Electronic Supporting Information

Copper-catalyzed Borylamidation of Vinyl Arenes with Isocyanates

Zhenni Su, Yunqiu Feng, Rong Zou, Xianfan Qiu, Jian Wang and Chuanzhou Tao*
School of Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, P. R. China

Contents

1. General Considerations 1
2. General Procedure for Borylamidation of Vinyl Arenes 2
3. Characterization Data 3
3.1 Characterization of the Catalysts 3
3.2 Characterization of the Borylamidation Products 4
4. Further Functionalization Reactions 15
5. X-Ray Data of 3aa 20
6. References 20
7. Spectroscopic Data (NMR Spectrum) 21

1. General Considerations

Unless otherwise noted, all reactions were performed under an argon atmosphere (purity $\geq 99.999 \%$) using standard Schlenk-type tubes on a dual-manifold Schlenk line. Various reagents were purchased from commercial sources and used without further purification. All the solvents were refluxed with CaH_{2} for 12 h , then distilled, further degassed by bubbling with argon for 20 min at room temperature, and stored with activated $4 \AA$ molecular sieves. Isolated yields were determined after purification of the crude product by column chromatography with
$10 \sim 40 \mu \mathrm{~m}$ silica gel. Literature methods ${ }^{[1-5]}$ were used to synthesize $\mathrm{IMesCuCl}, \mathrm{SIMesCuCl}, \mathrm{IPrCuCl}, \mathrm{SIPrCuCl}$ and ICyCuCl .
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on Bruker Advance III HD 400, Bruker Advance III HD 500 or Bruker Advance III HD 600 spectrometer with complete proton decoupling. All NMR data were obtained in CDCl_{3} at ambient temperature. High-resolution mass spectrometric (HRMS) were recorded on a solariX-70FT-MS. Melting points were acquired on a Shenguang SGW X-4 melting point apparatus without correction. X-ray crystallographic analysis was carried out by Bruker APEII CCD. Infrared spectra were obtained on a Thermo Scientific Nicolet iS10 FT-IR spectrometer.

2. General Procedure for Borylamidation of Vinyl Arenes

To an oven-dried Schlenk tube were added $\mathrm{IMesCuCl}(0.04 \mathrm{mmol}, 18.0 \mathrm{mg}), \mathrm{B}_{2} \operatorname{pin}_{2}(1.0 \mathrm{mmol}, 254.0 \mathrm{mg})$, $\mathrm{NaOt}-\mathrm{Bu}(0.6 \mathrm{mmol}, 58.0 \mathrm{mg})$ and vinyl arene (0.4 mmol , if the vinyl arene is solid). The tube was evacuated and backfilled with argon for three times. The mixture was cooled to $0^{\circ} \mathrm{C}$ (ice bath) and treated with toluene (1.0 mL , anhydrous and degassed). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 mins , and alkene (0.4 mmol , if the alkene is liquid.) was injected. After further stirring for 5 mins , hexane (1.0 mL , anhydrous and degassed) was added with continuing stirring. Then, isocyanate (1.2 mmol , dissolved in toluene if the isocyanate is solid) was added dropwise over 5 mins. The resultant mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 60 h . The reaction mixture was allowed to warm to room temperature, then a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(0.1 \mathrm{~mL})$ and $\mathrm{EtOAc}(5.0 \mathrm{~mL})$ were added and stirred for 30 mins. The combined organic layers were concentrated in vacuo and purified by chromatography on silica gel.

3. Characterization Data

3.1 Characterization of the Catalysts

[1,3-Bismesitylimidazol-2-ylidene]copper(I) chloride ${ }^{[2]}$:

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.10(\mathrm{~s}, 12 \mathrm{H})$.
[1,3-Bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidene]copper(I) chloride ${ }^{[2]}$:

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.96(\mathrm{~s}, 4 \mathrm{H}), 3.96(\mathrm{~s}, 4 \mathrm{H}), 2.32(\mathrm{~s}, 12 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H})$.
[1,3-Bis[2,6-diisopropylphenyl)]imidazol-2-ylidene]copper(I) chloride ${ }^{[2]}$:

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.13(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{dt}, J=13.8$, $6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}), 1.24(\mathrm{~s}, 6 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H})$.
[1,3-Bis[2,6-(diisopropylphenyl)]imidazolidin-2-ylidene]copper(I) chloride ${ }^{[2]}$:

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.13(\mathrm{~m}, 4 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.06$ (hept, $J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 1.38(\mathrm{~s}, 6 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H})$.
[1,3-Dicyclohexylimidazol-2-ylidene]copper(I) chloride ${ }^{[5]}$:

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.93(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{tt}, J=12.0,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.89(\mathrm{~d}, J=$ $13.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.76(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{qd}, J=12.5,3.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{ddd}, J=13.0$, $10.1,3.4 \mathrm{~Hz}, 2 \mathrm{H})$.

3.2 Characterization of the Borylamidation Products

N -(4-fluorophenyl)-2-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propenamide (3aa):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 74% yield (109.3 mg). M.p. $156.6-158.6^{\circ} \mathrm{C}$. $\operatorname{IR}(\mathrm{KBr}): ~ v\left(\mathrm{~cm}^{-1}\right)=3340,2979,1683,1614,1539,1509$, $1404,1373,1320,1215,1143,967,836,761,695 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{dd}, J=10.3,4.3 \mathrm{~Hz}, 6 \mathrm{H})$, $7.29(\mathrm{dd}, J=8.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{dd}, \mathrm{J}=9.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{dd}, J=$ $15.8,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{dd}, J=15.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $172.57,159.30(\mathrm{~d}, J=243.1 \mathrm{~Hz}), 141.53,134.14,129.20,128.10,127.61,121.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 115.59(\mathrm{~d}, J=$ 22.2 Hz), 83.49, 49.91, 24.93, 24.80, 16.93. ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.48 .{ }^{11} \mathrm{~B}^{\mathrm{NMR}}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ 33.56. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BFNO}_{3}+\mathrm{H}\right]^{+} 370.1988$, found 370.1987.

