Electronic Supporting Information

A quantitative transmetalation with a metal organic framework compound in a solid-liquid interface reaction: synthesis, structure, kinetics, spectroscopy and electrochemistry

Suresh Bommakanti and Samar K. Das*

School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500046, India.

Table of contents

Section 1:	Powder X-ray diffraction patterns of the compounds 1–3	 2
Section 2:	Electrochemical properties of the ligand and compounds 1 and 2	 3
Section 3:	FESEM experiments of compound 2	 4-6
Section 4:	Inductively Coupled Plasma (ICP) analysis of compound 2	 7
Section 5:	Additional crystal structure images of compounds 1-3	 8
Section 6:	Optical images of compounds 1 and 2	 9
Section 7:	CHNS analyses of compounds 1-3	 10-12
Section 8:	Infrared spectra (IR) of compounds 1-3	 13-15
Section 9:	Selected bond lengths and bond angles found in the	
	crystal structures of compounds 1-3	 16-18

Powder X-ray diffraction (PXRD) patterns of the compounds 1-3

Fig. S1. (a) Experimental powder X-ray diffraction (PXRD) patterns of the compounds 1 (black) and 2 (red), including the simulated pattern (blue), obtained from SCXRD data of compound 1 (since both the compounds are isomorphous to each other, the simulated pattern of compound 1 is chosen for comparison). (b) PXRD patterns of the compound 3, (blue plot-experimental; black plot-simulated). (c) Optical images of powdered samples of compounds 1 (right) and 2 (left), before and after transmetalation, respectively, clearly showing colour change from light yellow to green.

Sample Preparation.

4 mg of the compound/ligand and 1 mg of carbon black were weighed into a sample vial, to which 1 mL of ethanol and Milli-Q water mixture (3:2) and 10 μ L of Nafion was added, the resulting suspension was sonicated for 30-40 min. From this mixture, 10 μ L of sample was drop casted on Glassy Carbon (GC) electrode, which then used as working electrode against the Ag/AgCl reference electrode.

Electrochemical properties of 1,4-bpeb ligand and compounds 1 and 2.

Fig. S2. Cyclic voltamograms (CVs) of (a) 1,4-bpeb ligand in 0.1 M Na₂SO₄ aqueous solution; (b–c) compounds **1** and **2** in acetonitrile (MeCN) solvent using tetra butyl ammonium tetra fluoroborate (TBABF₄) as supporting electrolyte. In all the cases, Ag/AgCl electrode was used as reference electrode at a scan rate of 100 mV/s.

A. FESEM experiments of compound 2 in 0.05 M Cu(II) solution

(b)

(d)

(a)

Element	Weight%	Atomic%
Cu L	99.52	99.53
Zn L	0.48	0.47
Totals	100.00	

Fig. S3. (a) SEM image of single crystal of compound **2** in **0.05** M Cu(II) solution. (b) The corresponding EDX plot. (c) Graphical representation (in weight percentages) of the metal content in compound **2**. (d) EDX results showing metal composition (as %) in **2**, after completion of transmetalation reaction.

B. FESEM experiments of compound 2 in 0.1 M Cu(II) solution

(b)

(d)

Quantitative results

Element	Weight%	Atomic%
Cu L	95.37	95.50
Zn L	4.63	4.50
Totals	100.00	

Spectrum

7

8

9

10

keV

Fig. S4. (a) SEM image of single crystal of compound 2 in 0.1 M Cu(II) solution. (b) The corresponding EDX plot. (c) Graphical representation (in weight percentages) of the metal content in compound 2. (d) EDX results showing metal composition (as %) in 2, after 2 days of soaking.

C. FESEM experiments of compound 2 in 0.01 M Cu(II) solution

(a)

(b)

(c) (d)

Element	Weight%	Atomic%
Cu L	87.20	87.52
Zn L	12.80	12.48
Totals	100.00	

Fig. S5. (a) SEM image of single crystal of compound 2 in 0.01 M Cu(II) solution. (b) The corresponding EDX plot. (c) Graphical representation (in weight percentages) of the metal content in compound 2. (d) EDX results showing metal composition (as %) in 2, after 5 days of soaking.

