Supporting Information

Copper-Catalyzed [2 + 3]-Annulation of N-H Imines with

Vinyl Azides: Access to Polyaryl 2H-imidazoles

Zhongzhi Zhu,* Hanze Lin, Baihui Liang, Junjie Huang, Wanyi Liang, Lu Chen,

Yubing Huang, Xiuwen Chen* and Yibiao Li*

School of Biotechnology and Health Sciences, Wuyi University,

Jiangmen, 529020

List of Contents

A. General information	S2
B. Typical procedure for preparation of N-H imines	S2
C. Typical procedure for preparation of azidovinyl benzenes	S3
D. Typical procedure for preparation of 3-phenyl-2 <i>H</i> -azirine 4a	S4
E. Typical procedure for preparation of 2 <i>H</i> -imidazoles 3 , 5aq	\$5
F. Typical procedure for preparation of 6 , 7 , 8	S6
G. Spectroscopic data for 2 <i>H</i> -imidazoles 3	S8
H. Crystal data and structure refinement for compound 3bb	S16
I. Copies of ¹ H and ¹³ C NMR spectra	S18
J. Copies of HRMS (ESI) of 4a and 5aa	

A. General information

Melting points were measured with a melting point instrument and were uncorrected. ¹H and ¹³C NMR spectra were recorded using a 400/500 MHz NMR spectrometer. The chemical shifts are referenced to signals at 7.26 and 77.0 ppm, respectively, and chloroform is solvent with TMS as the internal standard. GC-MS was obtained using electron ionization. HRMS was obtained with a LCMS-IT-TOF mass spectrometer. TLC was performed by using commercially prepared 100-400 mesh silica gel plates and visualization was effected at 254 nm. High-resolution mass spectra (ESI) were obtained with a LCMS-IT-TOF mass spectrometer.

B. Typical procedure for preparation of N-H imines

General Procedure for the Preparation of N-H Diaryl Imines ¹:

In an oven-dried flask with three necks equipped with a magnetic stir bar was added magnesium turnings (0.583 g, 24.0 mmol, 1.2 equiv.) and suspended in THF (20.0 mL) under N₂ atmosphere. A few drops of bromobenzene and a crystal of iodine were added, placed into a preheated oil bath (80 °C) to initiate the exothermic reaction. A solution of bromobenzene (22.0 mmol, 1.1 equiv.) diluted in THF (5.0 mL) was added dropwise to maintain a gentle reflux for 2 hours; the solution colour changed from yellow to brown. The reaction mixture was cooled to room temperature and aryl nitrile (20.0 mmol, 1 equiv.) diluted in THF (5 mL) was added dropwise to form a viscous pale brown slurry. It was then placed in a preheated oil bath (80 °C), refluxed for 5 hours and stirred at room temperature overnight. MeOH (10 mL) was added in an ice-bath (with caution, exothermic) to give a red solution and yellow precipitate. The resulting mixture was stirred at room temperature for 30 min, and after this time the volatile materials were evaporated under reduced pressure. The residue was re-dissolved into ethyl acetate. Further purification was achieved by flash-column chromatography, with 1.5 mL of Et₃N added into every 100 mL of the solvent

mixture EA/PE.

General Procedure for the Preparation of N-H Aryl Alkyl Imines ¹:

A stirred solution of the aryl nitrile (20 mmol) in THF (20 mL) under a positive atmosphere of N_2 was cooled to -78 °C and the alkyllithium reagent (32 mmol) was added dropwise over 0.5 h. The mixture was stirred at -78 °C for 2 h, quenched with anhydrous MeOH (5 mL) and then stirred at room temperature for 2 h. The resulting suspension was filtrated through Celite and the solvent was removed by rotary evaporation. The residue was purified by vacuum distillation.

1-(3,5-Dimethylphenyl)pentan-1-imine (1ar): ¹H NMR (500 MHz, CDCl₃) δ 9.43 (d, *J* = 87.4 Hz, 1H), 7.48 (s, 1H), 7.06 (t, *J* = 6.1 Hz, 2H), 2.7-.67 (m, 2H), 2.35 (d, *J* = 5.3 Hz, 6H), 1.67-1.56 (m, 2H), 1.45-1.37 (m, 2H), 0.99 – 0.92 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 180.9, 178.8, 140.1, 138.6, 138.3, 137.8, 132.0, 131.5, 124.8, 123.4, 37.9, 37.0, 28.9, 28.1, 22.6, 22.3, 21.3, 14.0, 13.9.

C. Typical procedure for preparation of azidovinyl benzenes²

$$R \xrightarrow{[l]}{l}$$
2) NaN₃, DMF, rt
$$R \xrightarrow{[l]}{l}$$

Method A for azidovinyl benzenes: To a solution of substituted-styrene (5 mmol) and LiBr (12 mmol) in acetic acid (8 mL) was added NaIO₄ (2.6 mmol) portionwise during 15 min. After the reaction mixture was stirred at room temperature for 5 h, then diluted with water, the product was extracted with CH_2CI_2 . The organic layer was washed with saturated aq. NaHCO₃, Na₂S₂O₃, and brine. It was dried over anhydrous MgSO₄ and concentrated under reduced pressure to give dibromide. To a solution of dibromide in dry DMF (20 mL) was added NaN₃ (15 mmol). The mixture was stirred for 24 h at room temperature, then diluted with water and extracted with diethyl ether. The combined organic layers were washed with water (3 × 10 mL) and dried with anhydrous Na₂SO₄. After removal of the solvent, the crude residue was purified by column chromatography using silica gel with hexanes as the eluent to afford vinyl azides **2**.

Method B for azidovinyl benzenes: In a flask with a magnetic bar, Ag_2CO_3 (0.2 mmol) was suspended in DMSO (4 ml). Aryl acetylene (2 mmol), TMSN₃ (4 mmol) and H₂O (4 mmol) were added to flask, respectively. Then the mixture was heat to 80 °C. After 1 h, the mixture was partitioned between Et₂O and H₂O, and the organic phase was separated, dried (Na₂SO₄), and concentrated. The residue was chromatographed with petroleum as eluent to afford the **2** in 50-85% yield. ³

Method C for azidovinyl benzenes:

$$Ar \qquad R \qquad \xrightarrow{ICI, NaN_3} \qquad \xrightarrow{N_3} \qquad \xrightarrow{R} \qquad \xrightarrow{t-BuOK} \qquad \xrightarrow{R} \qquad \xrightarrow{t-BuOK} \qquad \xrightarrow{R} \qquad \xrightarrow{R} \qquad \xrightarrow{t-BuOK} \qquad \xrightarrow{R} \qquad \xrightarrow{R} \qquad \xrightarrow{t-BuOK} \qquad \xrightarrow{R} \qquad \xrightarrow{$$

To a suspension of NaN₃ (812.5 mg, 12.5 mmol, 2.5 equiv) in acetonitrile (3 mL) was added dropwise a solution of iodine monochloride (1214.0 mg, 7.5 mmol, 1.5 equiv) in CH₂Cl₂ (5 mL) at -20°C, and the mixture was stirred at the same temperature. After 30 min, a solution of vinylbenzene (5 mmol, 1 equiv) in CH₂Cl₂ (5 mL) was added slowly, and the mixture was stirred for 1 h. The reaction was quenched with saturated aqueous Na₂S₂O₃, and the organic materials were extracted two times with Et_2O . The combined extracts were washed with brine and dried over MgSO₄. After evaporation of solvents, the resulting crude materials were used immediately for the next step without any further purification. To a solution of the obtained compounds above in Et_2O (10 mL) was added *t*-BuOK (672.0mg, 6 mmol, 1.2 equiv) at 0 °C, and the mixture was stirred for 1.5 h at the same temperature. The reaction was quenched by adding NH_4HCO_3 saturated solution, and the organic materials were extracted with ethyl acetate. The organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed in vacuo, and the resulting crude materials were purified by flash column chromatography (silica gel; pure petroleum ether) to give azidovinyl benzenes as a yellow liquid.

