One-pot oxidative hydrolysis-oxidative cleavage of 7borylindoles enables access to *o*-amidophenols and 4acylbenzoxazoles

Kirsty Anderson, Andrew S. Eastabrook and Jonathan Sperry*

j.sperry@auckland.ac.nz

SUPPORTING INFORMATION

General Experimental Details	5
Experimental Procedures	6
¹ H NMR spectrum of 6	34
¹ H NMR spectrum of 7	35
¹³ C NMR spectrum of 7	
¹ H NMR spectrum of 8	
¹ H NMR spectrum of S1	
¹³ C NMR spectrum of S1	
¹ H NMR spectrum of S2	40
¹ H NMR spectrum of 9	
¹³ C NMR spectrum of 9	
¹ H NMR spectrum of 3-Ethyl-2-phenylindole	43
¹ H NMR spectrum of S3	
¹³ C NMR spectrum of S3	45
¹ H NMR spectrum of S4	
¹ H NMR spectrum of 10	
¹³ C NMR spectrum of 10	
¹ H NMR spectrum of 3-Ethyl-2-methylindole	49
¹ H NMR spectrum of S5	50
¹³ C NMR spectrum of S5	51
¹ H NMR spectrum of S6	52
¹³ C NMR spectrum of S6	53
¹ H NMR spectrum of 11	54
¹³ C NMR spectrum of 11	55
¹ H NMR spectrum of S7	56
¹³ C NMR spectrum of S7	57
¹ H NMR spectrum of S8	
¹ H NMR spectrum of 12	59
¹³ C NMR spectrum of 12	60
¹ H NMR spectrum of S9	61
¹ H NMR spectrum of S10	62
¹³ C NMR spectrum of S10	63
¹ H NMR spectrum of 13	64
¹³ C NMR spectrum of 13	65
¹ H NMR spectrum of S11	66

¹ H NMR spectrum of S12	
¹ H NMR spectrum of 14	
¹³ C NMR spectrum of 14	
¹ H NMR spectrum of S13	
¹³ C NMR spectrum of S13	71
¹⁹ F NMR spectrum of S13	72
¹ H NMR spectrum of S14	73
¹ H NMR spectrum of 15	74
¹³ C NMR spectrum of 15	75
¹⁹ F NMR spectrum of 15	
¹ H NMR spectrum of S15	77
¹ H NMR spectrum of S16	
¹ H NMR spectrum of 16	
¹³ C NMR spectrum of 16	
¹ H NMR spectrum of S17	
¹ H NMR spectrum of S18	
¹ H NMR spectrum of 17	
¹³ C NMR spectrum of 17	
¹ H NMR spectrum of S19	
¹³ C NMR spectrum of S19	
¹ H NMR spectrum of S20	
¹ H NMR spectrum of 18	
¹³ C NMR spectrum of 18	
¹ H NMR spectrum of S21	
¹ H NMR spectrum of S22	91
¹ H NMR spectrum of 19	
¹³ C NMR spectrum of 19	
¹ H NMR spectrum of S23	94
¹³ C NMR spectrum of S23	95
¹ H NMR spectrum of S24	
¹ H NMR spectrum of 20	97
¹³ C NMR spectrum of 20	
¹⁹ F NMR spectrum of 20	
¹ H NMR spectrum of 22	
¹ H NMR spectrum of 23	

¹ H NMR spectrum of 24	
¹³ C NMR spectrum of 24	
¹ H NMR spectrum of 25	
¹ H NMR spectrum of 26	
¹³ C NMR spectrum of 26	
¹ H NMR spectrum of 27	
¹³ C NMR spectrum of 27	
¹ H NMR spectrum of S25	
¹³ C NMR spectrum of S25	
¹ H NMR spectrum of S26	
¹³ C NMR spectrum of S26	
¹ H NMR spectrum of 32	
¹³ C NMR spectrum of 32	
¹ H NMR spectrum of S27	
¹³ C NMR spectrum of S27	
¹⁹ F NMR spectrum of S27	
¹ H NMR spectrum of S28	
¹³ C NMR spectrum of S28	
¹⁹ F NMR spectrum of S28	
¹ H NMR spectrum of 31	
¹³ C NMR spectrum of 31	
¹⁹ F NMR spectrum of 31	
¹ H NMR spectrum of 33	
¹³ C NMR spectrum of 33	
¹⁹ F NMR spectrum of 33	
¹ H NMR spectrum of S29	
¹³ C NMR spectrum of S29	
¹ H NMR spectrum of S30	
¹ H NMR spectrum of 35	
¹³ C NMR spectrum of 35	
References	

General Experimental Details

Commercially available reagents were used throughout without purification unless otherwise stated. Anhydrous solvents were used as supplied. Dichloromethane, methanol and tetrahydrofuran were dried using an LC Technology Solutions Inc. SP-1 solvent purification system under an atmosphere of dry nitrogen. All reactions were routinely carried out in oven-dried glassware under a nitrogen atmosphere unless otherwise stated. Analytical thin layer chromatography was performed using silica plates and compounds were visualized at 254 and/or 360 nm ultraviolet irradiation followed by staining ethanolic vanillin solution. Melting points were recorded on an Electrothermal melting point apparatus and are uncorrected. Infrared spectra were obtained using a Perkin Elmer spectrum One Fourier Transform Infrared spectrometer as thin films between sodium chloride plates. Absorption maxima are expressed in wavenumbers (cm⁻¹). NMR spectra were recorded on either a Bruker AV300, AVIII400 or AVIIIHD500 spectrometer operating at 300, 400, 500 MHz for ¹H nuclei respectively and 75, 100, 125 MHz for ¹³C nuclei respectively. Chemical shifts are reported in parts per million (ppm) relative to the tetramethylsilane peak recorded as δ 0.00 ppm in CDCl₃/TMS solvent, or the residual chloroform (δ 7.26 ppm), or DMSO (δ 2.50 ppm). The ¹³C NMR values were referenced to the residual chloroform (δ 77.1 ppm), DMSO (δ 39.5 ppm). ¹³C NMR values are reported as chemical shift δ and assignment. ¹H NMR shift values are reported as chemical shift δ , relative integral, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant (J in Hz) and assignment. Assignments are made with the aid of COSY, NOESY, HMBC and edited HSQC experiments. All experiments were conducted at 298 K. Conventional NMR tubes (5 mm diameter, Norell) using a sample volume of $400 - 500 \mu$ L were used. High resolution mass spectra were obtained by electrospray ionization in positive ion mode at a nominal accelerating voltage of 70 eV on a Bruker micrOTOF-QII mass spectrometer.

General procedure A1

A catalyst solution was prepared by adding bis(pinacolato)-diboron (B₂Pin₂) (1.0 - 1.1 equiv.) to a solution of (1,5-cyclooctadiene)(methoxy)iridium(I) dimer {[Ir(OMe)COD]₂} (3 mol %) and 4,4'-di-*tert*-butyl-2,2'-bypyridine (d'bpy, 6 mol %) or 3,4,7,8-tetramethyl-1,10-phenanthroline (Me₄Phen, 6 mol %) in tetrahydrofuran (THF, 1 – 2 mL) and stirred for 1 min. The resulting solution was transferred to a sealed tube, followed by the addition of the indole (1.04 - 1.37 mmol) in THF (1 - 2 mL). The reaction was sealed and stirred at 60 °C for 18 h (unless otherwise stated) under a blanket of nitrogen. The reaction mixture was cooled to room temperature and concentrated *in vacuo*. The crude residue was purified by flash chromatography on silica gel eluting with light petroleum-ethyl acetate to give the 7-borylindole.

General procedure A2

To a sealed tube containing the indole (0.48 - 1.52 mmol), $[Ir(OMe)COD]_2 (3 - 5 \text{ mol }\%)$, ligand (d⁴bpy or Me₄Phen, 6 - 10 mol %) and B₂Pin₂ (0.7 - 1.1 equiv.) was added the solvent (*n*-hexane, THF or methyl *tert*-butyl ether, 0.5 - 3 mL) under a heavy stream of nitrogen. The reaction mixture was heated to 60 °C (unless otherwise stated) for 4 h (unless otherwise stated) under a blanket of nitrogen. The reaction mixture was purified by flash chromatography on silica gel eluting with light petroleum-ethyl acetate to give the 7-borylindole.

General procedure B1

A solution of 7-borylindole (0.11 – 0.18 mmol) in ethanol-saturated aqueous sodium bicarbonate (2:1, 9 – 15 mL total volume) was cooled to -20 °C. A solution of *m*-chloroperoxybenzoic acid (*m*CPBA, 77% w/w purity, 4 equiv.) in ethanol (2.5 – 3 mL) was added and the resulting mixture warmed to room temperature gradually over 1 h. The reaction was quenched with saturated aqueous sodium sulfite solution (2.5 – 3 mL) and concentrated *in vacuo*. The resulting aqueous solution was extracted with ethyl acetate (3 x 10 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo* to give the crude *o*-amidophenol, in some instances had to be purified through a short plug of silica gel. The ring opening was confirmed by ¹H NMR and the product subsequently used immediately in the next step.

General procedure B2

A solution of the 7-borylindole (0.13 - 0.2 mmol) in ethanol-water (9:1, 0.03 M) was purged with ozone for 15 min (unless otherwise specified) followed by oxygen for 5 min. The resulting solution was concentrated *in vacuo* (unless otherwise specified). Purification by flash chromatography on silica gel eluting with methanol-dichloromethane (1:19) gave the *o*-amidophenol. The ring opening was confirmed by ¹H NMR and the product subsequently used immediately in the next step.

General procedure C

A solution of the *o*-amidophenol (0.05 - 0.1 mmol) in trifluoroacetic acid (TFA, 2 – 4 mL) was heated to reflux for 1 – 16 h. The reaction mixture was cooled to room temperature and neutralised to pH 7 with saturated aqueous sodium bicarbonate solution. The resulting solution was extracted with ethyl acetate (x 3), and the combined organic layers dried over Na₂SO₄, filtered and concentrated *in vacuo*. Purification by flash chromatography on silica gel eluting with ethyl acetate-light petroleum (1:4, unless otherwise specified) gave the benzoxazole.