2-(Biphenyl-4-yl)-N-(4-fluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propenamide (3ba):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 70% yield (124.6 mg). M.p. $182.9-186.7^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=3445,2918,1682,1622,1539,1509$, $1373,1318,1217,1140,847,769,697 .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{dd}, J=14.8$, $7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{dd}, J=9.6$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=15.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{dd}, J=15.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.51,158.54,140.69,140.57,140.49,134.18,128.97,128.53,127.87,127.55,127.16$, $121.47(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 115.62(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 83.55,49.59 .24 .96,24.83,16.89 .{ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -118.40. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 33.50. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BFNO}_{3}+\mathrm{H}\right]^{+} 446.2302$, found 446.2304.

N -(4-fluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-p-tolylpropanamide (3ca):

Purified by column chromatograph ($15: 1$ to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 64% yield (98.1 mg). M.p. $154.1-155.3^{\circ} \mathrm{C}$. $\operatorname{IR}(\mathrm{KBr}): ~ v\left(\mathrm{~cm}^{-1}\right)=3432,2976,1684,1615,1541,1508$, $1403,1384,1320,1213,1140,1076,967,845,680 .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.23$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{dd}, J=9.9,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{dd}, J=15.7,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.80,159.27(\mathrm{~d}, J=242.9 \mathrm{~Hz}), 138.52,137.27,134.21,129.88,127.97,121.38(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 115.55$ $(\mathrm{d}, J=22.2 \mathrm{~Hz}), 83.44,49.55,24.95,24.82,21.22,16.91 .{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.61 .{ }^{11} \mathrm{~B}$ NMR (128 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 34.01. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{BFNO}_{3}+\mathrm{H}\right]^{+} 384.2145$, found 384.2144.

N-(4-fluorophenyl)-2-(4-methoxyphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanamide (3da):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 55% yield (87.8 mg). M.p. $161.2-163.3^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=3442,2988,1682,1615,1541,1511$, $1405,1373,1322,1217,1139,1037,834 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{ddd}, J=9.0,4.7,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ (s, 1H), $7.19(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.84-3.81(\mathrm{~m}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{dd}, J=15.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{dd}, J=15.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.96,161.08(\mathrm{~d}, J=302.1 \mathrm{~Hz}), 159.01,134.19,130.35,129.19,121.37(\mathrm{~d}, J=8.0$ $\mathrm{Hz}), 115.57(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 114.54,83.45,55.44,49.09,24.89(\mathrm{~d}, J=14.2 \mathrm{~Hz}), 16.94 .{ }^{19} \mathrm{~F}$ NMR (565 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-118.57 .{ }^{11} \mathrm{~B}$ NMR $\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 33.65. HRMS (ESI) m / z : calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{BFNO}_{4}+\mathrm{H}\right]^{+}$ 400.2094, found 400.2097.

2-(4-Chlorophenyl)-N-(4-fluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propenamide (3ea):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 71% yield (114.5 mg). M.p. $152.8-154.4^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): ~ v\left(\mathrm{~cm}^{-1}\right)=3339,2978,1685,1615,1542,1509$, $1405,1374,1329,1217,1140,966,846,830,782 .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{q}$, $J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{dd}, J=9.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{dd}, J=15.9,9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.28(\mathrm{dd}, J=16.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.08,159.41(\mathrm{~d}$, $J=243.3 \mathrm{~Hz}), 140.04,134.02,133.40,129.42,129.25,121.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 115.67(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 83.65$, 49.21, 24.93, 24.83, 17.06. ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.17$. ${ }^{11} \mathrm{~B} \mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.93$. HRMS (ESI) m / z : calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BClFNO}_{3}+\mathrm{H}\right]^{+} 404.1598$, found 404.1594.

N,2-bis(4-fluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanamide (3fa):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 76% yield (117.7 mg). M.p. $157.4-158.5^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): ~ v\left(\mathrm{~cm}^{-1}\right)=3442,2978,1655,1606,1547,1509$, $1409,1381,1325,1228,1143,969,847,830 .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=$ $8.5,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{dd}, J=9.4,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.63(\mathrm{dd}, J=15.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{dd}, J=15.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.38,162.20(\mathrm{~d}, J=246.1 \mathrm{~Hz}), 159.37(\mathrm{~d}, J=243.0 \mathrm{~Hz}), 137.27,134.03,129.64(\mathrm{~d}, J=7.8 \mathrm{~Hz})$, $121.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 115.98(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 115.66(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 83.60,49.07,24.92,24.82,17.12 .{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.02,-118.25 .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 33.71. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BF}_{2} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}$388.1894, found 388.1891

N -(4-fluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(4-(trifluoromethyl)phenyl)propanamide (3ga):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 75% yield (130.4 mg). M.p. $138.8-139.8^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): ~ v\left(\mathrm{~cm}^{-1}\right)=3445,2981,1682,1658,1615,1544$, $1510,1406,1374,1326,1213,1166,1141,1070,843 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(501 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{dd}, J=8.9,4.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.95(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{dd}, J=9.6,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.67(\mathrm{dd}, J=16.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{dd}, J=16.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 171.77(\mathrm{~s}), 159.47(\mathrm{~d}, J=243.4 \mathrm{~Hz}), 145.62,133.99,129.74(\mathrm{q}, J=32.4 \mathrm{~Hz}), 128.38,125.91(\mathrm{~d}, J=3.6$ $\mathrm{Hz}), 124.20(\mathrm{~d}, J=272.2 \mathrm{~Hz}), 121.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 115.66(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 83.75,49.50,24.90$, 24.77. 17.00. ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.54(\mathrm{~s}),-117.99 .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.11$. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BF}_{4} \mathrm{NO}_{3}+\mathrm{H}\right]^{+} 438.1862$, found 438.1869.