D. Typical procedure for preparation of 3-phenyl-2H-azirine 4a

To a solution of (1-azidovinyl) benzene (**2a**) (2 mmol) and diazabicyclo [2.2.2] octan (0.2 mmol) in dry toluene (6 mL) stirred 50 min at 110 °C. Upon completion of the reaction as indicated by TLC, the solvent was removed and concentrated under reduced pressure to give crude raffinate. The crude raffinate was purified by column chromatography using silica gel with eluent (petroleum ether: EtOAc = 10 : 1) to afford azirines **4a** as a light yellow oil (198.5 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.4 Hz, 1H), 7.63 – 7.52 (m, 2H), 1.80 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 132.9, 129.6, 129.1, 125.5, 19.7.

E. Typical procedure for preparation of 2*H*-imidazoles

N-H imines **1** (0.3 mmol), azidovinyl benzene **2** (0.36 mmol), CuCl (3.0 mg, 0.03 mmol), and 2 mL of dry CH₃CN were added to a 10 mL screw-capped tube under O₂ atmosphere. The reaction vessel was closed with the cap and the reaction mixture was stirred at 80 °C (oil bath) for 8 h. The crude product was cooled to room temperature and concentrated in vacuum to give a residue, which was purified by flash column chromatography to afford the 2*H*-imidazoles **3**.

Typical procedure for preparation of 2-butyl-2,4-diphenyl-2,5-dihydro-1*H*imidazole 5aq

To a solution of 2-butyl-2,4-diphenyl-2*H*-imidazole (**3aq**) (1 mmol), dry THF (3 mL) and LiAlH₄ (114 mg, 3 equiv) were added to a 10 mL screw-capped tube under N₂ atmosphere stirred at 0 °C. Upon completion of the reaction as indicated by TLC, the solvent was removed and concentrated under reduced pressure to give crude raffinate. The crude raffinate was purified by column chromatography using silica gel with eluent (petroleum ether: EtOAc = 5 : 1) to afford **5aq** as a light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, *J* = 7.8, 1.6 Hz, 2H), 7.67 – 7.60 (m, 2H), 7.43 (d, *J* = 7.7 Hz, 3H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.25 (d, *J* = 6.5 Hz, 1H), 4.26 (d, *J* = 15.9 Hz, 1H), 4.09 (d, *J* = 15.9 Hz, 1H), 2.39 (s, 1H), 2.11 – 1.98 (m, 2H), 1.33 – 1.22 (m, 4H), 0.84 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.8, 145.8, 130.9, 128.6, 128.2, 128.0, 127.1, 125.9, 97.5, 55.3, 43.3, 26.5, 23.0, 14.1.

F. Typical procedure for preparation of 6, 7, 8

Typical procedure for preparation of 6

To a solution of 2*H*-imidazoles **3** (2.0 mmol), dry CH_3CN (4 mL) and *m*-CPBA (688 mg, 2.0 equiv) were added to a 10 mL screw-capped tube at 80 °C. Upon completion of the reaction as indicated by TLC, the solvent was removed and concentrated under reduced pressure to give crude raffinate. The crude raffinate was purified by column chromatography using silica gel with eluent (petroleum ether: EtOAc = 4 : 1) to afford **6**.

2,2,5-Triphenyl-2,3-dihydro-4*H***-imidazol-4-one (6aa)**, ¹H NMR (500 MHz, CDCl₃) δ 9.83 (s, 1H), 8.56 – 8.49 (m, 2H), 7.56 – 7.52 (m, 1H), 7.52 – 7.47 (m, 6H), 7.33 (dt, *J* = 13.9, 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 166.2, 160.9, 141.3, 131.9, 130.3, 128.8, 128.6, 128.6, 128.3, 126.8, 87.5.

2-(3-Bromophenyl)-2-methyl-5-phenyl-2,3-dihydro-4*H***-imidazol-4-one** (6bj), ¹H NMR (500 MHz, CDCl₃) δ 10.32 (s, 1H), 8.51 (d, *J* = 7.3 Hz, 2H), 7.84 (s, 1H), 7.57 (dd, *J* = 7.4, 5.0 Hz, 2H), 7.52 (t, *J* = 7.5 Hz, 2H), 7.47 (d, *J* = 7.9 Hz, 1H), 7.29 – 7.25 (m, 1H), 1.94 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.4, 161.2, 143.2, 132.0, 131.3, 130.3, 130.2, 129.1, 128.7, 128.6, 124.4, 122.8, 83.6, 29.0.

2-(3-Bromophenyl)-2,5-diphenyl-2,3-dihydro-4*H***-imidazol-4-one (6bk)**, ¹H NMR (500 MHz, CDCl₃) δ 10.86 (s, 1H), 8.63 – 8.50 (m, 2H), 7.78 (t, *J* = 1.8 Hz, 1H), 7.58 – 7.54 (m, 3H), 7.52 (t, *J* = 7.4 Hz, 3H), 7.47 – 7.43 (m, 1H), 7.35 (ddd, *J* = 8.3, 7.7, 3.6 Hz, 3H), 7.22 (t, *J* = 7.9 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 166.6, 161.3, 143.7, 140.9, 132.1, 131.4, 130.2, 130.2, 130.0, 128.9, 128.8, 128.7, 128.5, 126.7, 125.5, 122.8, 87.3.

Typical procedure for preparation of 7

To a solution of **6** (1.0 mmol), pyridine (3.0 mL), and phosphorus pentasulfide (0.29g, 1.5 mmol) were added to a 25 mL screw-capped tube at 120 °C for 1 h. Ammonia (7 M in methanol) (8 mL, 56mmol) and *tert*-butyl hydroperoxide (2.2 mL, 15.6 mmol) were added, and the mixture was stirred at room temperature for 16 h. The solvents were evaporated, and the crude raffinate was purified by column chromatography using silica gel with eluent (petroleum ether: EtOAc = 2 : 1) and repurified through reversed phase preparative-HPLC to afford **7**.

2-(3-Bromophenyl)-2-methyl-5-phenyl-2*H***-imidazol-4-amine** (**7aj**) ¹H NMR (500 MHz, CDCl₃) δ 7.84 (t, *J* = 1.7 Hz, 1H), 7.75 (dd, *J* = 7.7, 1.7 Hz, 2H), 7.64 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.50 (d, *J* = 7.6 Hz, 3H), 7.40 – 7.36 (m, 1H), 7.20 (d, *J* = 7.9 Hz, 1H), 4.88 (s, 2H), 1.77 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.1, 158.3, 144.7, 131.2, 130.9, 130.3, 129.9, 129.8, 129.2, 127.9, 125.5, 122.3, 99.3, 28.5.

2-(3-Bromophenyl)-2,5-diphenyl-2*H*-imidazol-4-amine (7bk) ¹H NMR (500 MHz, CDCl₃) δ 7.80 (dd, *J* = 13.4, 7.0 Hz, 3H), 7.62 (dd, *J* = 13.6, 7.7 Hz, 3H), 7.55 – 7.49 (m, 3H), 7.37 – 7.35 (m, 1H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.24 (d, *J* = 7.2 Hz, 1H), 7.16 (t, *J* = 7.9 Hz, 1H), 5.27 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 161.7, 158.6, 145.2, 142.5, 131.1, 131.0, 130.5, 130.4, 129.7, 129.2, 128.3, 128.1, 127.5, 127.4, 126.4, 122.2, 102.8.

Typical procedure for preparation of 8

А portion of 7 (0.3 mmol), boronic acid (0.60 mmol), and bis(triphenylphosphine)palladium(II) chloride (42 mg, 60 µmol) was taken up in DME (4 mL) and water (2 mL). Sodium carbonate (1 M in water) (0.6 mmol) was added, and the mixture was heated at 80 °C for 2 h. The solvents were evaporated and extracted with ethyl acetate. The crude raffinate was purified by column chromatography using silica gel with eluent (0:1 \rightarrow 1:10, MeOH/ EtOAc) and repurified through reversed phase preparative-HPLC to afford 8.