6

Inductively Coupled Plasma (ICP) analysis of compound 2

PBMDJFKBOEKFIC NFIDPHJF PNCJCCCAEDCJPE IBGPLGDF PDBCNFCJGEKFII DBNIEGBF	
Issued to:	
Prof Samar K.Das	Report No. :LLPL/D/16-17/001590
School Of Chemistry	Issue Date : 26/09/2016
University of Hyderabad, Gachibowli,	Customer Ref.: TRF
Hyderabad-500046	
	Ref.Date : 22/09/2016
Sample Particulars : SKD7-1	
Qty. Received : 1no Vial	
Test Parameters : Zinc as Zn	
Date of Receipt of Sample : 22/09/2016	Date of Starting of Analysis : 26/09/2016
Date of completion of analysis : 26/09/2016	SAMPLE TESTED AS RECEIVED
TEST	Γ RESULTS

S.No.	. Parameters	UOM	Results
1	Zinc as Zn	% by mass	0.81

Instrument Used: ICP-OES Varian 720-ES

NOTE : This report and results relate only to the sample / items tested.

Fig. S6. Inductively Coupled Plasma (ICP) analysis report of compound 2 (in weight percentage).

<u>Crystal structure images of compounds 1–3, showing N–N separation within 1,4-bpeb</u> <u>ligand</u>

Compound 3

Fig. S7. Crystal structure features of compounds **1-3**; N–N separation between two pyridyl moieties within the 1,4-bpeb ligand in compound **3** is compared with that in the compounds **1** and **2**.

SECTION-6

Optical images of compounds 1 and 2

Fig. S8. Bulk crystal images of compound 1, left [Zn(II)-yellow] and compound 2, right [Cu(II)-green].

SECTION-7

CHNS analysis of compound 1

Fig. S9. CHNS analysis report of compound 1.

CHNS analysis of compound 2.

FLASH EA 1112 SERIES CHN REPORT THERMO FINNIGAN

Method filename:C:\Program Files\Thermo Finnigan\Eager 300 for EA1112\DATA\Sys_data_exSample ID:SKD-32 (# 21)Analysis type:UnkNownChromatogram filename:UNK-18122018-1.datSample weight:2.115

Element Name	Element %	Ret. Time
Nitrogen	4.54	0.88
Carbon	66.52	1.30
Hydrogen	4.16	4.76

Fig. S10. CHNS analysis report of compound 2.

CHNS analysis of compound 3.

FLASH EA 1112 SERIES CHN[·]REPORT THERMO FINNIGAN

 Method filename:
 C:\Program Files\Thermo Finnigan\Eager 300 for EA1112\DATA\Sys_data_ex

 Sample ID:
 SKD-15 (# 22)

 Analysis type:
 UnkNown

 Chromatogram filename:
 UNK-18122018-2.dat

 Sample weight:
 1.732

Element Name	Element %	Ret. Time	
Nitrogen	3. 08	0.88	
Carbon	62. 51	1.32	
Hydrogen	3. 45	4.67	

Fig. S11. CHNS analysis report of compound 3.

SECTION 8

Infrared (IR) spectrum of compound 1.

Fig. S12. Infrared (IR) spectrum of compound 1.

Infrared (IR) spectrum of compound 2.

Fig. S13. Infrared (IR) spectrum of compound 2.

Infrared (IR) spectrum of compound 3.

Fig. S14. Infrared (IR) spectrum of compound 3.

Table S1: Selected bond lengths and bond angles found in the crystal structures of compounds 1-3.