2-(3-Chlorophenyl)-N-(4-fluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propenamide (3ia):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 58% yield (93.5 mg). M.p. $103.5-104.9^{\circ} \mathrm{C}$. $\operatorname{IR}(\mathrm{KBr}): ~ v\left(\mathrm{~cm}^{-1}\right): 3433,2977,2857,1659,1617,1545,1511$, $1470,1374,1323,1215,1141,1079,883,840,778 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~s}$, $1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{dd}, J=9.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{dd}, J=16.0$, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{dd}, J=16.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.90$, $159.38(\mathrm{~d}, ~ J=243.4 \mathrm{~Hz}), 143.53,134.67,134.04,130.28,128.32,127.62,126.08,121.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 115.59$ (d, $J=22.4 \mathrm{~Hz}$), 83.63, 49.37, 24.89, 24.79, 16.86. ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.16$ (s). ${ }^{11} \mathrm{~B}$ NMR (128 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 32.59. HRMS (ESI) m / z : calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BClFNO}_{3}+\mathrm{Na}\right]^{+} 426.1414$, found 426.1452.

2-(3-bromophenyl)-N-(4-fluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propenamide (3ja):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 64% yield (114.4 mg). M.p. $142.9-144.8^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right): 3305,2980,1661,1615,1545,1510$, $1470,1370,1327,1216,1143,1100,838,775,689 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.34(\mathrm{~m}$, $4 \mathrm{H}), 7.29(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{dd}, J=9.1,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.63(\mathrm{dd}, J=16.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{dd}, J=16.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.91,159.36(\mathrm{~d}, J=243.4 \mathrm{~Hz}), 143.81,134.02,131.21,130.55,126.51,122.86,121.64(\mathrm{~d}, J=7.8$ $\mathrm{Hz}), 115.58(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 83.62,49.29,24.88,24.79,16.94 .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.12 .{ }^{11} \mathrm{~B}$ NMR $\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.91$. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BBrFNO}_{3}+\mathrm{Na}\right]^{+} 470.0909$, found 470.0955 . (3ka):

Purified by column chromatograph (20:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 24% yield (38.7 mg). M.p. $115.3-119.3^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=3329,2987,1682,1541,1514,1395$, 1364, 1220, 1063, 1025, 845, 717. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.37$ (m, $3 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{dd}, J=9.8$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{dd}, J=15.9,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{dd}, J=15.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.64,159.32(\mathrm{~d}, J=243.1 \mathrm{~Hz}), 138.98,134.19,133.60,129.74,129.24,128.61,127.73$, $121.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 115.58(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 83.58,45.60,24.88,24.74,15.30 .{ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -118.41. ${ }^{11} \mathrm{~B} \mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 33.41. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BClFNO}_{3}+\mathrm{H}\right]^{+} 404.1598$, found 404.1598 .

2-(2-Bromophenyl)-N-(4-fluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanamide (3la):

Purified by column chromatograph (20:1 to 7:1 petroleum ether/ethyl acetate) to afford the product as a white oily liquid in 18% yield (33.1 mg). $\operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=3425,1662,1614,1509,1469,1404,1372,1319,1212,1140$, $833,753,513 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J$ $=8.9,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{dd}, J=$ $9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{dd}, J=14.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.58,161.93(\mathrm{~d}, J=397.3 \mathrm{~Hz}), 140.77,133.09,129.37,128.95,128.43,124.56,121.59(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}), 120.90,115.64(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 83.61,48.21,24.90,24.79,15.35 .{ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 118.42. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 33.82. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BBrFNO}_{3}+\mathrm{H}\right]^{+} 450.1071$, found 450.1074.

N -(4-fluorophenyl)-2-(naphthalen-2-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanamide (3ma):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 78% yield (130.4 mg). M.p. $166.3-170.5^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): ~ v\left(\mathrm{~cm}^{-1}\right)=3428,2980,1683,1614,1538,1509$, $1468,1404,1384,1326,1214,1139,1075,845,781 .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83$ (dd, $J=16.7,9.4 \mathrm{~Hz}$, $4 \mathrm{H}), 7.49(\mathrm{dt}, J=14.3,7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.35(\mathrm{dd}, J=8.9,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{dd}$, $J=9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dd}, J=15.8,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{dd}, J=15.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.54,159.26(\mathrm{~d}, J=242.9 \mathrm{~Hz}), 138.99,134.11(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 133.57,132.74$, 129.04, 127.84, 127.81, 126.92, 126.48, 126.12, 125.83, $121.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 115.50(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 83.49$, 49.94, 24.89, 24.78, 16.85. ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.46 .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.58$. HRMS (ESI) m / z : calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{BFNO}_{3}+\mathrm{H}\right]^{+} 420.2145$, found 420.2149 .

N-(4-fluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(thiophen-2-yl)propenamide (3na):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 41% yield (61.5 mg). M.p. $126.4-127.8^{\circ} \mathrm{C}$. $\operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right): 3434,3305,2976,2856,1660,1618,1552$, $1509,1464,1326,1214,1139,840,700 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.24$ (dd, $J=5.1$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 3 \mathrm{H}), 4.18(\mathrm{dd}, J=9.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dd}, J=15.8,9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.43(\mathrm{dd}, J=15.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.53,159.43$ $(\mathrm{d}, J=243.3 \mathrm{~Hz}), 144.33,134.00(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 127.16,125.66,125.17,121.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 115.61(\mathrm{~d}, J=$ 22.5 Hz), 83.63, 45.00, 24.90, 24.83, 19.73. ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.23 .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 32.33. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{BFNO}_{3} \mathrm{~S}+\mathrm{H}\right]^{+}$376.1552, found 376.1558.