2-Methyl-5-phenyl-2-(3-(pyridin-3-yl)phenyl)-2H-imidazol-4-amine (**8a**) ¹H NMR (500 MHz, CDCl₃) δ 8.85 (d, *J* = 8.1 Hz, 1H), 8.54 (s, 1H), 7.98 – 7.88 (m, 2H), 7.81 – 7.70 (m, 3H), 7.56 – 7.43 (m, 5H), 7.35 (d, *J* = 2.4 Hz, 1H), 3.82 (s, 2H), 1.88 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 160.6, 157.9, 149.3, 148.3, 148.2, 142.7, 137.8, 134.6, 131.2, 130.7, 129.3, 129.1, 128.0, 126.6, 126.3, 125.5, 123.6, 99.1, 28.7.

2-Methyl-5-phenyl-2-(3-(pyrimidin-5-yl)phenyl)-2*H*-imidazol-4-amine (**8b**) ¹H NMR (500 MHz, CDCl₃) δ 9.17 (s, 1H), 8.98 (s, 2H), 7.94 (s, 1H), 7.83 (d, *J* = 5.3 Hz, 1H), 7.77 (d, *J* = 6.9 Hz, 2H), 7.56 – 7.45 (m, 5H), 4.58 (s, 2H), 1.87 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.4, 155.0, 154.9, 143.4, 134.4, 134.2, 131.9, 131.2, 130.8, 129.4, 129.3, 128.0, 127.5, 126.1, 125.4, 77.3, 28.7. **2,5-Diphenyl-2-(3-(pyridin-3-yl)phenyl)-2***H***-imidazol-4-amine (8c)** ¹H NMR (500 MHz, CDCl₃) δ 8.82 (s, 1H), 8.54 (s, 1H), 7.91 (s, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.82 – 7.76 (m, 2H), 7.73 (d, *J* = 7.5 Hz, 1H), 7.69 (d, *J* = 7.5 Hz, 2H), 7.50 (q, *J* = 6.3 Hz, 3H), 7.43 (dt, *J* = 15.2, 7.6 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 3H), 7.23 (d, *J* = 7.3 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 161.5, 158.6, 148.4, 148.4, 144.0, 142.7, 137.7, 136.7, 134.5, 131.2, 131.0, 129.2, 128.9, 128.3, 128.1, 127.5, 127.5, 126.3, 126.1, 123.5, 122.8, 103.3.

2,5-Diphenyl-2-(3-(pyrimidin-5-yl)phenyl)-2H-imidazol-4-amine (8d) ¹H NMR (500 MHz, CDCl₃) δ 9.16 (s, 1H), 8.92 (s, 2H), 7.90 (s, 1H), 7.80 (dd, *J* = 10.4, 5.4 Hz, 3H), 7.68 (d, *J* = 7.3 Hz, 2H), 7.55 – 7.50 (m, 3H), 7.48 – 7.42 (m, 3H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.25 (d, *J* = 7.4 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 161.5, 158.4, 157.4, 155.0, 144.2, 142.3, 134.1, 132.1, 132.1, 131.2, 130.9, 129.3, 129.3, 128.4, 128.3, 128.1, 127.7, 127.4, 126.1, 126.0, 102.9.

G. Spectroscopic data for 2*H*-imidazoles

2,2,4-Triphenyl-2H-imidazole (3aa) as a yellow solid (72.1 mg, 82% yield); mp 99.3-100.3 °C R_f = 0.5 (PE: EA = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 8.06 (d, *J* = 4.9 Hz, 2H), 7.69 (d, *J* = 6.3 Hz, 4H), 7.45 (s, 3H), 7.27 (d, *J* = 6.9 Hz, 4H), 7.22 (d, *J* = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 163.3, 155.1, 148.7, 140.9, 133.6, 131.6, 131.5, 131.0, 129.6, 129.1, 128.6, 128.4, 127.8, 126.5, 112.7; HRMS (ESI) m/z: calcd for C₂₁H₁₇N₂ [M+H]⁺ 297.1386; found 297.1383.

2,4-Diphenyl-2-(*p*-tolyl)-2*H*-imidazole (3ab): as a brown solid (84.0 mg, 82% yield); mp 102.4-103.6 °C; $R_f = 0.5$ (PE: EA = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.64 (s, 1H), 8.17-8.15 (m, 2H), 7.78-7.73 (m, 2H), 7.64 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 7.0 Hz, 3H), 7.36 (d, *J* = 7.8 Hz, 2H), 7.33-7.29 (m, 1H), 7.19 (d, *J* = 8.1 Hz, 2H), 2.36 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.2, 155.0, 140.9, 137.9, 137.6, 131.6, 131.0, 129.1, 129.1, 128.6, 128.4, 127.8, 127.7, 127.6, 112.6, 21.2; HRMS (ESI) m/z: calcd for C₂₂H₁₉N₂ [M+H]⁺ 311.1543; found 311.1538.

2-([1,1'-Biphenyl]-4-yl)-2,4-diphenyl-2*H***-imidazole (3ac)**: as a yellow solid (85.1 mg, 76% yield); mp 160.4-161.6 °C; $R_f = 0.7$ (PE: EA = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.67 (s, 1H), 8.18 (dd, *J* = 7.6, 2.0 Hz, 2H), 7.87-7.81 (m, 4H), 7.63-7.60 (m, 4H), 7.56 (dd, *J* = 4.8, 2.5 Hz, 3H), 7.47 (dd, *J* = 10.4, 4.8 Hz, 2H), 7.43-7.37 (m, 3H), 7.36-7.32

(m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 155.2, 140.8, 140.8, 140.7, 139.9, 131.7, 131.0, 129.2, 128.9, 128.6, 128.5, 128.2, 127.9, 127.8, 127.4, 127.2, 127.2, 112.6; HRMS (ESI) m/z: calcd for C₂₇H₂₁N₂ [M+H]⁺ 373.1699; found 373.1694.

2-(4-Methoxyphenyl)-2,4-diphenyl-2H-imidazole (3ad): as a yellow soild (69.6 mg, 61% yield); mp 110.1-111.0 °C; $R_f = 0.3$ (PE: EA = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.64 (s, 1H), 8.15 (dd, *J* = 7.5, 1.9 Hz, 2H), 7.76-7.70 (m, 2H), 7.69-7.64 (m, 2H), 7.56 (t, *J* = 6.0 Hz, 3H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.31 (d, *J* = 7.2 Hz, 1H), 6.96-6.86 (m, 2H), 3.81 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.1, 159.1, 154.9, 141.0, 133.0, 131.6, 131.0, 129.1, 129.0, 128.6, 128.4, 127.8, 127.7, 113.7, 112.4, 55.3; HRMS (ESI) m/z: calcd for C₂₂H₁₉N₂O [M+H]⁺ 327.1492; found 327.1497.

2-(4-Fluorophenyl)-2,4-diphenyl-2H-imidazole (3ae): as a yellow soild (62.0 mg, 66% yield); mp 102.9-104.0 °C; $R_f = 0.4$ (PE: EA = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.62 (s, 1H), 8.15-8.10 (m, 2H), 7.72-7.67 (m, 4H), 7.56-7.51 (m, 3H), 7.34 (t, J = 7.5 Hz, 2H), 7.29 (d, J = 7.3 Hz, 1H), 7.02 (t, J = 8.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 162.3 (d, J = 248.2 Hz), 155.2, 140.6, 136.7 (d, J = 3.8 Hz) 131.8, 130.8, 129.5 (d, J = 8.8 Hz), 129.2, 128.6, 128.5, 127.9, 127.6, 115.2 (d, J = 21.4 Hz), 112.1; HRMS (ESI) m/z: calcd for C₂₁H₁₆FN₂ [M+H]⁺ 315.1292; found 315.1289.