4-Acetyl-2-methylbenzoxazole (8)

General procedure A1 was performed using a 2,3-dimethylindole (**5**, 200 mg, 1.37 mmol), $[Ir(OMe)COD]_2$ (27 mg, 0.04 mmol, 3 mol %), d^tbpy (22 mg, 0.08 mmol, 6 mol %), and B₂Pin₂ (350 mg, 1.37 mmol, 1.1 equiv.) in THF (2 mL total). Purification eluting with ethyl acetate-light petroleum (1:19) gave the 7-borylindole **6** (213 mg, 0.78 mmol, 57%) as a colourless solid, m.p. 88 – 91 °C (lit.¹ 89 – 93°C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.66 (1 H, bs, NH), 7.57 (1 H, d, *J* 7.7 Hz, ArH), 7.54 (1 H, dd, *J* 6.9, 0.9, ArH), 7.07 (1 H, t, *J* 14.9, 7.7, ArH), 2.40 (3 H, s, Me), 2.22 (3 H, s, Me), 1.39 (12 H, s, 4 x Me); Spectroscopic data in agreement with literature values.¹

General procedure B1 was performed using **6** (50 mg, 0.18 mmol) in ethanol (10 mL) and saturated aqueous sodium bicarbonate (5 mL) and *m*-chloroperbenzoic acid (77% w/w purity, 165 mg, 0.74 mmol) in ethanol (2.5 mL) gave the *o*-amidophenol **7** (11 mg, 0.06 mmol, 31%) as a pale brown solid which was used in the subsequent step without purification, m.p. 90 – 93 °C; v_{max} (neat)/cm⁻¹ 3096, 2924, 2852, 2585, 1643, 1604, 1523, 1447; δ_{H} (400 MHz, CDCl₃) 11.78 (1 H, bs, NH), 9.95 (1 H, s, OH), 7.48 (1 H, dd, *J* 7.6, 1.6, ArH), 7.28 – 7.23 (1 H, m, ArH), 7.19 (1 H, t, *J* 7.9, ArH), 2.67 (3 H, s, Me), 2.33 (3 H, s, Me); δ_{C} (100 MHz, CDCl₃) 203.6 (C), 171.8 (C), 150.1 (C), 127.9 (C), 126.2 (CH), 126.1 (C), 125.8 (CH), 123.5 (CH), 29.1 (Me), 24.3 (Me); HRMS (ESI) found: 216.0637 [C₁₀H₁₁NO₃+Na]⁺ requires: 216.0631.

General procedure C was performed using **7** (11 mg, 0.06 mmol) and TFA (2.5 mL). Purification as described in the general procedure gave the *title compound* (5 mg, 0.06 mmol, 50%) as a colourless solid, m.p. 72 - 75 °C (lit.² 72 - 75 °C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.90 (1 H, dd, *J* 7.9, 0.9, ArH), 7.66 (1 H, dd, *J* 7.9, 1.0, ArH), 7.34 (1 H, t, *J* 7.9, ArH), 2.93 (3 H, s, Me), 2.70 (3 H, s, Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 197.7

(C), 164.8 (C), 151.7 (C), 141.0 (C), 128.9 (C), 124.5 (CH), 123.9 (CH), 114.5 (CH), 30.8 (Me), 14.7
(Me); HRMS (ESI) found 198.0525 [C₁₀H₉NO₂+Na]⁺ requires: 198.0525.

1-(2-Phenylbenzo[d]oxazol-4-yl)ethan-1-one (9)

General procedure A2 was performed using 3-methyl-2-phenylindole³ (100 mg, 0.48 mmol), [Ir(OMe)COD]₂ (9.6 mg, 0.014 mmol, 3 mol %), Me₄Phen (6.8 mg, 0.028 mmol, 6 mol %), B₂Pin₂ (123 mg, 0.48 mmol, 1 equiv.) and MTBE (2 mL). Purification by flash chromatography on silica gel eluting with ethyl acetate-light petroleum (1:40) gave the 7-borylindole **S1** (64 mg, 0.19 mmol, 40%) as a colourless solid, m.p. 110 – 112 °C; ν_{max} (neat)/cm⁻¹ 3446, 3046, 2987, 2963, 2920, 2862, 1564, 1605, 1442, 1286, 1321, 1090; $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.01 (1 H, bs, NH), 7.73 (1 H, m, ArH), 7.66 (1 H, dd, *J* 6.8, 0.9, ArH), 7.62 (2 H, m, ArH), 7.51 (2 H, t, *J* 7.5, ArH), 7.38 (1 H, m, ArH), 7.16 (1 H, dd, *J* 7.9, 6.7, ArH), 2.48 (3 H, s, Me), 1.40 (12 H, s, 4 x Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 141.1 (C), 133.9 (C), 133.8 (C), 129.6 (CH), 128.9 (2 x CH), 127.9 (2 x CH), 127.3 (CH), 122.6 (CH), 119.1 (CH), 108.2 (C), 83.9 (2 x C), 25.1 (4 x Me), 9.7 (Me), 2 x C not observed; HRMS (ESI) found 356.1791 [C₂₁H₂₄BNO₂+Na]⁺ requires: 356.1796.

General procedure B1 was performed using S1 (51 mg, 0.15 mmol) in ethanol (8 mL) and saturated aqueous sodium bicarbonate (4 mL) and *m*-chloroperbenzoic acid (77% w/w purity, 137 mg, 0.61 mmol, 4 equiv.) in ethanol (3 mL) gave the *o*-amidophenol S2 (25 mg, 0.1 mmol, 64%) which was used in the subsequent step without purification; $\delta_{\rm H}$ (300 MHz, CDCl₃) 12.65 (1 H, bs, NH), 10.24 (1 H, s, OH), 8.12

(2 H, m, ArH), 7.64 – 7.54 (4 H, m, ArH), 7.35 – 7.32 (1 H, m, ArH), 7.27 – 7.22 (1 H, m, ArH), 2.72 (3 H, s, Me).

General procedure C was performed using **S2** (26 mg, 0.1 mmol) and TFA (2.5 mL). Purification as described in the general procedure gave the *title compound* (12 mg, 0.05 mmol, 50%) as a colourless solid, m.p. 110 – 112 °C; v_{max} (neat)/cm⁻¹ 2917, 2849, 1674, 1549, 1284, 1223, 751, 703; δ_{H} (400 MHz, CDCl₃) 8.34 – 8.32 (2 H, m, ArH), 7.97 (1 H, dd, *J* 7.8, 0.9, ArH), 7.77 (1 H, dd, *J* 7.9, 0.9, ArH), 7.61 – 7.52 (3 H, m, ArH), 7.42 (1 H, t, *J* 7.9, ArH), 3.07 (3 H, s, Me); δ_{C} (100 MHz in CDCl₃) 197.9 (C), 163.8 (C), 151.7 (C), 141.9 (C), 132.2 (CH), 129.3 (C), 129.1 (2 x CH), 128.2 (2 x CH), 126.9 (C), 125.0 (CH), 124.7 (CH), 114.9 (CH), 31.4 (Me); HRMS (ESI) found: 260.0692 [C₁₅H₁₁NO₂+Na]⁺ requires: 260.0682.

3-Ethyl-2-phenylindole

2-Phenylindole (200 mg, 1.03 mmol), [Cp*IrCl₂]₂ (8.2 mg, 0.01 mmol, 1 mol %), potassium *tert*-butoxide (115 mg, 1.03 mmol) and ethanol (3.5 mL) was added to a sealed tube. The tube was sealed with a screw-cap and stirred at 120 °C for 24 h. After cooling, the reaction mixture was concentrated *in vacuo*. Purification by flash chromatography eluting with light petroleum-ethyl acetate (40:1) gave the *title compound* (166 mg, 0.75 mmol, 80%) as a yellow oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.98 (1 H, bs, NH), 7.65 (1 H, d, *J* 7.6, ArH), 7.56 (2 H, m, ArH), 7.47 (2 H, t, *J* 7.9, ArH), 7.40-7.34 (2 H, m, ArH), 7.20 (1 H, m, ArH), 7.14 (1 H, m, ArH), 2.92 (2 H, q, *J* 7.4, CH₂), 1.35 (3 H, t, *J* 7.7, Me). Spectroscopic data in agreement with literature values.⁴

1-(2-Phenylbenzo[d]oxazol-4-yl)propan-1-one (10)

General procedure A2 was performed 3-ethyl-2-phenylindole (42 mg, 0.18 mmol), [Ir(OMe)COD]₂ (9.6 mg, 0.014 mmol, 5 mol %), d^tbpy (5 mg, 0.018 mmol, 10 mol %), B₂Pin₂ (48 mg, 0.18 mmol, 1 equiv.) and MTBE (0.5 mL) Purification eluting with ethyl acetate-light petroleum (1:40) gave the 7-borylindole **S3** (27 mg, 0.08 mmol, 44%) as a beige solid, m.p. $106 - 108 \,^{\circ}$ C; v_{max} (neat)/cm⁻¹ 3441, 2981, 2958, 2926, 2861, 1592, 1444, 1371, 1330, 1289, 1134, 852, 706; δ_{H} (400 MHz, CDCl₃) 9.12 (1 H, bs, NH), 7.82 (1 H, d, *J* 7.7, ArH), 7.72 (1 H, d, *J* 6.6, ArH), 7.72 – 7.41 (5 H, m, ArH), 7.20 (1 H, t, *J* 7.4, ArH), 2.98 (2 H, q, *J* 7.3, CH₂), 1.43 (12 H, s, 4 x Me), 1.39 (3 H, t, *J* 7.3, Me); δ_{C} (100 MHz, CDCl₃) 141.2 (C), 133.8 (C), 133.5 (C), 129.5 (CH), 128.9 (2 x CH), 128.0 (2 x CH), 127.9 (CH), 127.4 (CH), 122.7 (CH), 119.0 (CH), 115.0 (C), 83.8 (2 x C), 25.0 (4 x Me), 17.8 (CH₂), 15.9 (Me), 1 x C not observed; HRMS (ESI) found: 370.1939 [C₂₂H₂₆BNO₂+Na]⁺ requires: 370.1953.

General procedure B1 was performed using **S3** (43 mg, 0.12 mmol) in ethanol (6 mL) and saturated aqueous sodium bicarbonate (3 mL) and m-chloroperbenzoic acid (77% w/w purity, 86 mg, 0.50 mmol, 4 equiv.) in ethanol (2.6 mL) gave the *o*-amidophenol **S4** (23 mg, 0.08 mmol, 69%) which was used in the next step without further purification, $\delta_{\rm H}$ (300 MHz, CDCl3) 12.67 (1 H, bs, NH), 10.11 (1 H, s, OH), 8.13 – 8.10 (2 H, m, ArH), 7.62 – 7.54 (4 H, m, ArH), 7.34 – 7.30 (1 H, m, ArH), 7.25 – 7.21 (1 H, m, ArH), 3.11 (2 H, q, J 7.2, CH2), 1.28 – 1.24 (3 H, m, Me).