N-(4-fluorophenyl)-2-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butanamide (3pa):

Purified by column chromatograph (25:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 21% yield (32.2 mg). M.p. $178.8-180.2^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)$: $3431,2926,2856,1681,1622,1544,1508$, $1456,1404,1318,1074,839,782,738,669 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.32$ (m, 2H), $7.29(\mathrm{dd}, J=6.4,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-6.89(\mathrm{~m}, 3 \mathrm{H}), 3.57(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{dq}, J=11.8,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}), 1.25(\mathrm{~s}, 6 \mathrm{H}), 0.79(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.74,159.31(\mathrm{~d}, J=$ 243.3 Hz), $139.50,134.10,129.28,128.83,127.74,121.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 115.54(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 83.14,57.71$, 24.96, 24.70, 21.67, 13.31. ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.52 .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.23$. HRMS (ESI) m / z : calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{BFNO}_{3}+\mathrm{Na}\right]^{+} 406.1960$, found 406.1999.

N-(4-chlorophenyl)-2-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propenamide (3ab):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 74% yield (113.4 mg). M.p. $195.1-198.9^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): ~ v\left(\mathrm{~cm}^{-1}\right)=3446,2983,1681,1595,1525,1493$, 1396, 1372, 1333, 1255, 1141, 973, 830, 700. ${ }^{1} \mathrm{H}$ NMR ($501 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 5 \mathrm{H})$, $7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=9.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{dd}, J=15.8,9.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.31-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.67, 141.43, 136.76, $129.85,129.18,128.96,128.06,127.61,120.90,83.52,49.98,24.92,24.78,16.84 .{ }^{11} \mathrm{~B} \operatorname{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ 33.62. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BClNO}_{3}+\mathrm{H}\right]^{+} 386.1693$, found 386.1693.

2-Phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-(4-(trifluoromethyl)phenyl)propanamide (3ac):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 76% yield (127.4 mg). M.p. $172.7-178.6^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): ~ v\left(\mathrm{~cm}^{-1}\right)=3446,2981,1690,1603,1530,1434$, $1407,1373,1326,1254,1166,1122,1067,1024,846,758 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{dd}, J=19.0,9.8$ $\mathrm{Hz}, 5 \mathrm{H}), 7.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=9.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=15.9,9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.34-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.92,141.26,129.28,128.06$, 127.74, 126.27 (q, $J=3.7 \mathrm{~Hz}$), 126.04, 125.31, 123.15, 119.20, 83.60, 50.15, 24.95, 24.80, 16.75. ${ }^{19}$ F NMR (471 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.12 .{ }^{11} \mathrm{~B}$ NMR $\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 33.86. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BF}_{3} \mathrm{NO}_{3}\right.$

```
\(+\mathrm{H}]^{+} 420.1956\), found 420.1951 .
```


N -(4-cyanophenyl)-2-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propenamide (3ad):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 53% yield (79.8 mg). M.p. $177.1-184.1^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=3445,2925,2228,1682,1595,1516$, $1405,1143,845,700 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~s}, 4 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 3.89$ $(\mathrm{dd}, J=9.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{dd}, J=15.9,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.04,142.17,140.99,133.30,129.33,128.04,127.84,119.41,118.97,107.04,83.65$, 50.20, 24.95, 24.80, 16.77. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.85$. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BN}_{2} \mathrm{O}_{3}\right.$ $+\mathrm{H}]^{+} 377.2035$, found 377.2039.

N,2-diphenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanamide (3ae):

Purified by column chromatograph (15:1 to 7:1 petroleum ether/ethyl acetate) to afford the product as a white solid in 62% yield (87.1 mg). M.p. $138.3-140.2^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=3446,1687,1601,1536,1498,1438$, $1373,1319,1139,1105,968,802,755,700 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{q}, J=$ $7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{dd}, J$ $=15.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.56,141.60$, $138.15,129.08,128.92,128.05,127.46,124.06,119.59,83.42,49.97,24.88,24.75,16.82 .{ }^{11} \mathrm{~B} \mathrm{NMR}(128 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 33.86. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BNO}_{3}+\mathrm{H}\right]^{+} 352.2082$, found 352.2081.

2-Phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-p-tolylpropanamide (3af):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 69% yield (100.8 mg). M.p. $167.1-169.9^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): ~ v\left(\mathrm{~cm}^{-1}\right)=3362,2979,1682,1600,1522,1454$, $1373,1325,1250,1142,970,822,697 .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.25(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{dd}, J=9.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$, $1.65(\mathrm{dd}, J=15.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.42,141.69,135.60,133.57,129.35,129.00,128.03,127.37,119.66,83.36,49.86,24.86,24.72,20.88,16.83$. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 32.97. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{BNO}_{3}+\mathrm{H}\right]^{+} 366.2238$, found 366.2235 .

N -(4-ethylphenyl)-2-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanamide (3ag):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 63% yield (95.6 mg). M.p. $150.2-152.6^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=3446,2979,1650,1607,1515,1411$, $1379,1318,1144,845,782,701 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{dt}, J=8.5,5.6 \mathrm{~Hz}, 6 \mathrm{H}), 7.28-7.23(\mathrm{~m}$, $1 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.86(\mathrm{dd}, J=9.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{dd}, J=15.8,9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.29(\mathrm{dd}, J=15.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.23-1.14(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.41,141.77,140.13$, $135.84,129.05,128.24,128.08,127.41,119.78,83.41,49.96,28.37,24.91,24.78,16.89,15.76 .{ }^{11} \mathrm{~B}$ NMR (128 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 33.55. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{BNO}_{3}+\mathrm{H}\right]^{+} 380.2396$, found 380.2398.