2-(4-Chlorophenyl)-2,4-diphenyl-2H-imidazole (3af): as a brown solid (60.8 mg, 62% yield); mp 119.5-121.7 °C; $R_f = 0.5$ (PE: EA = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.66 (s, 1H), 8.16 (dd, *J* = 7.8, 1.6 Hz, 2H), 7.77-7.72 (m, 4H), 7.56 (d, *J* = 7.6 Hz, 3H), 7.42-7.33 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 164.5, 155.4, 140.6, 139.5, 133.7, 131.8, 130.8, 129.2, 129.2, 128.6, 128.5, 128.0, 127.7, 112.1; HRMS (ESI) m/z: calcd for C₂₁H₁₆ClN₂ [M+H]⁺ 331.0997; found 331.0992.

2-(4-Bromophenyl)-2,4-diphenyl-2H-imidazole (3ag): as a light yellow solid (68.0 mg, 61% yield); mp 130.5-131.7 °C; $R_f = 0.6$ (PE: EA = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.62 (d, J = 8.0 Hz, 1H), 8.14-8.08 (m, 2H), 7.70-7.65 (m, 2H), 7.61-7.57 (m, 2H), 7.56-7.51 (m, 3H), 7.44 (d, J = 8.2 Hz, 2H), 7.35-7.30 (m, 2H), 7.28 (d, J = 7.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.5, 155.3, 140.4, 139.9, 131.8, 131.4, 130.7, 129.5, 129.2, 128.6, 128.5, 128.0, 127.6, 121.9, 112.1; HRMS (ESI) m/z: calcd for C₂₁H₁₆BrN₂ [M+H]⁺ 375.0491; found 375.0488.

2,4-Diphenyl-2-(4-(trifluoromethyl)phenyl)-2H-imidazole (3ah): as a light yellow solid (66.5 mg, 61% yield); mp 147.4-148.5 °C R_f = 0.4, (PE: EA = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.68 (d, *J* = 0.9 Hz, 1H), 8.17 (d, *J* = 7.6 Hz, 2H), 7.93 (d, *J* = 8.2 Hz, 2H), 7.77 (d, *J* = 8.2 Hz, 2H), 7.64 (d, *J* = 8.2 Hz, 2H), 7.60 – 7.54 (m, 3H), 7.39 (dd, *J* = 11.3, 4.1 Hz, 2H), 7.36 – 7.29 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.7, 155.6, 144.8, 140.3, 131.9, 130.6, 129.9 (q, *J* = 32.7 Hz), 128.6, 128.6, 128.2, 128.1, 127.7, 127.1, 125.3 (q, *J* = 3.6), (q, *J* = 278.5) 120.9, 112.1; HRMS (ESI) m/z: calcd for C₂₂H₁₆F₃N₂ [M+H]⁺ 365.1260; found 365.1255.

2-(4-Nitrophenyl)-2,4-diphenyl-2H-imidazole (3ai): as a yellow solid (67.9 mg, 66% yield); mp 134.1-135.0 °C; $R_f = 0.3$, (PE: EA = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.65 (s, 1H), 8.19-8.10 (m, 4H), 7.96 – 7.92 (m, 2H), 7.72-7.67 (m, 2H), 7.55 (dt, J = 14.0, 5.9 Hz, 3H), 7.36-7.32 (m, 2H), 7.30 (dd, J = 4.8, 3.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.0, 155.9, 147.9, 147.2, 139.9, 132.1, 130.4, 129.3, 128.7, 128.7, 128.3, 127.6, 123.6, 111.8; HRMS (ESI) m/z: calcd for C₂₁H₁₆N₃O₂ [M+H]⁺ 342.1237; found 342.1234.

2,4-Diphenyl-2-(*o***-tolyl)-***2H***-imidazole (3aj)**: as a light yellow solid (70.4 mg, 76% yield); mp 100.1-101.9 °C; $R_f = 0.5$ (PE: EA = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.66 (s, 1H), 8.19-8.14 (m, 2H), 7.80-7.75 (m, 2H), 7.59-7.56 (m, 5H), 7.39 (t, J = 7.5 Hz, 2H), 7.34-7.26 (m, 2H), 7.15 (s, 1H), 2.39 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.2, 155.1, 140.9, 140.7, 138.0, 131.7, 131.0, 129.1, 128.6, 128.6, 128.4, 128.3, 127.8, 127.8, 124.9, 21.6; HRMS (ESI) m/z: calcd for C₂₂H₁₉N₂ [M+H]⁺ 311.1543; found 311.1540.

2,4-Diphenyl-2-(*m***-tolyl)-2***H***-imidazole (3ak)**: as a white solid (68.4 mg, 74% yield); mp 109.4-110.7 °C; $R_f = 0.4$ (PE: EA = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.65 (s, 1H), 8.16 (d, *J* = 7.8 Hz, 2H), 7.82 – 7.74 (m, 2H), 7.59 (s, 2H), 7.55 (d, *J* = 7.0 Hz, 3H), 7.37 (d, *J* = 7.8 Hz, 2H), 7.34 – 7.27 (m, 2H), 7.13 (d, *J* = 7.6 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.23, 155.13, 155.07, 140.94, 140.74, 138.05, 131.65, 129.13, 128.65, 128.61, 128.42, 128.41, 128.32, 127.82, 127.79, 124.91, 21.65; HRMS (ESI) m/z: calcd for C₂₂H₁₉N₂ [M+H]⁺ 311.1543; found 311.1542.

2,4-Diphenyl-2-(3-(trifluoromethyl)phenyl)-2H-imidazole (3al): as a yellow solid (49.2 mg, 45% yield); mp 133.5-134.5 °C; R_f = 0.3 (PE: EA = 10:1); ¹H NMR (500 MHz,

CDCl₃) δ 8.67 (s, 1H), 8.14 (d, *J* = 6.6 Hz, 2H), 7.98 (s, 2H), 7.95 (d, *J* = 7.9 Hz, 2H), 7.57 (ddd, *J* = 14.3, 11.6, 9.4 Hz, 6H), 7.46 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 165.2, 156.1, 141.3, 132.2, 131.7 (q, *J* = 33.0 Hz), 131.3, 130. 9, 130.6, 130.3, 129.3, 129.2, 129.0, 128.7, 125.0 (q, *J* = 3.5 Hz), 124.2 (q, *J* = 3.6 Hz), 123.9 (q, *J* = 272.3 Hz), 111.2; HRMS (ESI) m/z: calcd for C₂₂H₁₆F₃N₂ [M+H]⁺ 365.1260; found 365.1258.

4-Phenyl-2,2-di-*p*-tolyl-2*H*-imidazole (3am): as a gray solid (73.1 mg, 76% yield); mp 112.5-113.5 °C; $R_f = 0.5$ (PE: EA = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.66 (s, 1H), 8.21-8.14 (m, 2H), 7.69 (d, *J* = 8.2 Hz, 4H), 7.59-7.54 (m, 3H), 7.23 (d, *J* = 8.1 Hz, 4H), 2.40 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 164.1, 155.0, 138.1, 137.5, 131.6, 131.6, 131.1, 129.1, 128.6, 127.7, 112.6, 21.2; HRMS (ESI) m/z: calcd for C₂₃H₂₁N₂ [M+H]⁺ 325.1699; found 325.1696.

2,2-Bis(4-fluorophenyl)-4-phenyl-2H-imidazole (3an): as a yellow solid (40.1 mg, 56% yield); mp89.5-91.5 °C; $R_f = 0.5$ (petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 8.60 (s, 1H), 8.13-8.09 (m, 2H), 7.66-7.62 (m, 4H), 7.56-7.51 (m, 3H), 7.03-6.98 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 162.3 (d, J = 247.1 Hz), 155.2, 136.5 (d, J = 3.1 Hz), 131.9, 130.7, 129.4 (d, J = 8.3 Hz), 129.2, 128.6, 115.2 (d, J = 21.3 Hz), 111.5; HRMS (ESI) m/z: calcd for C₂₁H₁₅Cl₂N₂ [M+H]⁺ 365.0607; found 365.0605.