General procedure C was performed using S4 (23 mg, 0.08 mmol) and TFA (2 mL). Purification as described in the general procedure gave the title compound (11 mg, 0.04 mmol, 51%) as a pale yellow oil, v_{max} (neat)/cm⁻¹ 2962, 2915, 2849, 2324, 1691, 1471, 1259, 1016, 796; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.34-8.31 (2 H, m, ArH), 7.98 (1 H, dd, J

7.6, 1.0, ArH), 7.75 (1 H, dd, J 8.0, 1.6, ArH), 7.58 – 7.54 (3 H, m, ArH), 7.42 (1 H, t, J 7.9, ArH), 3.57 (2 H, q, J 7.2, CH₂), 1.31 (3 H, J 7.2, Me); δ_{C} (100 MHz, CDCl₃) 200.7 (C), 163.6 (C), 151.5 (C), 141.3 (C), 132.0 (CH), 129.1 (C), 128.9 (2 x CH), 128.0 (2 x CH), 126.8 (C), 124.9 (CH), 124.6 (CH), 114.5 (CH), 36.6 (CH2), 8.2 (Me); HRMS (ESI) found 274.0845 [C₁₆H₁₃NO₃+Na]⁺ requires: 274.0838.

3-Ethyl-2-methylindole

2-Methylindole (200 mg, 1.52 mmol), [Cp*IrCl₂]₂ (36 mg, 0.046 mmol, 3 mol %), potassium *tert*-butoxide (171 mg, 1.52 mmol) and ethanol (2 mL) was added to a sealed tube. The tube was sealed with a screw-cap and stirred at 140 °C for 24 h. After cooling, the reaction mixture was concentrated *in vacuo*. Purification by flash chromatography eluting with ethyl acetate-light petroleum (1:40) gave the *title compound* (155 mg, 0.97 mmol, 64%) as a yellow oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.67 (1 H, bs, NH), 7.54-7.48 (1 H, m, ArH), 7.28-7.24 (1 H, m, ArH), 7.13-7.03 (2 H, m, ArH), 2.71 (2 H, q, *J* 7.6, CH₂), 2.37 (3 H, s, Me), 1.22 (3 H, t, *J* 7.6, Me). Spectroscopic data in agreement with literature values.⁵

1-(2-Methylbenzo[d]oxazol-4-yl)propan-1-one (11)

General procedure A1 was performed using 3-ethyl-2-methylindole (166 mg, 1.04 mmol), [Ir(OMe)COD]₂ (21 mg, 0.031 mmol, 3 mol %), Me₄Phen (15 mg, 0.062 mmol, 6 mol %), B₂Pin₂ (265 mg, 0.62 mmol, 1 equiv.) in THF (4 mL total). Purification eluting with ethyl acetate-light petroleum (1:9)

gave the 7-borylindole **S5** (123 mg, 0.43 mmol, 41%) as beige solid, m.p. $105 - 108 \,^{\circ}\text{C}$; ν_{max} (neat)/cm⁻¹ 3455, 3055, 2897, 2974, 2926, 2858, 1615, 1591, 1409, 1369, 1329, 1130, 1099; δ_{H} (400 MHz, CDCl₃) 8.67 (1 H, s, NH), 7.63 (1 H, d, *J* 8.0, ArH), 7.54 (1 H, d, *J* 6.5, ArH), 7.07 (1 H, t, *J* 7.6, ArH), 2.71 (2 H, q, *J* 7.5, CH₂), 2.41 (3 H, s Me), 1.38 (12 H, s, 4 x Me), 1.21 (3 H, t, *J* 7.6, Me); δ_{C} (100 MHz, CDCl₃) 140.5 (C), 130.0 (C), 128.0 (CH), 127.4 (C), 121.5 (C), 118.4 (CH), 113.4 (C), 83.6 (2 x C), 24.9 (4 x Me), 17.3 (CH₂), 15.6 (Me), 11.6 (CH₂), 1 x C not observed; HRMS (ESI) found 308.1790 [C₁₇H₂₄BNO₂+Na]⁺ requires: 308.179.

General procedure B1 was performed using **S5** (32 mg, 0.11 mmol) in ethanol (6 mL) and saturated aqueous sodium bicarbonate (3 mL) and *m*-chloroperbenzoic acid (77% w/w purity, 77 mg, 0.34 mmol, 3.1 equiv.) in ethanol (3 mL) gave the *o*-amidophenol **S6** (14 mg, 0.07 mmol, 60%) which was used in the subsequent step without further purification, m.p. 56 – 59 °C; v_{max} (neat)/cm⁻¹ 2919, 2568, 1644, 1563, 1513, 1459, 1314, 1295, 1266, 1229, 1168, 1124, 1054, 831, 773; $\delta_{\rm H}$ (400 MHz, CDCl₃) 11.82 (1 H, bs, NH), 9.88 (1 H, bs, OH), 7.50 (1 H, dd, *J* 7.6, 1.5, ArH), 7.25 – 7.23 (1 H, m, ArH), 7.20 – 7.16 (1 H, m, ArH), 3.07 (2 H, q, *J* 7.18, CH₂), 2.34 (3 H, s, Me), 1.22 (3 H, t, *J* 7.2, Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 206.2 (C), 171.9 (C), 150.2 (C), 127.8 (C), 126.0 (C), 125.91 (CH), 125.86 (CH), 122.6 (CH), 33.8 (CH₂), 24.3 (Me), 8.5 (Me); HRMS (ESI) found: 230.0791 [C₁₁H₁₃NO₃+Na]⁺ requires: 230.0788.

General procedure C was performed using **S6** (11 mg, 0.05 mmol) and TFA (2.5 mL). Purification as described in the general procedure gave the *title compound* (3 mg, 0.015 mmol, 30%) as a yellow oil, v_{max} (neat)/cm⁻¹ 2961, 2918, 2850, 1678, 1609, 1570, 1419, 1260, 1229, 1095, 1026, 799; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.90 (1 H, dd, *J* 7.5, 0.9, ArH), 7.64 (1 H, d, *J* 8.1, ArH), 7.36 (1 H, t, *J* 7.9, ArH), 3.41 (2 H, q, *J* 7.2, CH₂), 2.69 (3 H, s, Me), 1.27 – 1.25 (3 H, m, Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 200.8 (C), 164.8 (C), 151.8 (C), 140.8 (C), 128.9 (C), 124.6 (CH), 124.2 (CH), 114.4 (CH), 36.4 (CH₂), 14.8 (Me), 8.2 (Me); HRMS (ESI) found 212.0683 [C₁₁H₁₁NO₂+Na]⁺ requires: 212.0682.

(4-Methoxyphenyl)(2-methylbenzo[*d*]oxazol-4-yl)methanone (12)

General procedure A2 was performed using 3-(4-methoxyphenyl)-2-methylindole⁶ (104 mg, 0.44 mmol), [Ir(OMe)COD]₂ (8.7 mg, 0.013 mmol, 3 mol %), d'bpy (7.1 mg, 0.026 mmol, 6 mol %), B₂Pin₂ (100 mg, 0.396 mmol, 0.9 equiv.) and THF (1 mL). Purification eluting with ethyl acetate-light petroleum (1:4) to afford the 7-borylindole **S7** (74 mg, 0.62 mmol, 52%) as a pale brown oil, v_{max} (neat)/cm⁻¹ 3446, 2977, 1590, 1575, 1562, 1509, 1440, 1415, 1366, 1324, 1271, 1236, 1127, 1037, 971, 856, 838, 794, 754, 729, 703; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.94 (1 H, bs, NH), 7.73 (1 H, d, *J* 7.8, ArH), 7.60 (1 H, dd, *J* 7.0, 1.0), 7.46 – 7.38 (2 H, m, ArH), 7.11 (1 H, dd, *J* 7.9, 7.0, ArH), 7.04 – 6.97 (2 H, m, ArH), 3.87 (3 H, s, OMe), 2.53 (3 H, s, Me), 1.41 (12 H, s, 4 x Me); $\delta_{\rm C}$ (100 MHz in CDCl₃) 157.9 (C), 140.5 (C), 131.2 (C), 130.7 (2 x CH), 128.8 (CH), 128.2 (C), 127.2 (C), 122.4 (CH), 119.5 (CH), 114.1 (2 x CH), 113.8 (C), 83.9 (2 x C), 55.5 (OMe), 25.1 (4 x Me), 12.7 (Me), 1 x C not observed; HRMS (ESI) found 386.1895 [C₂₂H₂₆BNO₃+Na]⁺ requires 386.1902.

A solution of **S7** (54 mg, 0.15 mmol) in dichloromethane (6 mL) at -78 °C was purged with ozone for 35 min followed by oxygen for 5 min. Methanol (1 mL) and concentrated hydrochloric acid (1 mL) were added to the reaction mixture and stirred for 30 min, gradually warming to room temperature. The methanol was removed *in vacuo* and the crude material quenched with saturated aqueous sodium bicarbonate solution (15 mL). The resulting aqueous solution was extracted with dichloromethane (3 x 10 mL), dried over Na₂SO₄ and concentrated *in vacuo* gave the *o*-amidophenol **S8** (32 mg, 0.11 mmol, 75%)

as a brown oil which was used in the subsequent step without further purification, δ_H (300 MHz, CDCl₃) 10.72 (1 H, bs, NH), 9.43 (1 H, s, OH), 8.04 (1 H, d, *J* 9.0, ArH), 7.78 (2 H, d, *J* 8.9, ArH), 7.17 (1 H, t, *J* 7.8, ArH), 7.09 (1 H, d, *J* 1.8, ArH), 6.97 (2 H, d, *J* 8.9, ArH), 3.90 (3 H, s, OMe), 2.29 (3 H, s, Me).

General procedure C was performed using S8 (32 mg, 0.11 mmol) and TFA (2 mL) for 3.5 h. Purification eluting with ethyl acetate-light petroleum (1:2.5) to afford the *title compound* (14 mg, 0.05 mmol, 47%) as a colourless solid, v_{max} (neat)/cm⁻¹ 2922, 2850, 1647, 1597, 1570, 1508, 1458, 1423, 1319, 1294, 1262, 1244, 1167, 1152, 1019, 928, 891, 841, 804, 759, 702; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.91 – 7.86 (2 H, m, ArH), 7.63 (1 H, d, *J* 8.2, ArH), 7.50 (1 H, dd, *J* 7.5, 0.9, ArH), 7.37 (1 H, t, *J* 7.8, ArH), 6.96 – 6.90 (2 H, m, ArH), 3.88 (3 H, s, OMe), 2.64 (3 H, s, Me); $\delta_{\rm C}$ (100 MHz in CDCl₃) 193.1 (CH), 165.2 (C), 163.9 (C), 151.4 (C), 140.3 (C), 133.0 (2 x CH), 130.7 (C), 130.4 (C), 125.1 (CH), 124.0 (CH), 113.7 (2 x CH), 112.8 (CH), 55.6 (OMe), 14.8 (Me); HRMS (ESI) found: 290.079 [C₁₆H₁₃NO₃+Na]⁺ requires 290.0788.

