Metal–organic frameworks with 5,5'-(1,4-xylylenediamino)

diisophthalic acid and varied nitrogen-containing ligands for

selectively sensing Fe(III)/Cr(VI) and nitroaromatic

Cungang Xu^a, Caifeng Bi^a, Zheng Zhu^c, Rong Luo^a, Xia Zhang^a, Dongmei Zhang^a, Chuanbin Fan^a, Liansheng Cui^{b*}, Yuhua Fan^{a*}

- a. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P.R. China
- b. College of Chemistry and Environmental Engineering, Baise University, Baise, Guangxi 53300
 0, China
- c. College of Materials Science and Engineering, Hebei University of Engineering, Handan, Hebei, 056038, P.R. China

 Table S1. Selected Bond lengths [Å] and angles [°] for complexes 1-4

Complex 1			
Zn1—O1	1.950 (3)	Zn1—N3	1.995 (3)
Zn1—O3 ⁱ	1.950 (3)	Zn1—N5	2.022 (3)
O3—Zn1 ⁱⁱ	1.950 (3)		
O1—Zn1—O3 ⁱ	107.31 (12)	O3 ⁱ —Zn1—N5	108.00 (14)
O1—Zn1—N3	110.64 (13)	N3—Zn1—N5	105.34 (14)
01—Zn1—N5	98.96 (13)	O3 ⁱ —Zn1—N3	123.74 (13)
Complex 2			
Zn1—O1	1.947 (4)	Zn1—N4	2.007 (6)
Zn1—O4 ⁱ	1.958 (4)	Zn1—N2	2.013 (5)
O4—Zn1 ⁱⁱ	1.958 (4)		
O1—Zn1—O4 ⁱ	109.95 (17)	O4 ⁱ —Zn1—N4	108.2 (2)
01—Zn1—N4	118.4 (2)	O4 ⁱ —Zn1—N2	113.37 (19)
01—Zn1—N2	95.68 (18)	N4—Zn1—N2	110.9 (2)
Complex 3			
Zn1—N2	2.0930 (18)	Zn1—O1 ⁱⁱ	1.9513 (15)
Zn1—O3	2.2418 (16)	N4—Zn1 ⁱ	2.0485 (18)
Zn1—O4	2.0885 (15)	O1—Zn1 ^{iv}	1.9513 (15)
Zn1—N4 ⁱ	2.0485 (18)		
N2—Zn1—O3	154.21 (7)	N4 ⁱ —Zn1—O3	90.07 (7)
N2—Zn1—C2	126.07 (7)	N4 ⁱ —Zn1—O4	127.15 (7)

O3—Zn1—C2	30.10 (6)	O1 ⁱⁱ —Zn1—N2	102.28 (7)
O4—Zn1—N2	96.52 (7)	O1 ⁱⁱ —Zn1—O3	97.22 (7)
O4—Zn1—O3	60.49 (6)	O1 ⁱⁱ —Zn1—O4	110.58 (6)
N4 ⁱ —Zn1—N2	96.18 (7)	O1 ⁱⁱ —Zn1—N4 ⁱ	116.29 (7)
Complex 4			
Zn1—O1	1.942 (3)	Zn1—O3 ⁱⁱ	2.349 (3)
Zn1—N4 ⁱ	2.017 (4)	N4—Zn1 ⁱ	2.017 (4)
Zn1—O4 ⁱⁱ	2.063 (3)	O3—Zn1 ⁱⁱⁱ	2.349 (3)
Zn1—N2	2.081 (4)	O4—Zn1 ⁱⁱⁱ	2.063 (3)
O1—Zn1—N4 ⁱ	119.77 (15)	O4 ⁱⁱ —Zn1—N2	97.83 (14)
O1—Zn1—O4 ⁱⁱ	106.91 (13)	O1—Zn1—O3 ⁱⁱ	100.62 (13)
N4 ⁱ —Zn1—O4 ⁱⁱ	125.71 (15)	N4 ⁱ —Zn1—O3 ⁱⁱ	85.24 (13)
01—Zn1—N2	102.61 (15)	O4 ⁱⁱ —Zn1—O3 ⁱⁱ	59.05 (13)
N4 ⁱ —Zn1—N2	97.53 (16)	N2—Zn1—O3 ⁱⁱ	151.30 (14)

Symmetry codes 1: (i) x-1/2, -y+3/2, z-1/2; (ii) x+1/2, -y+3/2, z+1/2; (iii) -x+3, -y+1, -z+1; (iv) -x-1/2, y-1/2, -z+1/2; (v) -x-1/2, y+1/2, -z+1/2.

Symmetry codes 2: (i) x-1/2, -y+1/2, z-1/2; (ii) x+1/2, -y+1/2, z+1/2; (iii) -x+3, -y+1, -z+1; (iv) -x, -y, -z+1; (v) -x, -y+1, -z.

Symmetry codes **3**: (i) -x+1, -y+1, -z; (ii) x-1, -y+3/2, z-1/2; (iii) -x+3, -y+1, -z+2; (iv) x+1, -y+3/2, z+1/2.

Symmetry codes 4:(i) -x+2, -y, -z+2; (ii) x+1/2, -y+1/2, z-1/2; (iii) x-1/2, -y+1/2, z+1/2; (iv) -x+1, -y+1, -z+1.

Figure S1. (a) Coordination environment of Zn(II) in complex **4** (all the H atoms are omitted for clarity). Symmetry codes: (i) -x+2, -y, -z+2; (ii) x+1/2, -y+1/2, z-1/2; (iii) x-1/2, -y+1/2, z+1/2; (iv) -x+1, -y+1, -z+1; (b) The 2D "W" type plane of $[Zn-L]_n$ (upper) and a loop of $[Zn-bidpe]_n$ (under); (c) A unit of 3D framework of complex **4** (red spheres: L⁴⁻ ligands; blue spheres: bidpe ligands); and (d) the 3D topology view of 2-fold interpenetrated frameworks of complex **4**.

Figure S2. The TG curves for complexes 1-4.

Figure S3. The emission spectra of complexes 1-4 and free organic ligands in solid state at room temperature.

Figure S4. The photoluminescence spectra for 1-4 in aqueous solution with various inorganic cations.

Figure S5. Fluorescence intensity of **1-4** in aqueous solution with the introduction of diverse other metal ions (red) and introduction of Fe(III) (blue).

Figure S6. Emission spectra and linear relationships for 1-4 aqueous solutions of different Fe^{3+} concentrations.

Figure S7. The photoluminescence spectra for **1-4** in aqueous solution with various inorganic anions.

Figure S8. Emission spectra and linear relationships for 1-4 aqueous solutions of different $Cr_2O_7^{2-}$ concentrations.

Figure S9. Emission spectra and linear relationships for **1-4** aqueous solutions of different CrO_4^{2-} concentrations.

Figure S10. Emission spectra of 1-4 in diverse organic solvents.

Figure S11. The photoluminescence intensities of 1-4 for nitroaromatic compounds in

Figure S12. Emission spectra and linear relationships for **1-4** in DMSO with different concentrations of NB.

Figure S13. Fluorescence quenching and repeatability test of 1-4 for NB.

Figure S14. The PXRD patterns of complexes 1-4 before and after the quenching test.

Figure S15. Liquid UV-Vis spectra of various anions and excitation spectra of complexes **1-4** in aqueous solution.