2,2-Bis(4-chlorophenyl)-4-phenyl-2H-imidazole (3ao): as a yellow solid (66.5 mg, 61% yield); mp 102.6-102.6 °C; $R_f = 0.4$ (PE: EA = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.64 (s, 1H), 8.15-8.13 (m, 2H), 7.68-7.64 (m, 4H), 7.59-7.54 (m, 3H), 7.35-7.31 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 164.7, 155.6, 139.0, 133.9, 132.0, 130.6, 129.2, 129.1, 128.6, 128.6, 111.5; HRMS (ESI) m/z: calcd for calcd for C₂₁H₁₅Cl₂N₂ [M+H]⁺ 365.0607; found 365.0605.

2,2-Bis(4-bromophenyl)-4-phenyl-2*H***-imidazole (3ap)**: as a yellow solid (66.5 mg, 61% yield); mp 115.9-117.3 °C; $R_f = 0.5$ (PE: EA = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.60 (s, 1H), 8.11-8.08 (m, 2H), 7.56-7.50 (m, 7H), 7.46-7.41 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 164.7, 155.6, 139.5, 132.0, 131.5, 130.5, 129.3, 129.2, 128.6, 122.2, 111.5; HRMS (ESI) m/z: calcd for C₂₁H₁₅Br₂N₂ [M+H]⁺ 452.9597; found 452.9592.

2-Butyl-2,4-diphenyl-2H-imidazole (3aq): as a yellow oil; R_f = 0.6 (PE: EA = 10:1);

¹H NMR (500 MHz, CDCl₃) δ 8.50 (s, 1H), 8.09-8.04 (m, 2H), 7.77-7.73 (m, 2H), 7.53-7.49 (m, 3H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.27 (d, *J* = 7.3 Hz, 1H), 2.24-2.19 (m, 2H), 1.25-1.19 (m, 4H), 1.16-1.09 (m, 2H), 0.80(t, *J* = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.9, 154.6, 140.2, 131.4, 131.2, 129.1, 128.3, 128.2, 127.6, 127.5, 111.8, 40.6, 26.2, 22.7, 13.9; HRMS (ESI) m/z: calcd for C₁₉H₂₁N₂ [M+H]⁺ 277.1699; found 277.1697.

2-Butyl-2-(3,5-dimethylphenyl)-4-phenyl-2H-imidazole (3ar), as a yellow oil; $R_f = 0.5$ (PE: EA = 10:1); ¹H NMR (500 MHz, Chloroform-d) δ 8.51 (s, 1H), 8.10-8.05 (m, 2H), 7.56-7.51 (m, 4H), 7.39 (d, J = 1.6 Hz, 2H), 7.29 (s, 1H), 6.94 (s, 1H), 2.35 (s, 6H), 2.28-2.24 (m, 2H), 1.31-1.24 (m, 4H), 1.15-1.10 (m, 2H), 0.83 (d, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.8, 154.5, 140.1, 137.7, 131.3, 131.3, 129.2, 129.1, 128.3, 125.3, 111.9, 40.6, 26.1, 22.7, 21.4, 13.9; HRMS (ESI) m/z: calcd for C₂₁H₂₅N₂ [M+H]⁺ 305.2012; found 305.2008.

2,2-Diphenyl-4-(*p***-tolyl)-2***H***-imidazole (3as): as a yellow solid (56.0 mg, 76% yield); mp 105.9-107.1 °C; R_f = 0.4 (PE: EA= 10: 1); ¹H NMR (400 MHz, CDCl₃) \delta 8.43 (s, 1H), 7.87-7.84 (m, 2H), 7.60-7.55 (m, 4H), 7.20-7.15 (m, 6H), 7.13-7.09 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta 164.2, 155.2, 142.1, 141.0, 129.8, 128.6, 128.3, 127.8, 127.7, 21.7; HRMS (ESI) m/z: calcd for C₂₂H₁₉N₂ [M+H]⁺, 311.1543; found 311.1541.**

4-(4-Ethylphenyl)-2,2-diphenyl-2H-imidazole (3at): as a gray solid (69.8 mg, 72% yield); $R_f = 0.4$ (PE: EA= 10: 1); ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.88 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 7.4 Hz, 4H), 7.16 (t, J = 7.4 Hz, 6H), 7.10 (d, J = 7.2 Hz, 2H), 2.55 (d, J = 7.6 Hz, 2H), 1.12 (t, J = 7.6 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 155.2, 148.4, 141.0, 128.7, 128.7, 128.6, 128.4, 127.8, 127.8, 112.6, 29.0, 15.5; HRMS (ESI) m/z: calcd for C₂₃H₂₁N₂ [M+H]⁺ 325.1699; found 325.1698.

4-(4-Butylphenyl)-2,2-diphenyl-2*H***-imidazole** (**3au**): as a gray solid (74.9 mg, 71% yield); $R_f = 0.5$ (PE: EA= 10: 1); ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.87 (d, J = 8.0 Hz, 2H), 7.57 (s, 4H), 7.16 (t, J = 7.1 Hz, 6H), 7.09 (d, J = 7.0 Hz, 2H), 2.52 (t, J = 7.6 Hz, 2H), 1.51-1.45 (m, 2H), 1.25-1.19 (m, 2H), 0.80 (d, J = 2.8 MR (100 MHz, CDCl₃) δ 164.2, 155.2, 147.1, 141.1, 129.2, 128.6, 128.6, 128.4, 127.8, 127.8, 126.9, 123.9, 35.8, 33.4, 22.4, 14.0; HRMS (ESI) m/z: calcd for C₂₅H₂₅N₂ [M+H]⁺ 353.2012; found 353.2014.

4-(4-Ethoxyphenyl)-2,2-diphenyl-2*H***-imidazole (3av)**: as a light yellow solid (68.3 mg, 67% yield); mp 124.6-125.6 °C; R_f = 0.35 (PE: EA= 10: 1); ¹H NMR (400 MHz, CDCl₃) *δ* 8.61 (s, 1H), 8.11 (d, *J* = 8.6 Hz, 2H), 7.75 (d, *J* = 7.7 Hz, 4H), 7.36 (t, *J* = 7.5 Hz, 4H), 7.30 (d, *J* = 7.3 Hz, 2H), 7.04 (d, *J* = 8.6 Hz, 2H), 4.13 (q, *J* = 6.9 Hz, 2H), 1.49 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) *δ* 163.7, 161.8, 155.1, 141.2, 130.3, 128.3, 127.8, 127.7, 123.5, 115.0, 112.4, 77.5, 77.1, 76.8, 63.7, 14.7; HRMS (ESI) m/z: calcd for $C_{23}H_{21}N_2O$ [M+H]⁺ 341.1648; found 341.1642.

4-(4-Fluorophenyl)-2,2-diphenyl-2*H*-imidazole (3aw): as a white solid (66.8 mg, 71% yield); mp 104.5-105.5 °C; $R_f = 0.4$ (PE: EA= 10: 1); ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.98-7.95 (m, 2H), 7.57 (d, *J* = 7.5 Hz, 4H), 7.19 (t, *J* = 7.4 Hz, 4H), 7.13 (d, *J* = 7.0 Hz, 2H), 7.04 (t, *J* = 8.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1 (t, *J* = 251.3 Hz), 163.1, 154.7, 140.8, 130.8, 130.7, 128.4, 127.8, 127.7, 116.3 (d, *J* = 27.5 Hz), 112.8; HRMS (ESI) m/z: calcd for C₂₁H₁₆FN₂ [M+H]⁺ 315.1292; found 315.1290.