2-Methylbenzo[d]oxazole-4-carbaldehyde (13)

General procedure A2 was performed using 2-methylindole (200 mg, 1.52 mmol), [Ir(OMe)COD]₂ (26.3 mg, 0.04 mmol 3 mol %), d^tbpy (21 mg, 0.08 mmol, 6 mol %), B₂Pin₂ (387 mg, 1.52 mmol, 1 equiv.) and THF (4 mL). Purification eluting with ethyl acetate-light petroleum (1:9) gave the 7-borylindole **S9** (262 mg, 1.02 mmol, 67%) as a colourless solid, m.p. 73 – 75 °C; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.85 (1 H, bs, NH), 7.62 (1 H, d, *J* 7.8, ArH), 7.55 (1 H, dd, *J* 7.2, 0.7, ArH), 7.07 (1 H, t, *J* 7.5, ArH), 6.20 (1 H, q, *J* 1.2, ArH), 2.49 (3 H, s, Me), 1.40 (12 H, s, 4 x Me). Spectroscopic data in agreement with literature values.⁷

General procedure B2 was performed using S9 (51 mg, 0.2 mmol) in ethanol-water (9:1, 1 mL) was purged with ozone for 10 min. Purification as described in the general procedure gave the *o*-amidophenol S10 (14 mg, 0.08 mmol, 39%) as a colourless oil, v_{max} (neat)/cm⁻¹ 3451, 2977, 2917, 1603, 1553, 1423, 1403, 1386, 1369, 1331, 1288, 1214, 1195, 1139, 1010, 963, 851, 752; δ_{H} (300 MHz, CDCl₃) 11.30 (1 H, bs, NH), 10.51 (1 H, s, OH), 9.89 (1 H, s, CHO), 7.31 – 7.24 (3 H, m, ArH), 2.35 (3 H, s, Me); δ_{C} (100 MHz in CDCl₃) 195.9 (CH), 172.1 (C), 149.6 (C), 128.7 (CH), 127.5 (C), 127.4 (CH), 126.4 (CH), 125.2 (C), 24.3 (Me).

General procedure C was performed using S10 (19 mg, 0.1 mmol) and TFA (4 mL) for 3 h. Purification eluting with ethyl acetate-light petroleum (1:4) gave the *title compound* (10 mg, 0.06 mmol, 60%) as a colourless solid, m.p. 52 - 56 °C; v_{max} (neat)/cm⁻¹ 3119, 3068, 3032, 2919, 2859, 2753, 1692, 1674, 1608, 1567, 1515, 1439, 1424, 1386, 1366, 1350, 1272, 1239, 1195, 1076, 1056, 995, 922, 868, 786, 754, 700, 656; $\delta_{\rm H}$ (300 MHz, CDCl₃) 10.62 (1 H, s, CHO), 7.86 (1 H, dd, *J* 7.7, 1.0, ArH), 7.73 (1 H, dd, *J* 8.1, 1.1, ArH), 7.44 (1 H, t, *J* 7.9, ArH), 2.73 (3 H, s, Me); $\delta_{\rm C}$ (100 MHz in CDCl₃) 189.5 (CH), 166.6 (C), 151.9 (C), 142.6 (C), 126.9 (C), 124.4 (CH), 124.3 (CH), 115.9 (CH), 14.8 (Me); HRMS (ESI) found 184.0371 [C₉H₇NO₂+Na]⁺ requires: 184.0369.

2-Phenylbenzo[d]oxazole-4-carbaldehyde (14)

General procedure A2 was performed using 2-phenylindole (193 mg, 1 mmol), [Ir(OMe)COD]₂ (19.9 mg, 0.03 mmol, 3 mol %), d^tbpy (16.1 mg, 0.06 mmol, 6 mol %), B₂Pin₂ (177 mg, 0.7 mmol, 0.7 equiv.) and *n*-hexane (2 mL). Purification eluting with ethyl acetate-light petroleum (1:4) to afford the 7-

borylindole **S11** (218 mg, 0.68 mmol, 68%) as a beige solid, m.p. 101 – 105 °C; δ_H (300 MHz, CDCl₃) 9.45 (1 H, br s, NH), 7.74 (1 H, d, *J* 7.8, ArH), 7.69 (2 H, d, *J* 8.4, ArH), 7.47 (2 H, t, *J* 7.4, ArH), 7.33 (1 H, t, *J* 7.5, ArH), 7.13 (1 H, dd, *J* 7.7, 7.1, ArH), 6.82 (1 H, d, *J* 2.3, ArH), 1.43 (12 H, s, 4 x Me). Spectroscopic data in agreement with literature values.⁷

General procedure B2 was performed using **S11** (64 mg, 0.2 mmol) in ethanol-water (9:1, 6 mL). Purification as described in the general procedure gave the *o*-amidophenol **S12** (14 mg, 0.06 mmol, 29%) as a yellow solid, $\delta_{\rm H}$ (400 MHz, CDCl₃) 12.14 (1 H, bs, NH), 10.84 (1 H, bs, OH), 9.96 (1 H, s, CHO), 8.13 (2 H, d, *J* 8.5, ArH), 7.63 – 7.53 (3 H, m, ArH), 7.39 – 7.33 (3 H, m, ArH); HRMS (ESI) found 264.0635 [C₁₄H₁₁NO₃+Na]⁺ requires: 264.0631.

General procedure C was performed using S12 (13 mg, 0.05 mmol) and TFA (3 mL) for 4.5 h. Purification eluting with ethyl acetate-light petroleum (1:9) gave the *title compound* (5 mg, 0.02 mmol, 42%) as a colourless solid, m.p. $115 - 117 \,^{\circ}$ C; v_{max} (neat)/cm⁻¹ 3074, 2918, 2848, 1688, 1607, 1548, 1485, 1426, 1384, 1280, 1235, 1155, 1007, 865, 799, 761, 779; δ_{H} (500 MHz, CDCl₃) 10.79 (1 H, s, CHO), 8.35 – 8.33 (2 H, m, ArH), 7.92 (1 H, m, ArH), 7.84 (1 H, m, ArH), 7.60 – 7.55 (3 H, m, ArH), 7.48 (1 H, t, *J* 7.8, ArH); δ_{C} (125 MHz in CDCl₃) 189.6 (CH), 165.4 (C), 151.8 (C), 143.8 (C), 132.6 (CH), 129.3 (2 x CH), 128.4 (2 x CH), 127.3 (C), 126.7 (C), 125.0 (CH), 123.9 (CH), 116.2 (CH); HRMS (ESI) found 246.0533 [C₁₄H₉NO₂+Na]⁺ requires 246.0525.

2-(4-Fluorophenyl)benzo[d]oxazole-4-carbaldehyde (15)

General procedure A2 was performed using 2-(4-fluorophenyl)indole (211 mg, 1 mmol), [Ir(OMe)COD]₂ (19.9 mg, 0.03 mmol, 3 mol %), d'bpy (16.1 mg, 0.06 mmol, 6 mol %), B₂Pin₂ (254 mg, 1 mmol, 1 equiv.) and *n*-hexane (2 mL) for 7 h. Purification eluting with ethyl acetate-light petroleum (1:9) gave the 7-borylindole **S13** (127 mg, 0.81 mmol, 38%) as a pale yellow solid, m.p. 124 – 126 °C; v_{max} (neat)/cm⁻¹ 3436, 3062, 2979, 1594, 1551, 1503, 1488, 1427, 1374, 1284, 1325, 1270, 1128, 977, 847, 835, 806, 754; δ_{H} (400 MHz, CDCl₃) 9.37 (1 H, bs, NH), 7.74 (1 H, d, *J* 7.9, ArH), 7.67 – 7.62 (3 H, m, ArH), 7.20 – 7.11 (3 H, m, ArH), 6.75 (1 H, d, *J* 2.3, ArH), 1.43 (12 H, s, 4 x Me); δ_{C} (100 MHz in CDCl₃) 162.5 (d, *J* 246, C=O), 142.2 (C), 136.9 (C), 129.7 (CH), 129.1 (d, *J* 3.8, C), 128.3 (C), 127.0 (d, *J* 8, 2xCH), 124.2 (CH), 119.9 (CH), 116.1 (d, *J* 21, 2 x CH), 99.4 (CH), 84.1 (2 x C), 25.2 (4 x Me), 1 x C not observed; δ_{F} (376 MHz, CDCl₃) -114.2 (s); HRMS (ESI) found: 338.1714 [C₂₀H₂₁BFNO₂+H]⁺ requires: 338.1726.

General procedure B2 was performed **S13** (67 mg, 0.2 mmol) in ethanol-water (9:1, 6 mL). Purification as described in the general procedure gave the *o*-amidophenol **S14** (18 mg, 0.07 mmol, 35%) as a yellow solid, $\delta_{\rm H}$ (400 MHz, CDCl₃) 12.12 (1 H, bs, NH), 10.77 (1 H, s, OH), 9.96 (1 H, s, CHO), 8.18 – 8.14 (2 H, m, ArH), 7.36 – 7.29 (3 H, m, ArH), 7.26 – 7.19 (2 H, m, ArH).

General procedure C was performed using **S14** (18 mg, 0.07 mmol) and TFA (1.5 mL) for 4 h. Purification eluting with ethyl acetate-light petroleum (1:4) to obtain the *title compound* (9 mg, 0.03 mmol,

54%) as a colourless solid, m.p. 135 – 138 °C; ν_{max} (neat)/cm⁻¹ 2924, 2845, 1700, 1610, 1559, 1499, 1418, 1259, 1239, 1162, 1002, 924, 841, 788, 756, 734; δ_{H} (500 MHz, CDCl₃) 10.77 (1 H, s, CHO), 8.36 – 8.34 (2 H, m, ArH), 7.92 (1 H, d, *J* 7.9, ArH), 7.83 (1 H, d, *J* 7.9, ArH), 7.48 (1 H, t, *J* 7.8, ArH), 7.27 – 7.24 (2 H, m, ArH); δ_{C} (125 MHz, CDCl₃) 189.4 (CH), 165.4 (C, d, *J* 254), 164.4 (C), 151.7 (C), 143.6 (C), 130.6 (2 x CH, d, *J* 9), 127.3 (C), 124.9 (CH), 124.0 (CH), 122.9 (C, d, *J* 4), 116.5 (2 x CH, d, *J* 22), 116.1 (CH); δ_{F} (376 MHz, CDCl₃) -105.9 (s); HRMS (ESI) found: 264.0435 [C₁₄H₈FNO₂+Na]⁺ requires: 264.0431.