2-Phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-(4-(trifluoromethoxy)phenyl)propanamide (3ah):

Purified by column chromatograph (25:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 81% yield (141.7 mg). M.p. $129.1-134.0^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=3446,2927,1667,1612,1510,1468$, $1404,1382,1324,1264,1201,1168,1143,847,804,741,612 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{dd}, J=9.7,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.66(\mathrm{dd}, J=15.8,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 172.57,145.06,141.28,136.71,129.08,127.93,127.52,121.60,120.62,119.44,83.41,49.86,24.79,24.66$, 16.78. ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.18 .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.46$. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BF}_{3} \mathrm{NO}_{4}+\mathrm{H}\right]^{+} 436.1905$, found 436.1908 .

N -(4-methoxyphenyl)-2-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propenamide (3ai):

Purified by column chromatograph (20:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 26% yield (39.6 mg). M.p. $146.3-151.5^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): ~ v\left(\mathrm{~cm}^{-1}\right)=3422,1962,1650,1607,1510,1379$, $1329,1246,1145,809,700 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.53(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.17$ $(\mathrm{m}, 3 \mathrm{H}), 6.87(\mathrm{dd}, J=6.5,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.26$ $(\mathrm{s}, 6 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 1.07(\mathrm{dd}, J=16.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.38,156.27,140.66$, $131.26,130.35,128.66,127.19,121.67,114.25,83.68,55.60,48.68,25.20,24.63,19.25 .{ }^{11} \mathrm{~B}$ NMR (128 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 33.36. HRMS (MALDI) m/z: calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{BNO}_{4}+\mathrm{H}\right]^{+} 382.2188$, found 382.2180 .

N -(3-chlorophenyl)-2-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanamide (3aj):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 67% yield (103.2 mg). M.p. $154.2-156.3^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=3446,2982,1685,1599,1530,1421$, $1369,1318,1248,1140,968,843,782,698 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 4 \mathrm{H})$, $7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{dd}, J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=9.6$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{dd}, J=15.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{dd}, J=15.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.71,141.34,139.32,134.66,129.94,129.22,128.07,127.66,124.16,119.74,117.58$, 83.56, 50.04, 24.94, 24.81, 16.76. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 33.75. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BClNO}_{3}+\mathrm{H}\right]^{+}$386.1693, found 386.1693.

2-Phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-m-tolylpropanamide (3ak):

Purified by column chromatograph (15:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 73% yield (106.5 mg). M.p. $140.0-143.3^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): ~ v\left(\mathrm{~cm}^{-1}\right)=3366,2982,1684,1594,1542,1492$, $1454,1369,1141,970,783,698 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{dd}, J=8.9,5.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{dd}, J=8.4$, $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J$
$=9.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{dd}, J=15.8,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{dd}, J=15.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.18$ $(\mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.51,141.69,138.86,138.12,129.10,128.78,128.10,127.47,124.91$, $120.29,116.71,83.45,50.05,24.92,24.80,21.54,16.78 .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.83$. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{BNO}_{3}+\mathrm{H}\right]^{+} 366.2239$, found 366.2238.

N -(2-chlorophenyl)-2-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanamide (3al):

Purified by column chromatograph (40:1 to 10:1 petroleum ether/ethyl acetate) to afford the product as a white solid in 43% yield (66.3 mg). M.p. $110.7-118.3^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): ~ v\left(\mathrm{~cm}^{-1}\right)=3367,2981,1694,1591,1526,1492$, $1470,1439,1373,1317,1248,1212,1178,1139,842,754,702 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{td}, J=7.8,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.95(\mathrm{dd}, J=9.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dd}, J=15.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{dd}, J=15.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H})$, $1.19(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.73$, 141.04, 134.87, 129.21, 128.91, 128.21, 127.71, 127.68, $124.35,122.65,121.21,83.42,50.35,24.85,24.75,16.18 .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.90$. HRMS (ESI) m / z : calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BClNO}_{3}+\mathrm{H}\right]^{+} 386.1693$, found 386.1694 .

2-Phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-(o-tolyl)propanamide (3am):

Purified by column chromatograph (20:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 34% yield (50.3 mg). M.p. $116.6-119.0^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): ~ v\left(\mathrm{~cm}^{-1}\right)=3301,2975,1661,1585,1525,1492$, $1457,1405,1377,1317,1260,1214,1180,1143,1108,966,845,750,697 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{q}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=9.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{dd}, J=15.6,9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.31(\mathrm{dd}, J=15.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.34,141.56$, $135.80,130.11,128.98,127.98,127.42,126.55,124.49,121.97,83.15,49.80,24.66,24.60,17.02,16.23 .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.47$. HRMS (ESI) m / z : calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{BNO}_{3}+\mathrm{H}\right]^{+} 366.2239$, found 366.2235 .

Purified by column chromatograph (10:1 petroleum ether/ethyl acetate) to afford the product as a white solid in 35% yield (54.2 mg). M.p. $40.4-44.3^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=3307,2960,1643,1551,1467,1371,1323,1263$, $1145,969,846,735,698 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=$ $9.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{ddd}, J=13.1,7.1,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{dd}, J=15.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{dt}, J=14.1,7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.28-1.20(\mathrm{~m}, 10 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $174.37,142.30,128.88,128.12,127.17,83.20,49.11,39.89,31.87,29.58,29.29,29.27,26.87,24.88,24.83$, $22.74,16.90,14.19 .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 33.56. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{BNO}_{3}+\mathrm{H}\right]^{+}$ 388.3022, found 388.3030 .