4-(4-Chlorophenyl)-2,2-diphenyl-2H-imidazole (3ax): as a yellow solid (66.3 mg, 67% yield); mp 102.5-104.5 °C; $R_f = 0.4$ (PE: EA= 10: 1); ¹H NMR (500 MHz, CDCl₃) δ 8.60 (s, 1H), 8.08 (d, J = 8.5 Hz, 2H), 7.78-7.70 (m, 4H), 7.52 (d, J = 8.5 Hz, 2H), 7.41-7.34 (m, 4H), 7.34-7.28 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 163.2, 154.7, 140.6, 137.9, 129.8, 129.4, 129.4, 128.4, 127.9, 127.7, 112.8; HRMS (ESI) m/z: calcd for C₂₁H₁₆ClN₂ [M+H]⁺ 331.0997; found 331.1000.

4-(4-Bromophenyl)-2,2-diphenyl-2*H***-imidazole (3ay)**: as a gray solid (75.3 mg, 68% yield); mp 104.5-105.5 °C; $R_f = 0.4$ (PE: EA= 10: 1); ¹H NMR (500 MHz, CDCl₃) δ 8.54 (s, 1H), 7.96 (d, *J* = 8.5 Hz, 2H), 7.68-7.60 (m, 6H), 7.30 (dd, *J* = 8.1, 6.7 Hz, 4H), 7.25 (d, *J* = 7.3 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 163.3, 154.6, 140.5, 132.4, 130.0, 129.8, 128.41, 127.9, 127.7, 126.3; HRMS (ESI) m/z: calcd for C₂₁H₁₆BrN₂ [M+H]⁺ 375.0491; found 375.0487.

4-(4-Nitrophenyl)-2,2-diphenyl-2*H***-imidazole (3az)**: as a light yellow solid (67.5 mg, 66% yield); mp 195.5-196.5 °C; $R_f = 0.2$ (PE: EA= 10: 1); ¹H NMR (500 MHz, CDCl₃) δ 8.67 (s, 1H), 8.40 (d, *J* = 8.8 Hz, 2H), 8.32 (d, *J* = 8.8 Hz, 2H), 7.77 -7.68 (m, 4H), 7.36 (t, *J* = 7.4 Hz, 4H), 7.32-7.28 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 162.5, 154.1, 149.5,

S13

140.2, 136.6, 129.5, 128.5, 128.1, 127.7, 124.3, 113.4; HRMS (ESI) m/z: calcd for $C_{21}H_{16}N_3O_2$ [M+Na]⁺ 342.1237; found 342.1235.

2,2-Diphenyl-4-(*o***-tolyl)-2***H***-imidazole (3ba)**: as a light yellow solid (70.5 mg, 76% yield); mp 110.3-111.7; R_f = 0.5 (PE: EA= 10: 1); ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.72 (d, *J* = 7.9 Hz, 4H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.37-7.27 (m, 7H), 7.22 (t, *J* = 7.3 Hz, 2H), 2.65 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 156.8, 141.0, 138.9, 131.8, 130.6, 130.4, 129.8, 128.4, 127.7, 126.1, 113.2, 21.8; HRMS (ESI) m/z: calcd for C₂₂H₁₉N₂ [M+H]⁺ 311.1543; found 311.1541.

4-(3-Fluorophenyl)-2,2-diphenyl-2H-imidazole (3bb): as a yellow solid (60.8 mg, 65% yield); mp 129.5-130.9 °C; R_f = 0.4 (PE: EA= 10: 1); ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 7.83 (t, J = 8.9 Hz, 2H), 7.67 (d, J = 7.9 Hz, 4H), 7.43 (dd, J = 7.3, 6.1 Hz, 1H), 7.34-7.27 (m, 4H), 7.26-7.16 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 163.2 (d, J = 246.2), 154.6, 140.6, 133.2 (d, J = 7.6), 130.8 (d, J = 8.0), 128.4, 127.9, 127.8, 124.3 (d, J = 3.0), 118.7 (d, J = 21.3), 115.5 (d, J = 22.5), 112.9; HRMS (ESI) m/z: calcd for C₂₁H₁₅FN₂ [M+H]⁺, 315.1292; found 315.1289.

4-(3-Chlorophenyl)-2,2-diphenyl-2H-imidazole (3bc): as a yellow solid (62.2 mg, 63% yield); mp 132.0-133.0 °C; R_f = 0.4 (PE: EA= 10: 1); ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.16 (s, 1H), 7.95 (s, 1H), 7.72 (d, J = 7.3 Hz, 4H), 7.51-7.48 (m, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.34 (t, J = 7.4 Hz, 4H), 7.29 (d, J = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 154.5, 140.6, 135.3, 132.7, 131.6, 130.3, 128.6, 128.4, 127.9, 127.8, 126.6, 112.9; HRMS (ESI) m/z: calcd for C₂₁H₁₅ClN₂ [M+H]⁺ 331.0997; found 331.0994.

4-(Naphthalen-2-yl)-2,2-diphenyl-2H-imidazole (**3bd**) as a white solid (63.3 mg, 61% yield); mp 167.3-168.3 °C; R_f = 0.3 (PE: EA= 10: 1); ¹H NMR (500 MHz, CDCl₃) δ 8.76 (s, 1H), 8.48 (s, 1H), 8.34-8.25 (m, 1H), 7.96 (d, J = 8.6 Hz, 2H), 7.88 (s, 1H), 7.82-7.74 (m, 4H), 7.60-7.55 (m, 2H), 7.38 (t, J = 7.5 Hz, 4H), 7.31 (d, J = 7.2 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 164.3, 155.2, 140.9, 134.9, 133.0, 129.2, 129.2, 128.9, 128.4, 128.0, 127.9, 127.9, 127.8, 127.0, 125.0, 112.8.; HRMS (ESI) m/z: calcd for C₂₅H₁₉N₂ [M+H]⁺, 347.1543; found 347.1539.

4-Benzyl-2,2-diphenyl-2*H***-imidazole (3be)**: as a white solid (68.1 mg, 73% yield); mp 91.3-92.3 °C; $R_f = 0.5$ (PE: EA= 10: 1); ¹H NMR (500 MHz, CDCl₃) δ 7.96 (s, 1H), 7.69-

7.61 (m, 4H), 7.39-7.31 (m, 7H), 7.30-7.25 (m, 4H), 4.16 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 157.2, 140.5, 135.2, 129.1, 129.1, 128.3, 127.8, 127.6, 127.3, 112.2, 36.5; HRMS (ESI) m/z: calcd for C₂₂H₁₉N₂ [M+H]⁺, 311.1543; found 311.1539.

4-Phenethyl-2,2-diphenyl-2*H*-imidazole (**3bf**): as a white solid (74.0 mg, 76% yield); mp; 87.3-88.6 °C; $R_f = 0.5$ (PE: EA= 10: 1); ¹H NMR (500 MHz, CDCl₃) δ 7.92 (s, 0H), 7.64-7.57 (m, 2H), 7.36-7.29 (m, 4H), 7.27-7.21 (m, 2H), 3.19-3.16 (m, 2H), 3.13-3.09 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 168.0, 157.3, 140.5, 140.3, 128.7, 128.5, 128.3, 127.7, 127.7, 126.4, 112.0, 32.8, 31.7; HRMS (ESI) m/z: calcd for C₂₃H₂₁N₂ [M+H]⁺, 325.1699; found 325.1696.

2,2-Diphenyl-4-(3-phenylpropyl)-2H-imidazole (3bg): as a white solid (79.0 mg, 78% yield); mp 89.3-99.3 °C; $R_f = 0.5$ (PE: EA= 10: 1); ¹H NMR (500 MHz, CDCl₃) δ 7.90 (s, 1H), 7.62-7.59 (m, 3H), 7.30-7.21 (m, 6H), 7.20-7.08 (m, 5H), 2.69-2.64 (m, 4H), 2.11-2.03 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 157.6, 141.5, 140.9, 128.7, 128.6, 128.4, 127.8, 127.7, 126.3, 112.1, 35.5, 29.4, 28.3; HRMS (ESI) m/z: calcd for C₂₄H₂₃N₂ [M+H]⁺, 339.1856; found 339.1854.