2-Methyl-6-nitrobenzo[d]oxazole-4-carbaldehyde (16)

A modified **general procedure A2** was performed using 2-methyl-5-nitroindole (88 mg, 0.5 mmol), $[Ir(OMe)COD]_2$ (10 mg, 0.015 mmol, 3 mol %), d^tbpy (8 mg, 0.03 mmol, 6 mol %), B₂Pin₂ (190 mg, 0.75 mmol, 1 equiv.) in a microwave vial was added THF (2.5 mL) and capped under nitrogen. The reaction was heated to 80°C in a microwave for 2 h. Purification eluting with ethyl acetate-light petroleum (2:3) gave the 7-borylindole **S15** (40 mg, 0.13 mmol, 27%) as a pale red oil, δ_H (400 MHz, CDCl₃) 9.10 (1 H, bs, NH), 8.53 (1 H, d, *J* 2.2, ArH), 8.47 (1 H, d, *J* 2.2, ArH), 6.38 – 6.37 (1 H, m, ArH), 2.52 (3 H, d, *J* 0.9, Me), 1.42 (12 H, s, 4 x Me). Spectroscopic data in accordance with literature values.¹

General procedure B2 was performed using S15 (40 mg, 0.13 mmol) in ethanol-water (9:1, 4.3 mL). Purification as described in the general procedure gave *o*-amidophenol S16 (17 mg, 0.07 mmol, 57%) as a yellow oil, $\delta_{\rm H}$ (300 MHz, CDCl₃) 11.57 (1 H, bs, NH), 11.12 (1 H, bs, OH), 9.97 (1 H, s, CHO), 8.15 (1 H, d, *J* 2.6), 8.1 (1 H, d, *J* 2.6), 2.41 (3 H, s, Me).

General procedure C was performed using S16 (17 mg, 0.07 mmol) and TFA (2.5 mL) for 3.5 h. Purification eluting with ethyl acetate-light petroleum (1:1) gave the *title compound* (8 mg, 0.04 mmol, 51%) as a colourless solid, m.p. 144 – 148 °C; v_{max} (neat)/cm⁻¹ 3086, 2923, 2853, 1682, 1626, 1562, 1533, 1462, 1345, 1280, 1251, 1198, 1027, 919, 910, 808, 747; $\delta_{\rm H}$ (400 MHz, CDCl₃) 10.65 (1 H, s, CHO), 8.79 (1 H, d, *J* 2.0, ArH), 8.61 (1 H, d, *J* 2.3, ArH), 2.83 (3 H, s, Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 187.3 (CH), 171.3 (C), 151.4 (C), 147.2 (C), 145.1 (C), 126.2 (C), 119.8 (CH), 111.1 (CH), 15.2 (Me); HRMS (ESI) found 207.0395 [C₉H₆N₂O₄+H]⁺ requires: 207.0400.

2,6-Dimethylbenzo[*d*]oxazole-4-carbaldehyde (17)

General procedure A2 was performed using 2,5-dimethylindole (200 mg, 1.38 mmol), [Ir(OMe)COD]₂ (27.4 mg, 0.04 mmol, 3 mol %), d^tbpy (22.2 mg, 0.083 mmol, 6 mol %), B₂Pin₂ (385 mg, 1.52 mmol, 1.1 equiv.) and THF (3 mL) for 4.5 h. Purification eluting with ethyl acetate-light petroleum (1:4) gave the 7-borylindole **S17** (295 mg, 1.08 mmol, 79%) as a colourless solid, m.p. 107 - 110 °C; δ_{H} (300 MHz, CDCl₃) 8.72 (1 H, bs, NH), 7.41 (1 H, s, ArH), 7.39 (1 H, s, ArH), 6.12 (1 H, q, *J* 1.0, ArH), 2.47 (3 H, d, *J* 0.8, Me), 2.42 (3 H, s, Me), 1.40 (12 H, s, 4 x Me). Spectroscopic data in agreement with literature values.¹

General procedure B2 was performed using S17 (54 mg, 0.2 mmol) in ethanol-water (9:1, 6 mL). Purification as described in the general procedure gave the *o*-amidophenol S18 (11 mg, 0.06 mmol, 29%) as a yellow solid, $\delta_{\rm H}$ (300 MHz, CDCl₃) 11.18 (1 H, bs, NH), 10.50 (1 H, s, OH), 9.84 (1 H, s, CHO), 7.11 (1 H, d, *J* 1.7, ArH), 7.04 (1 H, d, *J* 1.7, ArH), 2.36 (3 H, bs, Me), 2.33 (3 H, s, Me).

General procedure C was performed using **S18** (6 mg, 0.031 mmol) and TFA (1 mL) for 4 h. Purification eluting with ethyl acetate-light petroleum (1:9) to obtain the *title compound* (4 mg, 0.02 mmol, 74%) as a colourless solid, m.p. 83 – 86 °C; v_{max} (neat)/cm⁻¹ 2918, 2850, 1678, 1615, 1573, 1428, 1294, 1253, 1235, 1210, 1039, 996, 975, 916, 861, 855, 751, 691, 635; δ_{H} (400 MHz, CDCl₃) 10.56 (1 H, s, CHO), 7.66 (1 H, d, *J* 1.03, ArH), 7.52 (1 H, d, *J* 1.03, ArH), 2.69 (3 H, s, Me), 2.53 (3 H, s, Me); δ_{C} (100 MHz in CDCl₃) 189.6 (CH), 165.9 (C), 152.2 (C), 140.5 (C), 135.0 (C), 126.3 (C), 125.2 (CH), 116.3 (CH), 21.6 (Me), 14.8 (Me); HRMS (ESI) found 198.0531 [C₁₀H₉NO₂+Na]⁺ requires: 198.0525.

6-Bromo-2-methylbenzo[d]oxazole-4-carbaldehyde (18)

General procedure A2 was performed using 5-bromo-2-methylindole (210 mg, 1 mmol), [Ir(OMe)COD]₂ (19.9 mg, 0.03 mmol, 3 mol %), d^tbpy (16.1 mg, 0.06 mmol, 6 mol %), B₂Pin₂ (254 mg, 1 mmol, 1 equiv.) and *n*-hexane (3 mL). Purification as described in the general procedure gave the 7borylindole **S19** (286 mg, 0.85 mmol, 85%) as a colourless solid, m.p. 147 – 150 °C; v_{max} (neat)/cm⁻¹ 3417, 2976, 1605, 1583, 1558, 1456, 1406, 1419, 1387, 1365, 1318, 1278, 1189, 1136, 976, 870, 847, 758, 702; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.82 (1 H, bs, NH), 7.72 (1 H, d, *J* 1.9, ArH), 7.63 (1 H, d, *J* 1.9, ArH), 6.16 – 6.13 (1 H, m, ArH), 2.48 (3 H, d, *J* 0.9, Me), 1.39 (12 H, s, 4 x Me); $\delta_{\rm C}$ (100 MHz in CDCl₃) 140.1 (C), 136.6 (C), 130.3 (CH), 130.2 (C), 125.4 (CH), 112.8 (C), 99.6 (CH), 84.3 (2 x C), 25.1 (4 x Me), 12.0 (Me), 1 x C not observed.

General procedure B2 was performed using **S19** (67 mg, 0.2 mmol) in ethanol-water (9:1, 6 mL). Purification as described in the general procedure gave the *o*-amidophenol **S20** (27 mg, 0.10 mmol, 52%) as an orange solid, δ_H (300 MHz, CDCl₃) 11.90 (1 H, bs, NH), 10.84 (1 H, s, OH), 9.80 (1 H, s, CHO), 7.41 (1 H, d, *J* 2.2, ArH), 7.34 (1 H, d, *J* 2.2, ArH), 2.34 (3 H, s, Me).

General procedure C was performed using S20 (27 mg, 0.1 mmol) and TFA (4 mL) for 3 h. Purification as described in the general procedure gave the *title compound* (11 mg, 0.04 mmol, 44%) as a colourless solid, m.p. 142 – 144 °C; v_{max} (neat)/cm⁻¹ 3078, 2920, 1685, 1597, 1570, 1452, 1418, 1382, 1327, 1269, 1244, 1219, 1071, 1031, 921, 876, 836, 765, 721; $\delta_{\rm H}$ (400 MHz, CDCl₃) 10.55 (1 H, s, CHO), 7.97 (1 H, d, *J* 1.6, ArH), 7.87 (1 H, d, *J* 1.6, ArH), 2.72 (3 H, s, Me); $\delta_{\rm C}$ (100 MHz in CDCl₃) 188.0 (CH), 167.0 (C), 152.4 (C), 141.9 (C), 127.3 (C), 126.9 (CH), 118.9 (CH), 117.8 (C), 14.8 (Me); HRMS (ESI) found 261.9479 [C₉H₆BrNO₂+Na]⁺ requires: 261.9474.

6-Chloro-2-methylbenzo[d]oxazole-4-carbaldehyde (19)

General procedure A2 was performed using 5-chloro-2-methylindole (165 mg, 1 mmol), $[Ir(OMe)COD]_2$ (19.9 mg, 0.03 mmol, 3 mol %), d^tbpy (16.1 mg, 0.06 mmol, 6 mol %), B₂Pin₂ (254 mg, 1 mmol, 1 equiv.) and *n*-hexane (3 mL). Purification eluting with ethyl acetate-light petroleum (1:4) gave the 7-borylindole **S21** (236 mg, 0.81 mmol, 81%) as a beige solid, m.p. 131 – 135 °C; δ_{H} (400 MHz, CDCl₃) 8.81 (1 H, bs, NH), 7.56 (1 H, d, *J* 1.8, ArH), 7.49 (1 H, *J* 2.0, ArH), 6.15 (1 H, m, ArH), 2.48 (3 H, d, *J* 0.7, Me), 1.39 (12 H, 4 x Me); Spectroscopic data in agreement with literature values.⁷

General procedure B2 was performed using **S21** (44 mg, 0.2 mmol) in ethanol-water (9:1, 6 mL). Purification as described in the general procedure gave the *o*-amidophenol **S22** (11 mg, 0.05 mmol, 34%) as a yellow solid, δ_H (300 MHz, CDCl₃) 8.97 (1 H, s, CHO), 8.95 (1 H, bs, NH), 7.14 (1 H, d, *J* 2.8, ArH), 7.02 (1 H, d, *J* 2.5, ArH), 2.28 (3 H, s, Me).