N-cyclohexyl-2-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanamide (3ao):

Purified by column chromatograph (12:1 to $7: 1$ petroleum ether/ethyl acetate) to afford the product as a white solid in 15% yield (21.4 mg). M.p. $99.4-101.2^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): ~ v\left(\mathrm{~cm}^{-1}\right)=3421,2925,2854,1654,1615,1544,1510$, 1457, 1373, 1326, 1143, 967, 795, 699. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.28$ $(\mathrm{s}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{ddd}, J=14.1,7.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=9.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{dd}, J=$ $12.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 2 \mathrm{H}), 1.36-$ $1.28(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}), 1.08-1.05(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.49,142.49$, $128.87,128.06,127.12,83.22,49.17,48.31,32.96,25.66,24.92,24.88,24.77,17.87 .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 33.52. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{BNO}_{3}+\mathrm{H}\right]^{+} 358.2552$, found 358.2553.

4. Further Functionalization Reactions

N -(4-fluorophenyl)-N,2-diphenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanamide (4):

The following procedure was in the light of a previously-reported method. ${ }^{[6]}$ A oven-dried 25 mL Schlenk tube
were charged with 3aa ($0.1 \mathrm{mmol}, 37 \mathrm{mg}$), $\mathrm{CuBr}_{2}(0.01 \mathrm{mmol}, 2.3 \mathrm{mg})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.20 \mathrm{mmol}, 66 \mathrm{mg})$. The tube was evacuated and backfilled with argon for three times. Iodobenzene ($0.2 \mathrm{mmol}, 23.0 \mu \mathrm{~L}$), 1,2bis(methylamino)ethane (DMEDA, $0.02 \mathrm{mmol}, 2.2 \mu \mathrm{~L})$ and toluene (2.0 mL , degassed) were injected into the tube under an argon atmosphere. The mixture was allowed to stir at $130^{\circ} \mathrm{C}$ (pre-heated oil bath) for 24 h . After cooling to room temperature, $2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ was added and the mixture was extracted with ethyl acetate ($3 \times 5.0 \mathrm{~mL}$). The combined organic layers were concentrated in vacuo, and the residue was purified by flash column chromatography (PE/EA) to give $4(24 \mathrm{mg}, 54 \%)$ as a yellow oily liquid. $\operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=3439,2927,1670$, $1622,1555,1507,1455,1373,1318,1219,1141,1074,844,738,696 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29$ (br, $2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{br}, 4 \mathrm{H}), 6.96(\mathrm{dd}, J=13.1,7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.93(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=$ $16.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 12 \mathrm{H}), 1.12(\mathrm{dd}, J=16.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $174.37,142.95$ (d, br, $J=67.0 \mathrm{~Hz}), 142.17,139.47(\mathrm{br}), 131.37(\mathrm{br}), 129.35(\mathrm{br}), 129.00(\mathrm{br}), 128.52,128.04(\mathrm{br})$, 127.76, 126.72, $126.18(\mathrm{~d}, \mathrm{br}, J=21.9 \mathrm{~Hz}), 115.88(\mathrm{~d}, \mathrm{br}, J=19.0 \mathrm{~Hz}), 83.37,46.23,25.11,24.97,18.66 .{ }^{19} \mathrm{~F}$ NMR (471 MHz, CDCl_{3}) $\delta-113.72,-116.54$ (major). ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.92$. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BFNO}_{3}+\mathrm{H}\right]^{+} 446.2302$, found 446.2300 .

N -(4-fluorophenyl)-2,3-diphenylpropanamide (5):

The following procedure was adapted from a previously-published method. ${ }^{[7]}$ A oven-dried 25 mL Schlenk tube were charged with 3aa $(0.1 \mathrm{mmol}, 37 \mathrm{mg}), \mathrm{KOH}(0.3 \mathrm{mmol}, 17.0 \mathrm{mg})$ and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.01 \mathrm{mmol}, 12.0 \mathrm{mg})$. The tube was evacuated and backfilled with argon for three times. THF (1.0 mL , degassed), bromobenzene $(0.3$ $\mathrm{mmol}, 31.4 \mu \mathrm{~L})$ and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ were added under an argon atmosphere. The reaction tube was sealed and stirred at $80^{\circ} \mathrm{C}$ (pre-heated oil bath) for 20 h . After cooling to room temperature, the reaction mixture was extracted with ethyl acetate ($3 \times 5.0 \mathrm{~mL}$). The combined organic layers were concentrated in vacuo, and the residue was purified by flash column chromatography (PE/EA) to give 5 ($23.4 \mathrm{mg}, 73 \%$) as a white solid. M.p. 166.2 $168.3^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=3420,1651,1617,1553,1508,1455,1362,1295,1217,1179,1079,836,745$, 702. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{ddd}, J=13.3,7.0,4.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.22(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J=14.8,6.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.65-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=13.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.01,159.53(\mathrm{~d}, J=243.5$ $\mathrm{Hz}), 139.57,139.22,133.74,129.16,129.12,128.53,128.24,127.82,126.51,121.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 115.65(\mathrm{~d}, J$ $=22.5 \mathrm{~Hz}), 56.63,39.90 .{ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-117.90$. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FNO}\right.$ $+\mathrm{H}]^{+} 320.1445$, found 320.1449 .