4-Methyl-2,2,5-triphenyl-2H-imidazole (**3bh**) as a white solid (69.0 mg, 74% yield); mp 123.3-124.3 °C; R_f = 0.5 (PE: EA= 10: 1); ¹H NMR (500 MHz, CDCl₃) δ 7.87 (dd, J = 7.8, 1.7 Hz, 2H), 7.71-7.67 (m, 4H), 7.51 – 7.46 (m, 3H), 7.33 – 7.28 (m, 4H), 7.26 – 7.23 (m, 2H), 2.58 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 164.4, 141.3, 132.1, 130.6, 128.7, 128.6, 128.3, 127.7, 127.6, 107.7, 17.7; HRMS (ESI) m/z: calcd for $C_{22}H_{19}N_2$ [M+H]⁺, 311.1543; found 311.1533.

2,2,4,5-Tetraphenyl-2H-imidazole (3bi): as a white solid (74.8 mg, 67% yield); mp 140.3-141.9 °C; $R_f = 0.6$ (PE: EA= 10: 1); ¹H NMR (500 MHz, CDCl₃) δ 7.81 – 7.76 (m, 2H), 7.62 – 7.55 (m, 2H), 7.45 (d, *J* = 7.5 Hz, 1H), 7.39 – 7.30 (m, 4H), 7.28 – 7.23 (m, 1H);¹³C NMR (126 MHz, CDCl₃) δ 165.2, 141.4, 132.5, 130.4, 129.2, 129.3, 128.4, 128.3, 127.9, 127.7, 108.4; HRMS (ESI) m/z: calcd for $C_{27}H_{21}N_2$ [M+H]⁺, 373.1699; found 373.1690.

2-(3-Bromophenyl)-2-methyl-4-phenyl-2*H***-imidazole (3bj)**: as a gray oil (1443 mg, 46% yield); R_f = 0.4 (PE: EA = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.48 (s, 1H), 8.05 (dd, *J* = 7.8, 1.7 Hz, 2H), 7.89 (t, *J* = 1.8 Hz, 1H), 7.68 (dd, *J* = 4.6, 3.5 Hz, 1H), 7.54 – 7.49 (m,

3H), 7.41 (dd, *J* = 5.0, 4.0 Hz, 1H), 7.21 (t, *J* = 7.9 Hz, 1H), 1.82 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.1, 154.8, 142.3, 131.7, 130.8, 130.2, 129.9, 129.2, 128.4, 125.8, 122.4, 108.5, 27.16; MS (EI) m/z 108, 285, 314.1.

2-(3-Bromophenyl)-2,4-diphenyl-2H-imidazole (3bk): as a gray solid (2361 mg, 63% yield); mp 120.3-131.5 °C; $R_f = 0.5$ (PE: EA = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.62 (d, J = 0.5 Hz, 1H), 8.13 (dd, J = 7.1, 1.0 Hz, 2H), 7.98 – 7.89 (m, 1H), 7.76 – 7.70 (m, 3H), 7.55 – 7.50 (m, 3H), 7.41 (dd, J = 4.9, 4.1 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.31 (d, J = 7.4 Hz, 1H), 7.21 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.6, 155.4, 143.1, 140.4, 131.8, 130.9, 130.8, 130.7, 129.9, 129.2, 128.6, 128.5, 128.1, 127.7, 126.6, 122.4, 111.9; MS (EI) m/z 295.3, 347.1, 376.1.

H. Crystal data and structure refinement for compound 3bb (CCDC: 1920440)

Figure 1. ORTEP drawing of **3bb** with the numbering scheme.

Table S1. Crystal data and structure refinement for 3bb.

Identification code	3bb	
Empirical formula	$C_{21}H_{15}FN_2$	
Formula weight	314.12	
Temperature	296.0 K	
Wavelength	0.71073 Å	
Unit cell dimensions	a = 8.768(7) Å	α= 89.574(9)°.
	b = 9.173(7) Å	β= 84.573(9)°
	c =10.452(8) Å	γ = 78.861(9)°.
Volume	821.0(11) Å ³	

Z	2
Mu (mm-1)	0.083
F000	328.0
F000'	328.14
h,k,lmax	11,11,13
Nref	3614
Tmin,Tmax	0.550,0.746
Correction method= # Reported T Limits:	Tmin=0.550 Tmax=0.746
AbsCorr = MULTI-SCAN	
Data completeness= 0.966	Theta(max)= 27.408

Reference:

 D. J. Power, K. D. Jones, S. S. Kampmann, G. R. Flematti and S. S, Asian J. Org. Chem. 2017, 6, 1794-1799; (2) R. He, Z.-T. Huang, Q.-Y. Zheng and C. Wang, Angew. Chem. 2014, 126, 5050-5053; H. Wang, Y. Man, K. Wang, X. Wan, L. Tong N. Li, and B. Tang, Chem. Commun. 2018, 54, 10989-10992.

(2) S. Chiba, Y.-F. Wang, G. Lapointe and K. Narasaka, Org. Lett. 2008, 10, 313-316;

(b)Y.-F. Wang, K.-K. Toh, , S. Chiba, K. Narasaka, Org. Lett. 2008, 10, 5019-5022

(3) Z. Liu, P. Liao, X. Bi, Org. Lett. 2014, 16, 3668-3671.

I. Copies of ¹H and ¹³C NMR spectra:

¹H NMR and ¹³C NMR of 1-(3,5-dimethylphenyl)pentan-1-iminee (1ar)

¹H NMR and ¹³C NMR of 3-phenyl-2H-azirine (4a)

¹H NMR and ¹³C NMR of 2,2,4-triphenyl-2*H*-imidazole (3aa)

 $\begin{array}{c} -8.54 \\ -8.66 \\ -8.05 \\ -7.68 \\ -7.45 \\ -7.28 \\ 7.28 \\ 7.21 \\ 7.21 \end{array}$

¹H NMR and ¹³C NMR of 2,4-diphenyl-2-(*p*-tolyl)-2*H*-imidazole (3ab)

¹H NMR and ¹³C NMR of 2-([1,1'-biphenyl]-4-yl)-2,4-diphenyl-2*H*-imidazole (3ac)

¹H NMR and ¹³C NMR of 2-(4-methoxyphenyl)-2,4-diphenyl-2*H*-imidazole (3ad)

¹H NMR and ¹³C NMR of 2-(4-fluorophenyl)-2,4-diphenyl-2*H*-imidazole (3ae)

$\begin{array}{c} -8.62\\ 8.13\\ 8.12\\ 7.54\\ -7.29\\ -7.29\\ 7.02\\ 7.02\\ 7.02\\ 7.02\\ 7.02\\ 7.02\\ 7.00\\ 7.00\\ \end{array}$

¹H NMR and ¹³C NMR of 2-(4-chlorophenyl)-2,4-diphenyl-2*H*-imidazole (3af)

-8.66 -8.17 -8.15 -7.77 -7.73

¹H NMR and ¹³C NMR of 2-(4-bromophenyl)-2,4-diphenyl-2*H*-imidazole (3ag)

-8.61 -8.61 -8.10 -8.10 -7.65 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.75 -7.67 -7.67 -7.67 -7.67 -7.67 -7.67 -7.67 -7.67 -7.67 -7.67 -7.75

¹H NMR and ¹³C NMR of 2,4-diphenyl-2-(4-(trifluoromethyl)phenyl)-2*H*-imidazole

¹H NMR and ¹³C NMR of 2-(4-nitrophenyl)-2,4-diphenyl-2*H*-imidazole (3ai)

-8.65 -8.77 -8.17

¹H NMR and ¹³C NMR of 2,4-diphenyl-2-(*o*-tolyl)-2*H*-imidazole (3aj)