General procedure C was performed using S22 (11 mg, 0.05 mmol) and TFA (2 mL) for 1.5 h. Purification as described in the general procedure gave the *title compound* (7 mg, 0.04 mmol, 69%) as a colourless solid, m.p. 142 – 146 °C; v_{max} (neat)/cm⁻¹ 3084, 2923, 2853, 1607, 1684, 1569, 1458, 1422, 1384, 1330, 1273, 1246, 1013, 1075, 1031, 926, 847, 731; δ_{H} (400 MHz, CDCl₃) 10.57 (1 H, s, CH), 7.83 (1 H, d, *J* 1.9, ArH), 7.72 (1 H, d, *J* 1.9, ArH), 2.72 (3 H, s, Me); δ_{C} (100 MHz in CDCl₃) 188.1 (CH), 167.2 (C), 152.2 (C), 141.5 (C), 130.8 (C). 126.9 (C). 124.2 (CH), 116.2 (CH), 14.9 (Me); HRMS (ESI) found: 217.9974 [C₉H₆CINO₂+Na]⁺ requires: 217.9979.

6-Fluoro-2-methylbenzo[d]oxazole-4-carbaldehyde (20)

General procedure A2 was performed using 5-fluoro-2-methylindole (149 mg, 1 mmol), [Ir(OMe)COD]₂ (19.9 mg, 0.03 mmol, 3 mol %), d'bpy (16.1 mg, 0.06 mmol, 6 mol %), B₂Pin₂ (254 mg, 1 mmol, 1 equiv.) and *n*-hexane (3 mL) for 4.5 h. Purification eluting with ethyl acetate-light petroleum (1:4) gave the 7-borylindole S23 (216 mg, 0.78 mmol, 79%) as a beige solid, m.p. 87 - 90 °C; v_{max} (neat)/cm⁻¹ 3450, 3427, 2978, 1597, 1555, 1487, 1426, 1399, 1372, 1335, 1263, 1208, 1133, 1105, 964, 848, 756; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.80 (1 H, bs, NH), 7.27 – 7.25 (2 H, m, ArH), 6.17 – 6.16 (1 H, m, ArH), 2.48 (3 H, d, Me), 1.40 (12 H, s, 4 x Me); $\delta_{\rm C}$ (100 MHz in CDCl₃) 157.8 (C, d, *J* 234), 138.1 (C), 137.1 (C), 128.9 (C, d, *J* 9), 114.9 (CH, d, *J* 24), 108.3 (CH, d, *J* 24), 100.1 (CH, d, *J* 4), 84.2 (2 x C), 25.1 (4 x Me), 14.1 (Me), 1 x C not observed.

General procedure B2 was performed using S23 (55 mg, 0.2 mmol) in ethanol-water (9:1, 6 mL). Purification as described in the general procedure gave the *o*-amidophenol S24 (20 mg, 0.1 mmol, 51%) as a yellow solid, $\delta_{\rm H}$ (300 MHz, CDCl₃) 11.12 (1 H, bs, NH), 10.90 (1 H, s, OH), 9.82 (1 H, s, CHO), 7.03-6.95 (2 H, m, 2 x ArH), 2.35 (3 H, s, Me).

General procedure C was performed using S24 (20 mg, 0.1 mmol) and TFA (2 mL) for 1.5 h. Purification as described in the general procedure gave the *title compound* (9 mg, 0.05 mmol, 50%) as a colourless solid, m.p. 139 – 141 °C; v_{max} (neat)/cm⁻¹ 3088, 2923, 2853, 1736, 1683, 1617, 1578, 1475, 1433, 1389, 1298, 1195, 1118, 985, 913, 867, 858, 762; $\delta_{\rm H}$ (400 MHz, CDCl₃) 10.60 (1 H, d, *J* 2.5, CHO), 7.58 (1 H, dd, *J* 9.5, 2.4, ArH), 7.46 (1 H, dd, *J* 7.3, 2.4, ArH), 2.72 (3 H, s, Me); $\delta_{\rm C}$ (100 MHz in CDCl₃) 188.1 (CH), 166.9 (C, d, *J* 3), 160.1 (C, d, *J* 246), 152.0 (C, d, *J* 13), 139.3 (C), 126.7 (C, d, *J* 8), 110.6 (CH, d, *J* 25), 104.1 (CH, d, *J* 29), 14.83 (Me); $\delta_{\rm F}$ (376 MHz in CDCl₃) -114.7 (s); HRMS (ESI) found 202.0279 [C₉H₆FNO₂+Na]⁺ requires: 202.0275.

4-Acylbenzoxazoles from 3-Substituted Indoles

3-Methyl-2,7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indole (22)

To a sealed tube containing 3-methylindole **21** (100 mg, 0.48 mmol), $[Ir(OMe)COD]_2$ (9.6 mg, 0.014 mmol, 3 mol %), Me₄Phen (6.8 mg, 0.028 mmol, 6 mol %) and B₂Pin₂ (123 mg, 0.48 mmol) under nitrogen was added MTBE (2 mL). The reaction was sealed and stirred at 90°C for 4 h. The reaction was diluted with ethyl acetate (5 mL) and concentrated *in vacuo*. Purification by flash chromatography on silica gel eluting with ethyl acetate-light petroleum (1:20) gave the *title compound* (227 mg, 0.59 mmol 39%) as a colourless solid, m.p. 118 – 121 °C; $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.09 (1 H, s, NH), 7.74 – 7.69 (2 H, m, ArH),

7.09 (1 H, dd, *J* 7.9, 6.9, ArH), 2.54 (3 H, s, Me), 1.38 (12 H, s, 4 x Me), 1.35 (12 H, s, 4 x Me). Spectroscopic data in agreement with literature values.⁸

3-Methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indole (23)

To a solution of **22** (50 mg, 0.13 mmol) in dichloromethane (7.5 mL) at 0 °C was added TFA (0.1 mL, 1.3 mmol, 10 equiv.). The reaction mixture was stirred for 0.25 h and then neutralized with saturated sodium bicarbonate solution (20 mL) was added. The resulting aqueous solution was extracted with ethyl acetate (4 x 15 mL), washed with brine (20 mL), dried over Na₂SO₄ and concentrated *in vacuo* to give the *title compound* (33 mg, 0.13 mmol, 98%) as a colourless oil which was used in the subsequent step without further purification; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.94 (1 H, bs, NH), 7.70 (1 H, d, *J* 7.9, ArH), 7.64 (1 H, dd, *J* 7.0, 1.1, ArH), 7.12 (1 H, dd, *J* 7.7, 6.9, ArH), 7.01 (1 H, q, *J* 1.0, ArH), 2.34 (3 H, *J* 1.1, Me), 1.39 (12 H, s, 4 x Me). Spectroscopic data in accordance with literature values.⁸

N-(2-Acetyl-6-hydroxyphenyl)formamide (24)

A solution of **23** (50 mg, 0.19 mmol) in dichloromethane (6 mL) was cooled to -78 °C. The reaction mixture was purged with ozone for 15 min followed by oxygen for 10 min. Pyridine (0.15 mL, 1.9 mmol, 10 equiv.) was added to the reaction mixture at room temperature and stirred for 10 min. The reaction mixture was diluted with saturated aqueous sodium bicarbonate solution (20 mL). The resulting aqueous solution was extracted with dichloromethane (3 x 10 mL), dried over Na₂SO₄, filtered and concentrated

in vacuo. Purification by flash chromatography on silica gel eluting with methanol-dichloromethane (1:19) gave the *title compound* (10 mg, 0.06 mmol, 29%) as a yellow solid, m.p. 121 - 124 °C; v_{max} (neat)/cm⁻¹ 3076, 2925, 1615, 1580, 1516, 1477, 1368, 1287, 1240, 1199, 1132, 1027, 017, 918, 782, 723; $\delta_{\rm H}$ (400 MHz, CDCl₃) 11.81 (1 H, bs, NH), 9.61 (1 H, s, OH), 8.18 (1 H, d, *J* 2.4, ArH), 7.44 (1 H, dd, *J* 7.6, 1.7, ArH), 7.23 – 7.14 (2 H, m, ArH), 2.61 (3 H, Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 203.6 (C), 160.9 (CH), 150.0 (C), 127.0 (C), 126.5 (CH), 126.4 (CH), 126.2 (C), 123.8 (CH), 29.2 (Me); HRMS (ESI) found: 202.0476 [C₉H₉NO₃+Na]⁺ requires: 202.0475.

1-(2-Amino-3-hydroxyphenyl)ethan-1-one (25)

A solution of **23** (100 mg, 0.39 mmol) in dichloromethane (13 mL) at -78 °C was purged with ozone for 15 min followed by oxygen for 10 min. Methanol (5 mL) and concentrated hydrochloric acid (2 mL) were added to the reaction mixture and warmed to room temperature over 0.5 h. The reaction mixture was concentrated *in vacuo* and neutralised with saturated aqueous sodium bicarbonate solution (30 mL). The resulting aqueous solution was extracted with dichloromethane (6 x 20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Purification by flash chromatography on silica gel eluting with methanol-dichloromethane (1:19) gave the *title compound* (21 mg, 0.14 mmol, 36%) as a yellow solid, m.p. 148 – 149 °C; $\delta_{\rm H}$ (300 MHz, DMSO-*d*₆) 9.63 (1 H, bs, OH), 7.24 (1 H, dd, *J* 8.3, 1.2, ArH), 6.82 (1 H, dd, *J* 7.5, 1.1, ArH), 6.67 (2 H, bs, NH₂), 6.41 (1 H, t, *J* 7.9, ArH), 2.48 (3 H, s, Me). Spectroscopic data in agreement with literature values.⁹

1-(Benzo[d]oxazol-4-yl)ethan-1-one (26)

Trimethyl orthoformate (0.6 mL) was added to **25** (26 mg, 0.17 mmol) and heated to reflux for 0.5 h. The reaction mixture was cooled to room temperature and concentrated *in vacuo*. Purification by flash chromatography on silica gel eluting with ethyl acetate-light petroleum (1:4) gave the *title compound* (21 mg, 0.13 mmol, 76%) as a pale yellow solid, m.p. 122 – 125 °C; v_{max} (neat)/cm⁻¹ 3120, 3102, 3072, 3017, 1809, 1668, 1610, 1591, 1515, 1424, 1365, 1350, 1276, 1239, 1205, 1078, 1055, 976, 949, 906, 839, 760, 802, 657; δ_{H} (300 MHz, CDCl₃) 8.21 (1 H, s, ArH), 8.00 (1 H, dd, *J* 7.7, 1.1, ArH), 7.79 (1 H, dd, *J* 8.1, 1.1, ArH), 7.49 (1 H, t, *J* 7.9, ArH), 2.98 (3 H, s, Me); δ_{C} (125 MHz in CDCl₃) 197.4 (C), 153.1 (CH), 150.8 (C), 139.4 (C), 129.9 (C), 125.4 (CH), 125.3 (CH), 115.5 (CH), 31.1 (Me); HRMS (ESI) found 184.0375 [C₉H₇NO₂+Na]⁺ requires: 184.0369.