Compound 1

Zn(01)-O(10)#1	2.039(3)	O(10)#1-Zn(01)-O(6)	154.13(13)
Zn(01)-O(6)	2.061(3)	O(10)#1-Zn(01)-N(2)	100.70(13)
Zn(01)-N(2)	2.066(3)	O(6)-Zn(01)-N(2)	98.85(14)
Zn(01)-N(4)#2	2.091(3)	O(10)#1-Zn(01)-N(4)#2	95.61(12)
Zn(01)-O(9)#1	2.339(3)	O(6)-Zn(01)-N(4)#2	98.56(13)
Zn(01)-O(7I)	2.357(4)	N(2)-Zn(01)-N(4)#2	97.26(12)
Zn(01)-C(68T)#1	2.498(4)	O(10)#1-Zn(01)-O(9)#1	59.75(11)
Zn(02)-O(1B)	2.002(4)	O(6)-Zn(01)-O(9)#1	104.84(12)
Zn(02)-O(4)#3	2.035(3)	N(2)-Zn(01)-O(9)#1	86.91(12)
Zn(02)-N(3)	2.057(3)	N(4)#2-Zn(01)-O(9)#1	155.32(12)
Zn(02)-N(1A)	2.084(3)	O(10)#1-Zn(01)-O(7I)	98.54(12)
Zn(02)-O(5C)#3	2.442(3)	O(6)-Zn(01)-O(7I)	58.17(13)
Zn(02)-C(14W)#3	2.558(5)	N(2)-Zn(01)-O(7I)	154.12(15)
O(10)-C(68T)	1.265(5)	N(4)#2-Zn(01)-O(7I)	97.91(13)
O(10)-Zn(01)#4	2.039(3)	O(9)#1-Zn(01)-O(7I)	87.99(12)
O(9)-C(68T)	1.243(5)	O(10)#1-Zn(01)-C(68T)#1	30.28(13)
O(9)-Zn(01)#4	2.339(3)	O(6)-Zn(01)-C(68T)#1	132.30(15)
N(4)-Zn(01)#5	2.091(3)	N(2)-Zn(01)-C(68T)#1	92.65(13)
N(3)-C(35)	1.348(5)	N(4)#2-Zn(01)-C(68T)#1	125.76(15)
O(6)-C(55M)	1.239(5)	O(9)#1-Zn(01)-C(68T)#1	29.56(12)
O(4)-C(14W)	1.242(5)	O(7I)-Zn(01)-C(68T)#1	95.33(13)
O(4)-Zn(02)#6	2.035(3)	O(1B)-Zn(02)-O(4)#3	149.87(18)
N(1A)-C(19Z)	1.327(5)	O(1B)-Zn(02)-N(3)	102.01(16)
O(1B)-C(1)	1.194(7)	O(4)#3-Zn(02)-N(3)	101.65(13)
O(5C)-Zn(02)#6	2.442(3)	O(1B)-Zn(02)-N(1A)	98.74(14)

Symmetry transformations used to generate equivalent atoms:

#1 -x-1,y+1/2,-z+3/2 #2 x,y-1,z+1 #3 -x+2,y+1/2,-z+1/2 #4 -x-1,y-1/2,-z+3/2 #5 x,y+1,z-1 #6 -x+2,y-1/2,-z+1/2