1-(4-Fluorophenyl)-3-phenyl-3,4-dihydroquinolin-2(1H)-one (6):

A oven-dried 25 mL Schlenk tube was charged with $\mathbf{3 a a}(0.1 \mathrm{mmol}, 37 \mathrm{mg}), \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 1.2 \mathrm{mg}), \mathrm{CuBr}_{2}$ ($5 \mathrm{~mol} \%, 1.2 \mathrm{mg}$), Xantphos ($12 \mathrm{~mol} \%, 7 \mathrm{mg}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.28 \mathrm{mmol}, 91 \mathrm{mg})$. The tube was evacuated and backfilled with argon for three times. Toluene (2.0 mL , anhydrous and degassed) and 1-bromo-2-iodobenzene (0.2 $\mathrm{mmol}, 20.0 \mu \mathrm{~L}$) was added under an argon atmosphere. The mixture was allowed to stir at $110{ }^{\circ} \mathrm{C}$ (pre-heated oil bath) for 24 h . After cooling to room temperature, $2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ was added and the mixture was extracted to ethyl acetate ($3 \times 5.0 \mathrm{~mL}$). The combined organic layers were concentrated in vacuo, and the residue was purified by flash column chromatography (PE/EA) to give $\mathbf{6}(17.4 \mathrm{mg}, 55 \%)$ as a yellow solid. M.p. $121.2-127.4^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr})$: $v\left(\mathrm{~cm}^{-1}\right)=3029,2925,1658,1615,1550,1508,1471,835,753,693 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-$ $7.02(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.91(\mathrm{~m}, 3 \mathrm{H}), 3.90(\mathrm{dd}, J=8.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=13.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=$ $13.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.61,159.54(\mathrm{~d}, J=243.6 \mathrm{~Hz}$), 139.09, 138.63, 133.74, 132.88, 132.18, 129.11, 128.39, 128.11, 127.84, 127.51, 124.66, 121.93(d, $J=7.9 \mathrm{~Hz}), 115.67$ (d, $J=22.5 \mathrm{~Hz}$), 53.82, 40.42. ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-117.89. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{FNO}+\mathrm{H}\right]^{+}$ 318.1289 , found 318.1289 .

N-(4-fluorophenyl)-2-phenylacrylamide (7):

3aa

$\mathrm{CH}_{3} \mathrm{OH}, \mathrm{O}_{2}, 70^{\circ} \mathrm{C}$

7, 88\%

To a round-bottom flask (50 mL), 3aa ($0.1 \mathrm{mmol}, 37 \mathrm{mg}$), $\mathrm{Cu}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol}, 2.0 \mathrm{mg})$ and $\mathrm{CH}_{3} \mathrm{OH}(2.0 \mathrm{~mL})$ were added. The flask was flushed with O_{2} for 2 mins and sealed. After stirring at $70{ }^{\circ} \mathrm{C}$ for 24 h , the reaction mixture was cooled to room temperature. The mixture was concentrated in vacuo and purified by flash column chromatography (PE/EA) to give pure $7(21.1 \mathrm{mg}, 88 \%)$ as a white solid. M.p. $137.0-140.4^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-}\right.$ $\left.{ }^{1}\right)=3446,3241,3062,1649,1608,1547,1515,1102,836,780 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.46(\mathrm{~m}$, $2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.06-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.24,159.67(\mathrm{~d}, J=244.0 \mathrm{~Hz}), 144.99,136.73,133.77(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 129.14,129.06,128.42$, $123.74,121.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 115.79(\mathrm{~d}, J=22.5 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.53$. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FNO}+\mathrm{H}\right]^{+}$242.0975, found 242.0978.

N -(4-fluorophenyl)-2-hydroxy-2-phenylacetamide (8):

The following procedure was adapted from a previously-published method. ${ }^{[8]}$ Compound $\mathbf{3 a a}(0.2 \mathrm{mmol}, 73.8$ mg) was dissolved in THF (1.5 mL). While stirring at $0^{\circ} \mathrm{C}, \mathrm{NaOH}(3 \mathrm{M}, 0.8 \mathrm{~mL})$ was added dropwise followed by $\mathrm{H}_{2} \mathrm{O}_{2}$ solution (30% in water, 0.4 mL). This mixture was stirred at ambient temperature for 0.5 h . The product was extracted to ethyl acetate ($3 \times 5 \mathrm{~mL}$) and concentrated in vacuo. The crude product was then purified by flash column chromatography (PE/EA) to give pure $\mathbf{8}(48.3 \mathrm{mg}, 93 \%)$ as a white solid. M.p. $146.3-148.9^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr})$: $v\left(\mathrm{~cm}^{-1}\right)=3420,3239,3058,1654,1615,1556,1509,1454,1409,1067,1021,833,765,702 .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.43-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.06-6.92(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.12$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.76,159.74(\mathrm{~d}, J=244.2 \mathrm{~Hz}), 136.27,133.39,129.54,128.64,128.40$, $122.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 115.82(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 65.08,55.46 .{ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-117.35 . \mathrm{HRMS}(\mathrm{ESI})$ m / z : calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{FNO}_{2}+\mathrm{H}\right]^{+} 260.1081$, found 260.1088 .

1-(4-fluorophenyl)-3-phenylazetidin-2-one (9):

The following procedure was in the light of a previously-reported method. ${ }^{[9]}$ Compound $\mathbf{8}(0.2 \mathrm{mmol}, 52 \mathrm{mg})$ and $\mathrm{PPh}_{3}(0.28 \mathrm{mmol}, 74 \mathrm{mg})$ was dissolved in THF (1.0 mL). Diethyl azodicarboxylate (DEAD, $0.24 \mathrm{mmol}, 38.0$ $\mu \mathrm{L}$) was added dropwise to the mixture which was cooled to $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 36 h . The mixture was concentrated in vacuo and purified by flash column chromatography ($\mathrm{DCE} / \mathrm{EA}$) to give pure $9(42.3 \mathrm{mg}, 88 \%)$ as a white solid. M.p. $107.1-109.6^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=3459,3077,2982,1632,1601$, $1508,1497,1473,1457,1387,1229,1212,1180,1147,1102,1078,779,725 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43$ $-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{dd}, J=5.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.67(\mathrm{dd}, J=5.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.18,159.30(\mathrm{~d}, J=243.3 \mathrm{~Hz}), 135.25,134.68$ $(\mathrm{d}, J=2.7 \mathrm{~Hz}), 129.10,127.91,127.50,117.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 116.12(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 53.91,47.03 .{ }^{19} \mathrm{~F}$ NMR (471 MHz, CDCl_{3}) $\delta-117.86$. HRMS (ESI) m / z : calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FNO}+\mathrm{H}\right]^{+}$242.0975, found 242.0979.