1-(2-Propylbenzo[d]oxazol-4-yl)ethan-1-one (27)

Trimethyl orthobutyrate (0.16 mL) was added to **25** (7 mg, 0.05 mmol, 1 equiv) and heated to reflux for 0.5 h. The reaction mixture was cooled to room temperature and concentrated *in vacuo*. Purification by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum (1:4) gave the *title compound* (9 mg, 0.05 mmol, 96%) as a pale yellow solid, m.p. 40 - 43 °C; v_{max} (neat)/cm⁻¹ 3063, 2971, 2817, 1668, 1600, 1567, 1420, 1362, 1279, 1219, 1120, 1056, 956, 949, 941, 806, 763, 753, 746; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.89 (1 H, dd, *J* 7.9, 1.0, ArH), 7.66 (1 H, dd, *J* 8.3, 1.3, ArH), 7.36 (1 H, t, *J* 7.9, ArH), 2.98 – 2.94 (5 H, m, Me+CH₂) 1.95 (2H, sext, *J* 7.4, CH₂), 1.08 (3 H, t, *J* 7.4, Me); $\delta_{\rm C}$ (100 MHz in CDCl₃)

197.9 (C), 168.2 (C), 151.7 (C), 141.1 (C), 129.1 (C), 124.5 (CH), 124.0 (CH), 114.7 (CH), 31.1 (CH₂), 30.7 (Me), 20.4 (CH₂), 13.9 (Me); HRMS (ESI) found 226.0847 [C₁₂H₁₃NO₂+Na]⁺ requires: 226.0838. **1-(6-(Benzyloxy)benzo**[*d*]oxazol-4-yl)ethan-1-one (32)

Step 1: To a sealed tube containing 5-(benzyloxy)-3-methylindole (145 mg, 0.61 mmol), [Ir(OMe)COD]₂ (20.3 mg, 0.03 mmol, 5 mol %), 1,10-phenanthroline (1 mg, 0.06 mmol, 10 mol %), B₂Pin₂ (232.8 mg, 0.92 mmol, 1.5 equiv.) was added THF (1.6 mL) under a heavy stream of nitrogen and heated to 90°C for 2 h. The reaction mixture was then diluted with ethyl acetate (3 mL) and concentrated *in vacuo*. Purification by flash chromatography on silica gel eluting with ethyl acetate-light petroleum (1:9) gave the 2,7-diborylindole **S25** (96 mg, 0.19 mmol, 31%) as a colourless solid, m.p. 152 – 155 °C; v_{max} (neat)/cm⁻¹ 3461, 2978, 1599, 1549, 1446, 1419, 1379, 1371, 1304, 1256, 1137, 961, 850, 706; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.95 (1 H, bs, NH), 7.49 – 7.47 (3 H, m, ArH), 7.39 – 7.36 (2 H, m, ArH), 7.32 (1 H, d, *J* 7.3, ArH), 7.25 (1 H, m, ArH), 5.13 (2 H, s, CH₂), 2.50 (3 H, s, Me), 1.40 (12 H, s, 4 x Me), 1.37 (12 H, s, 4 x Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 152.6 (C), 138.8 (C), 138.0 (C), 128.7 (C), 128.5 (2 x CH), 127.7 (CH), 127.7 (2 x CH), 123.7 (C), 121.7 (CH), 107.4 (CH), 84.0 (2 x C), 83.6 (2 x C), 71.3 (CH₂), 2.51 (4 x Me),

25.0 (4 x Me), 10.3 (Me), 2 x C not observed; HRMS (ESI) found 512.2760 [C₂₈H₃₇B₂NO₅+Na]⁺ requires: 512.2760.

Step 2: To a solution of S25 (83 mg, 0.17 mmol) in dichloromethane (9.9 mL) at 0 °C was added TFA (0.13 mL, 1.7 mmol). The reaction was stirred for 15 min before diluting with saturated aqueous solutim bicarbonate solution (20 mL). The resulting aqueous solution was extracted with dichloromethane (3 x 10 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo* gave the 7-diborylindole S26 (61 mg, 0.17 mmol, quant) as a dark green oil which was used in the subsequent step without further purification, v_{max} (neat)/cm⁻¹ 3463, 2977, 2927, 2858, 1601, 1430, 1408, 1363, 1307, 1266, 1140, 1075, 966, 850, 732; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.81 (1 H, bs, NH), 7.50 (2 H, d, *J* 3.4, ArH), 7.42 (1 H, d, *J* 2.5, ArH), 7.41 – 7.37 (2 H, m, ArH), 7.32 (1 H, d, *J* 7.3, ArH), 7.28 (1 H, d, *J* 2.5, ArH), 7.01 (1 H, bs, ArH), 5.14 (2 H, s, CH₂), 2.31 (3 H, d, *J* 0.9, Me), 1.39 (12 H, s, 4 x Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 152.7 (C), 138.1 (C), 137.3 (C), 128.5 (2 x CH), 128.1 (C), 127.7 (CH), 127.6 (2 x CH), 122.6 (CH), 118.6 (CH), 110.8 (C), 107.6 (CH), 84.0 (2 x C), 71.5 (CH₂), 25.1 (4 x Me), 9.8 (Me), 1 x C not observed; HRMS (ESI) found 386.1892, [C₂₂H₂₆BNO₃+Na]⁺ requires: 386.1902.

Step 3: A solution of **S26** (60 mg, 0.17 mmol) in dichloromethane (5.5 mL) was cooled to -78°C and purged with ozone for 10 min, followed by oxygen for 5 min. Methanol (2 mL) and concentrated hydrochloric acid (1 mL) were added and the reaction mixture stirred at room temperature for 15 min, then concentrated *in vacuo*. The residue was neutralised using saturated aqueous sodium bicarbonate (20 mL) and the resulting aqueous solution was extracted with dichloromethane (15 mL x 3), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The resulting *o*-aminophenol **30** (9 mg, 0.03 mmol, 21%) was used in the subsequent step without further purification.

Heteroannulation: Trimethyl orthoformate (0.3 mL) was added to the crude **30** (5.5 mg, 0.021 mmol) and the solution heated at reflux for 0.5 h. The reaction mixture was cooled to room temperature and concentrated *in vacuo*. Purification by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum (1:4) gave the *title compound* (2 mg, 0.007 mmol, 35%) as a colourless oil, v_{max} (neat)/cm⁻¹ 3108, 3046, 3037, 2925, 2855, 1679, 1615, 1522, 1412, 1364, 1276, 1169, 1107, 1059, 1023, 852, 739; δ_H (500 MHz, CDCl₃) 8.10 (1 H, s, ArH), 7.68 (1 H, d, *J* 2.5, ArH), 7.45 (2 H, d, *J* 7.2, ArH), 7.40 (2 H, t, *J* 7.2, ArH), 7.36 (1 H, d, *J* 2.5, ArH), 7.35 – 7.33 (1 H, m, ArH), 5.17 (2 H, s, CH₂), 2.96 (3 H, s, Me); δ_C (100 MHz, CDCl₃) 197.0 (C), 157.2 (C), 152.3 (CH), 151.8 (C), 136.3 (C), 133.6 (C), 129.6 (C), 128.9 (2 x CH), 128.4 (CH), 127.7 (2 x CH), 112.9 (CH), 102.2 (CH), 71.2 (CH₂), 31.1 (Me); HRMS (ESI) found 290.0781 [C₁₆H₁₃NO₃+Na]⁺ requires: 290.0788.

1-(7-Fluorobenzo[*d*]oxazol-4-yl)ethan-1-one (33)

Step 1: To a sealed tube containing 6-fluoro-3-methylindole (100 mg, 0.67 mmol), [Ir(OMe)COD]₂ (22 mg, 0.033 mmol, 5 mol %), 1,10-phenanthroline (12 mg, 0.067 mmol, 10 mol %), B₂Pin₂ (255 mg, 1 mmol, 1.5 equiv.) was added THF (1.8 mL) under a heavy stream of nitrogen. The tube was sealed under a blanket of nitrogen and the reaction mixture heated to 90 °C for 2.5 h. The reaction mixture was then

diluted with ethyl acetate (3 mL) and concentrated *in vacuo*. Purification by flash chromatography on silica gel eluting with ethyl acetate-light petroleum (1:19) gave the 2,7-diborylindole **S27** (136 mg, 0.34 mmol, 51%) as a colourless solid, m.p. 118 – 120 °C; v_{max} (neat)/cm⁻¹ 3457, 2978, 2938, 1596, 1556, 14933, 1421, 1386, 1284, 1261, 1140, 1128, 1098, 962, 854, 814, 707; $\delta_{\rm H}$ (400 MHz, DMSO-*d*₆) 9.20 (1 H, s, NH), 7.72 (1 H, dd, *J* 8.6, 5.4, ArH), 6.85 (1 H, dd, *J* 9.9, 8.7, ArH), 2.42 (3 H, s, Me), 1.36 (12 H, s, 4 x Me), 1.32 (12 H, s, 4 x Me); $\delta_{\rm C}$ (100 MHz, DMSO-*d*₆) 165.3 (C, d, *J* 245), 142.1 (C, d, *J* 13), 124.9 (CH, d, *J* 11), 124.5 (C), 123.5 (C), 107.7 (C, *J* 27), 83.7 (2 x C), 83.6 (2 x C), 24.7 (4 x Me), 24.6 (4 x Me), 9.9 (Me), 2 x C not observed; $\delta_{\rm F}$ (376 MHz, DMSO-*d*₆) -106.5 (s); HRMS (ESI) found: 424.2246 [C₂₁H₃₀B₂FNO₄+Na]⁺ requires: 424.2245.