Compound 2

Cu(01)-O(1)	2.040(3)	O(1)-Cu(01)-N(3)	100.45(15)
Cu(01)-N(3)	2.072(4)	O(1)-Cu(01)-O(5)#1	155.78(15)
Cu(01)-O(5)#1	2.086(4)	N(3)-Cu(01)-O(5)#1	97.94(17)
Cu(01)-N(1)	2.100(4)	O(1)-Cu(01)-N(1)	95.39(14)
Cu(01)-O(4F)#1	2.317(4)	N(3)-Cu(01)-N(1)	97.35(15)
Cu(01)-O(2)	2.336(3)	O(5)#1-Cu(01)-N(1)	97.75(14)
Cu(01)-C(1M)	2.513(5)	O(1)-Cu(01)-O(4F)#1	99.22(15)
Cu(01)-C(14V)#1	2.526(5)	N(3)-Cu(01)-O(4F)#1	153.85(17)
Cu(02)-O(6)	1.980(4)	O(5)#1-Cu(01)-O(4F)#1	58.91(15)
Cu(02)-O(10B)#2	2.053(4)	N(1)-Cu(01)-O(4F)#1	97.77(15)
Cu(02)-N(2)	2.069(4)	O(1)-Cu(01)-O(2)	59.69(12)
Cu(02)-N(4A)#3	2.094(4)	N(3)-Cu(01)-O(2)	86.48(14)
Cu(02)-O(9C)#2	2.370(4)	O(5)#1-Cu(01)-O(2)	106.19(14)
Cu(02)-C(48)#2	2.534(7)	N(1)-Cu(01)-O(2)	155.02(14)
O(1)-C(1M)	1.270(5)	O(4F)#1-Cu(01)-O(2)	88.74(14)
O(2)-C(1M)	1.249(6)	O(1)-Cu(01)-C(1M)	30.19(14)
N(1)-C(15I)	1.334(5)	N(3)-Cu(01)-C(1M)	92.50(16)
N(1)-C(19V)	1.342(5)	O(5)#1-Cu(01)-C(1M)	133.75(18)
O(5)-C(14V)	1.264(6)	N(1)-Cu(01)-C(1M)	125.46(17)
O(5)-Cu(01)#4	2.086(4)	O(4F)#1-Cu(01)-C(1M)	95.92(15)
N(3)-C(53)	1.334(6)	O(2)-Cu(01)-C(1M)	29.57(13)
O(6)-C(35)	1.215(7)	O(1)-Cu(01)-C(14V)#1	127.3(2)
O(10B)-C(48)	1.235(7)	N(3)-Cu(01)-C(14V)#1	126.7(2)
O(10B)-Cu(02)#6	2.053(4)	O(5)#1-Cu(01)-C(14V)#1	29.92(17)
O(9C)-C(48)	1.246(7)	N(1)-Cu(01)-C(14V)#1	99.78(15)
O(9C)-Cu(02)#6	2.370(4)	O(4F)#1-Cu(01)-C(14V)#1	29.01(16)
O(3D)-C(5X)	1.390(5)	O(2)-Cu(01)-C(14V)#1	97.52(15)
O(3D)-C(8Z)	1.400(6)	C(1M)-Cu(01)-C(14V)#1	116.20(19)

Symmetry transformations used to generate equivalent atoms:

#1 -x-1,y+1/2,-z+1/2 #2 -x+2,y-1/2,-z+3/2 #3 x,y+1,z+1

#4 -x-1,y-1/2,-z+1/2 #5 x,y-1,z-1 #6 -x+2,y+1/2,-z+3/2

Compound 3

Cu(1)-O(5)	1.927(4)
Cu(1)-O(4)	1.929(4)
Cu(1)-O(2)	2.004(4)
Cu(1)-O(1)	2.008(4)
Cu(1)-N(1)	2.159(4)
Cu(1)-Cu(1)#1	2.6473(11)
N(1)-C(19)	1.275(10)
N(1)-C(15)	1.277(10)
O(2)-C(1)	1.255(7)
O(1)-C(8)	1.276(7)
O(5)-C(1)#1	1.247(7)
O(4)-C(8)#1	1.262(7)
O(5)-Cu(1)-O(4)	173.07(19)
O(5)-Cu(1)-O(2)	87.61(19)
O(4)-Cu(1)-O(2)	91.08(16)
O(5)-Cu(1)-O(1)	91.20(16)
O(4)-Cu(1)-O(1)	88.07(19)
O(2)-Cu(1)-O(1)	163.14(16)
O(5)-Cu(1)-N(1)	93.6(2)
O(4)-Cu(1)-N(1)	93.3(2)
O(2)-Cu(1)-N(1)	98.7(2)
O(1)-Cu(1)-N(1)	98.2(2)
$O(5) C_{11}(1) C_{11}(1)#1$	
O(3)-Cu(1)-Cu(1)#1	86.33(13)
O(3)-Cu(1)-Cu(1)#1 O(4)-Cu(1)-Cu(1)#1	86.33(13) 86.74(12)

C(19)-N(1)-C(15)	114.7(6)
C(19)-N(1)-Cu(1)	122.7(5)
C(15)-N(1)-Cu(1)	122.6(5)
C(1)-O(2)-Cu(1)	124.0(4)
C(8)-O(1)-Cu(1)	123.9(4)
C(1)#1-O(5)-Cu(1)	122.2(4)
C(8)#1-O(4)-Cu(1)	122.1(4)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,z+0 #2 y+0,-x+3/2,z-3/4 #3 -y+3/2,x+0,z+3/4 #4 -x+0,-y+0,z+0