¹H NMR and ¹³C NMR of 2,4-diphenyl-2-(*m*-tolyl)-2*H*-imidazole (3ak)

¹H NMR and ¹³C NMR of 2,4-diphenyl-2-(3-(trifluoromethyl)phenyl)-2*H*-imidazole

(3al)

-8.67-8.67-7.98-7.55-7.55-7.26

¹H NMR and ¹³C NMR of 4-phenyl-2,2-di-*p*-tolyl-2*H*-imidazole (3am)

¹H NMR and ¹³C NMR of 2,2-bis(4-fluorophenyl)-4-phenyl-2*H*-imidazole (3an)

$\overbrace{-7.00}^{-8.60}$

¹H NMR and ¹³C NMR of 2,2-bis(4-chlorophenyl)-4-phenyl-2*H*-imidazole (3ao)

-8.64 8.14 8.13 7.65 7.55 7.733 7.33 7.33 7.33

¹H NMR and ¹³C NMR of 2,2-bis(4-bromophenyl)-4-phenyl-2*H*-imidazole (3ap)

-8.60 -8.10 -8.10 -8.10 -7.55 -7.7.55 -7.7.54 -7.7.54 -7.44 -7.44 -7.44 -7.43

¹H NMR and ¹³C NMR of 2-butyl-2,4-diphenyl-2*H*-imidazole (3aq)

¹H NMR and ¹³C NMR of 2,2-diphenyl-4-(*p*-tolyl)-2*H*-imidazole (3ar)

¹H NMR and ¹³C NMR of 2,2-diphenyl-4-(*p*-tolyl)-2*H*-imidazole (3as)

¹H NMR and ¹³C NMR of 4-(4-ethylphenyl)-2,2-diphenyl-2*H*-imidazole (3at)

¹H NMR and ¹³C NMR of 4-(4-butylphenyl)-2,2-diphenyl-2*H*-imidazole (3au)

¹H NMR and ¹³C NMR of 4-(4-ethoxyphenyl)-2,2-diphenyl-2*H*-imidazole (3av)

¹H NMR and ¹³C NMR of 4-(4-fluorophenyl)-2,2-diphenyl-2*H*-imidazole (3aw)

-8.42 -7.97 -7.95 -7.56 -7.56 -7.19 -7.17 -7.19 -7.17 -7.12 -7.12 -7.12

¹H NMR and ¹³C NMR of 4-(4-chlorophenyl)-2,2-diphenyl-2*H*-imidazole (3ax)

-8.60 -8.09 -7.733 -7.7333 -7.7333 -7.7333 -7.7333 -7.7333 -7.7333 -7.7333 -7.7333 -7.7333 -7.7333 -7.7333 -7.7333 -7.7333 -7.7333 -7.73

¹H NMR and ¹³C NMR of 4-(4-bromophenyl)-2,2-diphenyl-2*H*-imidazole (3ay)

¹H NMR and ¹³C NMR of 4-(4-nitrophenyl)-2,2-diphenyl-2*H*-imidazole (3az)

-8.67 -8.39 -8.39 -8.31 -8.32 -7.71 -7.37 -7.37 -7.37 -7.37 -7.37 -7.37 -7.37 -7.37 -7.30 -7.32 -7.73

¹H NMR and ¹³C NMR of 2,2-diphenyl-4-(*o*-tolyl)-2*H*-imidazole (3ba)

¹H NMR and ¹³C NMR of 4-(3-fluorophenyl)-2,2-diphenyl-2*H*-imidazole (3bb)

¹H NMR and ¹³C NMR of 4-(3-chlorophenyl)-2,2-diphenyl-2*H*-imidazole (3bc)

-8.56 -8.16 -7.95 -7.95 -7.75 -7.75 -7.749 -7.749 -7.749 -7.749 -7.740 -7.32 -7.336 -7.566 -7.566 -7.566 -7.5766 -7.576 -7.576 -7.5767 -7.5767 -7.5766 -7.5767 -7.5767 -7.5767 -7

¹H NMR and ¹³C NMR of 4-(naphthalen-2-yl)-2,2-diphenyl-2*H*-imidazole (3bd)

-8.76 -8.30 -8.30 -8.30 -7.77 -7.77 -7.77 -7.77 -7.77 -7.77 -7.77 -7.733 -7.73 -7.73 -7.73 -7.73 -7.73 -7.733 -7.

¹H NMR and ¹³C NMR of 4-benzyl-2,2-diphenyl-2*H*-imidazole (3be)

¹H NMR and ¹³C NMR of 4-phenethyl-2,2-diphenyl-2*H*-imidazole (3bf)

¹H NMR and ¹³C NMR of 2,2-diphenyl-4-(3-phenylpropyl)-2*H*-imidazole (3bg)

¹H NMR and ¹³C NMR of 4-methyl-2,2,5-triphenyl-2*H*-imidazole (3bh)

¹H NMR and ¹³C NMR of 2,2,4,5-tetraphenyl-2*H*-imidazole (3bi)

¹H NMR and ¹³C NMR of 2-(3-bromophenyl)-2-methyl-4-phenyl-2*H*-imidazole (3bj)

¹H NMR and ¹³C NMR of 2-(3-bromophenyl)-2,4-diphenyl-2*H*-imidazole (3bk)

¹H NMR and ¹³C NMR of 2-butyl-2,4-diphenyl-2,5-dihydro-1*H*-imidazole (5a)

¹H NMR and ¹³C NMR of 2,2,5-triphenyl-2,3-dihydro-4*H*-imidazol-4-one (6aa)

¹H NMR and ¹³C NMR of 2-(3-bromophenyl)-2-methyl-5-phenyl-2,3-dihydro-4*H*-imidazol-4-one

¹H NMR and ¹³C NMR of 2-(3-bromophenyl)-2,5-diphenyl-2,3-dihydro-4*H*-imidazol-4-one (6bk)

¹H NMR and ¹³C NMR of 2-(3-bromophenyl)-2-methyl-5-phenyl-2*H*-imidazol-4-amine (7bj)

-1.77

¹H NMR and ¹³C NMR of 2-(3-bromophenyl)-2,5-diphenyl-2*H*-imidazol-4-amine (7bk)

-5.27

¹H NMR and ¹³C NMR of 2-methyl-5-phenyl-2-(3-(pyridin-3-yl)phenyl)-2*H*-imidazol-4-amine (8a)

¹H NMR and ¹³C NMR of 2-methyl-5-phenyl-2-(3-(pyrimidin-5-yl)phenyl)-2*H*imidazol-4-amine (8b)

¹H NMR and ¹³C NMR of 2,5-diphenyl-2-(3-(pyridin-3-yl)phenyl)-2*H*-imidazol-4-amine (8c)

7,28 7,29 7,20 NH₂ 1.00 上 2.00 世 2. 11.0 10.5 10.0 7.5 7.0 6.0 5.5 f1 (ppm) 5.0 4.0 3.5 3.0 2.5 2.0 1.5 9.5 9.0 8.0 6.5 4.5 1.0 0.5 0.0 8.5 Z 148 40 -142 71 -142 71 -142 71 -132 55 -135 55 -1 —161.54 —158.57 -103.26 NH₂ 100 90 f1 (ppm) 190 10 0 180 170 160 150 140 130 120 110 80 70 60 50 40 30 20

¹H NMR and ¹³C NMR of 2,5-diphenyl-2-(3-(pyrimidin-5-yl)phenyl)-2*H*-imidazol-4-amine (8d)

J. Copies of HRMS (ESI) of 4a and 5aa HRMS (ESI) of 3-phenyl-2*H*-azirine 4a

calcd for $C_8H_8N [M+H]^+$, 118.0651; found 118.0650.

HRMS (ESI) of 2,2,4-triphenyl-2,5-dihydro-1*H*-imidazole 5aa calcd for $C_{21}H_{19}N_2$ [M+H]⁺, 299.1543; found 299.1532