Step 2: To a solution **S27** (141 mg, 0.35 mmol) in dichloromethane (20.5 mL) at 0 °C was added TFA (0.26 mL, 3.5 mmol). The reaction mixture was stirred for 15 min before neutralising with saturated aqueous sodium bicarbonate solution (20 mL). The resulting aqueous solution was extracted with dichloromethane (3 x 10 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo* gave the 7-diborylindole **S28** (97 mg, 0.35 mmol, quant) as a pale pink solid which was used in the subsequent step without further purification, m.p. 123 – 126 °C; v_{max} (neat)/cm⁻¹ 3438, 2980, 2929, 1603, 1553, 1444, 1365, 1300, 1282, 1196, 1141, 1123, 1081, 997, 964, 853, 814, 717; $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.96 (1 H, bs, NH), 7.60 (1 H, dd, *J* 8.5, 5.5, ArH), 7.10 (1 H, bs, ArH), 6.78 (1 H, dd, *J* 9.9, 8.9, ArH), 2.24 (3 H, s, Me), 1.35 (12 H, s, 4 x Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 163.8 (C, d, *J* 242), 140.0 (C, d, *J* 13), 124.2 (C), 123.7 (CH, *J* 4), 123.2 (CH, *J* 11), 109.4 (C), 106.4 (CH, *J* 27), 83.4 (2 x C), 24.6 (4 x Me), 9.4 (Me), 1 x C not observed; $\delta_{\rm F}$ (376 MHz, DMSO-*d*₆) -110.4 (s); HRMS (ESI) found 298.139, [C₁₅H₁₉BFNO₂+Na]⁺ requires: 298.1388.

Step 3: A solution of **S28** (55 mg, 0.2 mmol) in dichloromethane (6.7 mL) was cooled to -78°C and purged with ozone for 15 min, followed by oxygen for 5 min. Methanol (3 mL) and concentrated hydrochloric

acid (1 mL) were added and the reaction mixture stirred for 10 min, then concentrated *in vacuo*. The residue was neutralised using saturated aqueous sodium bicarbonate (20 mL) and the resulting aqueous solution was extracted with dichloromethane (3 x 15 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Purification by flash chromatography on silica gel eluting with methanol-dichloromethane (1:19) gave the *o*-aminophenol **31** (11 mg, 0.07 mmol, 33%) as a yellow solid, m.p. 158 – 160 °C; v_{max} (neat)/cm⁻¹ 3473, 3351, 3097, 2921, 2851, 1637, 1618, 1558, 1496, 1427, 1364, 1243, 1216, 1044, 1025, 876, 770, 756, 682; $\delta_{\rm H}$ (400 MHz, DMSO-*d*₆) 9.59 (1 H, bs, OH), 7.33 (1 H, dd, *J* 9.2, 5.6, ArH), 6.97 (2 H, bs, NH₂), 6.41 (1 H, dd, *J* 9.9, 9.2, ArH), 2.47 (3 H, s, Me); $\delta_{\rm C}$ (100 MHz, DMSO-*d*₆) 199.4 (C), 153.2 (C, d, *J* 242), 144.0 (C, d, *J* 7), 130.4 (C, d, *J* 16), 123.9 (CH, d, *J* 10), 114.2 (C), 102.5 (CH, d, *J* 20.6), 27.9 (Me); $\delta_{\rm F}$ (376 MHz, DMSO-*d*₆) -128.6 (s); HRMS (ESI) found 170.0617 [C₈H₈NO₂F+H]⁺requires: 170.0612.

Heteroannulation: Trimethyl orthoformate (0.13 mL) was added to **31** (7 mg, 0.037 mmol) and the solution heated at reflux for 0.25 h. The reaction mixture was cooled to room temperature and concentrated *in vacuo*. Purification by flash chromatography on silica gel eluting with ethyl acetate-light petroleum (1:4) gave the *title compound* (6 mg, 0.03 mmol, 81%) as a beige solid, m.p. 85 – 89 °C; v_{max} (neat)/cm⁻¹ 3131, 3048, 1682, 1642, 1620, 1598, 1504, 1361, 1258, 1191, 1080, 912, 831, 772, 723; δ_{H} (400 MHz, CDCl₃) 8.23 (1 H, s, ArH), 8.02 (1 H, dd, *J* 8.7, 4.7, ArH), 7.23 (1 H, t, *J* 9.0, ArH), 2.94 (3 H, s, Me); δ_{C} (100 MHz, CDCl₃) 195.9 (C), 153.3 (CH), 150.3 (C, d, *J* 261), 142.9 (C, d, *J* 3), 137.7 (C, d, *J* 11), 127.1 (CH, d, *J* 7), 126.2 (C, d, *J* 4), 112.6 (CH, d, *J* 17), 30.9 (Me); δ_{F} (376 MHz, CDCl₃) -125.9 (s); HRMS (ESI) found 202.0279 [C₉H₆FNO₂+Na]⁺ requires: 202.0275.

2-Methyl-5-nitrobenzo[d]oxazole-4-carbaldehyde (35)

General procedure A was performed using 2-methyl-4-nitroindole¹⁰ **34** (88 mg, 0.5 mmol), [Ir(OMe)COD]₂ (16.6 mg, 0.025 mmol, 5 mol %), dtbpy (13.4 mg, 0.05 mmol, 10 mol %), B₂Pin₂ (190 mg, 0.75 mmol, 1.5 equiv.) in a microwave vial was added THF (2 mL) and capped under nitrogen. The reaction was heated to 80°C in a microwave for 2 h. Purification eluting with acetone-toluene (1:40) gave the 7-borylindole **S30** (24 mg, 0.08 mmol, 16%) as a yellow oil, v_{max} (neat)/cm⁻¹ 3376, 2980, 2930, 1592, 1547, 1502, 1373, 1349, 1318, 1256, 1211, 1138, 1109, 992,849, 820, 793, 139, 703; $\delta_{\rm H}$ (500 MHz in DMSO-*d*₆) 10.69 (1 H, bs, NH), 7.96 (1 H, d, *J* 7.9, ArH), 7.48 (1 H, d, *J* 7.9, ArH), 6.85-6.84 (1 H, m, ArH), 2.56 (3 H, s, Me), 1.38 (12 H, s, 4 x Me) ; $\delta_{\rm C}$ (125 MHz in DMSO-*d*₆) 143.32 (C), 142.9 (C), 139.9 (C), 126.0 (CH), 121.8 (C), 115.5 (CH), 99.9 (CH), 84.4 (2 x C), 24.6 (4 x Me), 13.9 (Me), 1 x C not observed; HRMS (ESI) found 325.133 [C₁₅H₁₉BFNO₂+Na]⁺ requires: 325.1331.

General procedure B was performed using **S29** (37 mg, 0.12 mmol) in ethanol-water (9:1, 4.1 mL). Purification as described in the general procedure gave the *o*-amidophenol **S30** (14 mg, 0.06 mmol, 51%) as a yellow solid, $\delta_{\rm H}$ (400 MHz in DMSO-*d*₆) 10.99 (1 H, s, NH), 9.93 (1 H, s, CHO), 9.76 (1 H, bs, OH), 7.96 (1 H, d, *J* 9.1, ArH), 6.99 – 6.97 (1 H, m, ArH), 1.99 (3 H, s, Me).

General procedure C was performed using S30 (14 mg, 0.06 mmol) and TFA (1 mL) for 1 h. Purification eluting with methanol-dichloromethane (1:9) to obtain the *title compound* (8 mg, 0.04 mmol, 62%) as a brown solid, m.p 119 – 121 °C; v_{max} (neat)/cm⁻¹ 3107, 3085, 3020, 2922, 2851, 1697, 1615, 1515, 1421, 1402, 1338, 1249, 1273, 1135, 1022, 906, 830, 792, 736, 710; $\delta_{\rm H}$ (400 MHz, CDCl₃) 10.55 (1 H, s, CHO), 8.16 (1 H, d, *J* 8.9, ArH), 7.73 (1 H, d, *J* 8.8, ArH), 2.75 (3 H, s, Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 186.7 (CH), 169.3 (C), 154.4 (C), 144.9 (C), 141.2 (C), 124.7 (C), 121.3 (CH), 113.3 (CH), 14.9 (Me); HRMS (ESI) found 229.022 [C₉H₆N₂O₄+Na]⁺ requires: 229.022.

		((;	14.220		BPin S13
		T	≓ 		376 MHz in CD
***	 			*****	

500 MHz in CDCl₃

15 125 MHz in CDCl₃

7166.460164.439164.412

151.711

143.646 130.668 130.597 127.265 124.986 124.037 122.968 1122.968 1122.943 116.647 116.470

						-114.226			S13 376 MHz in CD	├─F
anaran 18 ar 1. yang 1									•	
	-60	-70	-80	-90	-100	-110	-120	-130	-140 ppm	

-

References

- 1A. S. Eastabrook, C. Wang, E. K. Davison and J. Sperry, J. Org. Chem., 2015, 80, 1006–1017.
- 2A. S. Eastabrook, University of Auckland, 2019.
- 3S.-J. Chen, G.-P. Lu and C. Cai, *RSC Adv.*, 2015, **5**, 70329–70332.
- 4A. Lerchen, S. Vásquez-Céspedes and F. Glorius, Angew. Chem. Int. Ed., 2016, 55, 3208-3211.
- 5M. Tursky, L. L. R. Lorentz-Petersen, L. B. Olsen and R. Madsen, *Org. Biomol. Chem.*, 2010, **8**, 5576–5582.
- 6Y. Qui, University of Auckland, 2018.
- 7S. Paul, G. A. Chotana, D. Holmes, R. C. Reichle, Maleczka Robert E. and M. R. Smith, *J. Am. Chem. Soc.*, 2006, **128**, 15552–15553.
- 8V. A. Kallepalli, K. A. Gore, F. Shi, L. Sanchez, G. A. Chotana, S. L. Miller, R. E. Maleczka and M. R. Smith, *J. Org. Chem.*, 2015, **80**, 8341–8353.
- 9W. Guo, W. Liu, L. Zhu, Y. Zhang, P. Cheng, G. Dong, C. Zhuang, J. Yao, C. Sheng, Z. Miao and W. Zhang, *Chem. Biodivers.*, 2011, **8**, 1539–1549.
- 10 N. Moskalev, M. Barbasiewicz and M. Mąkosza, *Tetrahedron*, 2004, **60**, 347–358.