibrated against the saturated calomel electrode (SCE) scale by measuring potential difference (ΔE) between a SCE at scan rate (v) of 100 mV s⁻¹.

Electrochemical reaction between $BrPhN_2^+$ *and* CNT. A five-neck electrochemical reaction cell equipped with the above-mentioned electrodes was employed. After charging Et_4NPF_6 (0.220 g, 0.8 mmol) and

 $BrPhN_2^+BF_4^-$ (0.016 g, 0.06 mmol) into the cell, a CNT (0.03 g) dispersion in DMF (10 mL) was added. The solution of Et_4NPF_6 in DMSO (0.01M) was employed as the electrolyte and reaction medium. $BrPhN_2^+BF_4^-$ (0.018 g) and CNT (0.05 g) were charged into a 25 mL electrolyte. The reaction was carried out at a fixed applied potential of -2.3 V vs. SCE, which is equal to the cathodic peak potential for $BrPhN_2^+BF_4^-$. The reaction was carried out at room temperature for 3 h under nitrogen with suitable potential being applied. The CNTs were precipitated from methanol, collected with filtration, and dried under vacuum at room temperature. The obtained product is bromophenyl-functionalized CNT (BrPh-CNT).

Electrochemical activation of polymer chains for preparation of polymer-CNT nanohybrids. Similar to the method for preparation of BrPh-CNT, PBz (0.01 g) was added to the reaction cell. The collected CNT is PBz-functionalized CNT (PBz-CNT). A polymer/CNT weight ratio of 1/3 is applied to provide enough polymers chains chemically adding to CNTs. The other two samples (PEG-CNT and PVB-CNT) were obtained with the same manner. Preparations of each polymer-CNT nanohybrid samples have been repeated for 3 times. The results support to good reproducibility of the synthesis approaches.

Electrochemical activation of polymer chains for preparation of PBz-rGO nanohybrids. Similar to the method for preparation of PBz-CNT, rGO was employed to replace CNT. The obtained sample is PBz-functionalized rGO (PBz-rGO). Preparation of PBz-rGO nanohybrid sample has been repeated for 3 times. The results support to good reproducibility of the synthesis approaches.

Figure S1. Cyclic voltammetry curve recorded on a $BrPhN_2^+BF_4^-$ solution in the employed electrolyte (7 mM). WE: Pt disk; CE: Pt wire; RE: Ag|Ag||0.1 M *n*-Bu₄NI in DMF: electrolyte: Et₄NPF₆ in DMSO (0.1 M).

Supporting figures and discussion mentioned in the main text

For PBz-CNT hybride, the presence of PBz chains is also supported with the changes in the C_{1s} core-level XPS spectra (**Figure S2**). In addition to the peak at 285.0 eV observed with the neat CNT sample, PBz-CNT demonstrates another peak at about 286.0 eV corresponding to C-O and C-N groups, which are associated to the chemical structure of PBz.

Figure S2. C_{1s} core-level XPS spectrum of (a) CNT and (b) PBz-CNT. The appearance of the C-O/C-N signal in the spectrum of PBz-CNT supporting to the radical addition reaction of PBz chains toward CNTs.

The BrPh-CNT sample, which was collected from the polymer-free reaction system, shows a Br_{3d} signal at about 70 eV (**Figure S3**), indicating that BrPh-CNT possesses bromide atoms due to occurrence of the radical addition reaction of bromophenyl radicals to CNTs.

Figure S3. Br_{3d} core-level XPS spectrum of (a) CNT and (b) BrPh-CNT. The appearance of the Br signal in the spectrum of BrPh-CNT, supporting the radical addition reaction of bromophenyl radicals toward CNTs.

Figure S4. TGA thermograms of the neat CNT and the prepared polymer-functionalized CNT nanohybrids.

Figure S5. DSC thermograms of the neat CNT and PBz-CNT nanohybrid. The exothermic peaks are associated to the thermally-induced ring-opening reaction of benzoxazine groups of PBz chains.

Characterization of PBz-rGO. rGO shows D band and G band peaks with a D/G ratio of 1.23 in Raman analysis. As PBz-rGO also exhibit similar D-band and G-band peaks at similar Raman shifts with a D/G ratio of 1.38, the increase in the D/G ratio supports to the chemical reaction between activated PBz chains and rGO at the sp²-hybrid carbon groups of rGO. The N signal appearing in the wide-scanning XPS spectrum of PBz-rGO indicates the presence of benzoxazine groups in the sample. Based on the high C/O ratio of PBz chains (C/O = 10.3), PBz-rGO shows a relatively high C/O ratio (7.8) compared to rGO (2.8). The spectral analysis result is coincident to the experimental work of incorporation of PBz chains to the rGO surfaces. In TGA measurement, PBz-rGO shows a two-stage weight loss. The first stage weight loss occurring at about 200 °C corresponds to the rGO fraction and the second stage at about 400 °C is attributed to the degradation of PBz chains. Based on the char yields of the samples in TGA measurements, the PBz weight fraction of PBz-rGO is about 43 wt%. Like PBz-CNT, PBz-rGO still exhibits an exothermic peak in DSC measurement associating to the ring-opening reaction of benzoxazine groups. The results support the successful incorporation of PBz chains to rGO and PBz-rGO still possesses benzoxazine ring groups. An additional exothermic peak appearing at relatively low temperature has been assigned to the degradation of organic moieties of rGO.

Figure S6. Spectral characterization and thermal analysis on rGO and PBz-rGO. (a) Raman analysis, (b) XPS analysis, (c) TGA measurements, and (d) DSC measurements.