(Z)-N-(4-fluorophenyl)-2,3-diphenylacrylamide (10):

A oven-dried 25 mL Schlenk tube was charged with 3aa ($0.1 \mathrm{mmol}, 36.9 \mathrm{mg}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%, 1.2 \mathrm{mg})$, XantPhos ($6 \mathrm{~mol} \%, 3.5 \mathrm{mg}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.14 \mathrm{mmol}, 45.6 \mathrm{mg})$. The tube was evacuated and backfilled with argon for three times. Dioxane (2.0 mL , anhydrous and degassed) and bromobenzene ($0.15 \mathrm{mmol}, 19.0 \mu \mathrm{~L}$) was added under an argon atmosphere. The mixture was allowed to stir at $80^{\circ} \mathrm{C}$ (pre-heated oil bath) for 48 h . After cooling to room temperature, $2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ was added and the mixture was extracted with ethyl acetate ($3 \times 5.0 \mathrm{~mL}$). The combined organic layers were concentrated in vacuo, and the residue was purified by flash column chromatography (PE/EA) to give $10(17 \mathrm{mg}, 53 \%)$ as a white solid. M.p. $179.8-182.7^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=$ $3447,1644,1612,1537,1508,1446,1157,1076,925,808,757,724,701,690 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.97(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=8.3,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.05-6.95(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.11,159.59(\mathrm{~d}, J=243.9$ $\mathrm{Hz}), 138.55,135.88,134.85,134.44,134.01(\mathrm{~d}, ~ J=2.8 \mathrm{~Hz})$, 130.62, 130.12, 130.11, 129.15, 129.04, 128.39, $121.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 115.71(\mathrm{~d}, J=22.5 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.78$. HRMS (ESI) m/z: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{FNO}+\mathrm{H}\right]^{+} 318.1289$, found 318.1289.

5. X-Ray Data of 3aa

CCDC 1971971 ($\mathbf{3 a a}$) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

6. References

1. L. Hintermann, Beilstein J. Org. Chem., 2007, 3, 22.
2. O. Santoro, A. Collado, A. M. Slawin, S. P. Nolan, C. S. Cazin, Chem. Commun., 2013, 49, 10483.
3. M. Hans, J. Lorkowski, A. Demonceau, L. Delaude, Beilstein J. Org. Chem., 2015, 11, 2318.
4. A. J. Arduengo III, R. Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich, W. J. Marshall, M. Unverzagt, Tetrahedron, 1999. 55, 14523.
5. D. S. Laitar, E. Y. Tsui, J. P. Sadighi, J. Am. Chem. Soc., 2006. 128, 11036.
6. M. Wang, H. Yu, X. You, J. Wu, Z. Shang, Chin. J. Chem., 2012, 30, 2356.
7. B. Chen, P. Cao, X. Yin, Y. Liao, L. Jiang, J. Ye, M. Wang, J. Liao, ACS Catal., 2017, 7, 2425.
8. T. W. Butcher, E. J. McClain, T. G. Hamilton, T. M. Perrone, K. M. Kromer, G. C. Donohoe, N. G. Akhmedov, J. L. Petersen, B. V. Popp, Org. Lett., 2016, 18, 6428.
9. J. M. Keith, L. Gomez, J. Org. Chem., 2006, 71, 7113.
10. Spectroscopic Data (NMR Spectrum)

(

2
0
0

畣
$\underline{\varphi}$

\＆゙ シัシ $\stackrel{\stackrel{5}{\%}}{\stackrel{1}{1}}$

 $\stackrel{8}{\circ}$

9	$8{ }^{8}$	¢nc	置	F．	\square^{\square}		「ํ．95	尔	
$\stackrel{\text { Nㅡㄹ }}{ }$	酸	罟皃复	－			－	F－re	\％	云云云
1	11	1ノ	I					，	

$\stackrel{\bar{\oplus}}{\stackrel{1}{1}}$
268 Bronnag元

8
0

rivinisinios

ving
 こうご沶

melnuwamaumumumumunumaumumumum

近時曻
\iiint

Rop． ت

corss)

8\$隹 | 8 |
| :--- |
| 0 |

$|1| 1 \mid$

$$
11 \|
$$

Coses

$$
x \times x^{2}
$$

永 $\stackrel{8}{\circ}$

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

家水

\sin

으은․․
युँ
年

rsiris

シin沙
-

-

virug

Rog B隹

象践

Mand

riticningingin

／｜｜

\％	8	8 Br 885	8		ㅍํ％	呙	甼N：
－	玉		$\stackrel{\square}{\square}$	\％	为	\％	
｜	1	11 V1／	｜	｜	\downarrow	｜	V1

少

$$
\begin{aligned}
& \stackrel{a}{n} \\
& \stackrel{i}{1}
\end{aligned}
$$

crigurisigisis

シigmぁ
元
1111

$\stackrel{\infty}{\infty}$

1

.

4
7
7
7

!
0
0

$$
5^{5}
$$

 Yu行

隹
ぶ而它衫

8 8．5． 8ing
\int_{1} / \mid

M.
raringis

III

 $1 / /\| \| \|$

(2)

就

就

≈ 5888 5ssc चinin unt

11 /

${ }^{5}$

$$
y_{0}^{5}
$$

坔 $11 /$

$$
180
$$

sto

11

