Electronic supplementary information (ESI)

Long- and short-range structures of Ti_{1-x}Hf_xNi_{1.0/1.1}Sn half-

Heusler compounds and their electric transport properties

Matylda N. Guzik,^{a, b,*} Matthias Schrade,^b Raluca Tofan,^b Patricia A. Carvalho,^c Kristian Berland,^{b, d} Magnus H. Sørby,^a Clas Persson,^b Anette E. Gunnæs,^b Bjørn C. Hauback^a

^aPhysics Department, Institute for Energy Technology, P.O. Box 40, N-2027 Kjeller, Norway

^bDepartment of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway

^cSINTEF Materials and Chemistry, P.O. Box 124 Blindern, N-0314 Oslo, Norway

^dFaculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, N-1432 Ås, Norway

Corresponding Author

* E-mail: m.n.guzik@its.uio.no

Figure S1. Observed (red), calculated (black) and difference (blue) diffraction profiles collected for as-cast TiNiSn, $\lambda = 0.50218$ Å, $\chi^2 = 2.67$. Vertical bars indicate Bragg peak positions of contributing phases, from top to bottom: HH, Sn, FH, Sn₅Ti₆ and Sn₃Ti₅. Inset shows (220) reflections of the HH and FH phases.

Figure S2. Observed (red), calculated (black) and difference (blue) diffraction profiles collected for as-cast TiNi_{1.1}Sn, $\lambda = 0.50218$ Å, $\chi^2 = 2.06$. Vertical bars indicate Bragg peak positions of contributing phases, from top to bottom: HH, Sn, FH, Sn₅Ti₆ and Sn₃Ti₅. Inset shows (220) reflections of the HH and FH phases.

Figure S3. Observed (red), calculated (black) and difference (blue) diffraction profiles collected for as-cast Ti_{0.9}Hf_{0.1}NiSn, $\lambda = 0.50218$ Å, $\chi^2 = 2.94$. Vertical bars indicate Bragg peak positions of contributing phases, from top to bottom: HH₂, HH₁, Sn, FH, Sn₅Ti₆ and Sn₃Ti₅. Inset shows (220) reflections of the HH and FH phases.

Figure S4. Observed (red), calculated (black) and difference (blue) diffraction profiles collected for as-cast $Ti_{0.9}Hf_{0.1}Ni_{1.1}Sn$, $\lambda = 0.50218$ Å, $\chi^2 = 3.19$. Vertical bars indicate Bragg peak positions of contributing phases, from top to bottom HH₂, HH₁, Sn, FH, Sn₅Ti₆ and Sn₃Ti₅. Inset shows (220) reflections of the HH and FH phases.

Figure S5. Observed (red), calculated (black) and difference (blue) diffraction profiles collected for as-cast Ti_{0.85}Hf_{0.15}NiSn, $\lambda = 0.50218$ Å, $\chi^2 = 2.84$. Vertical bars indicate Bragg peak positions of contributing phases, from top to bottom: HH₂, HH₁, Sn, FH, Sn₅Ti₆ and Sn₃Ti₅. Inset shows (220) reflections of the HH and FH phases.

Figure S6. Observed (red), calculated (black) and difference (blue) diffraction profiles collected for as-cast Ti_{0.85}Hf_{0.15}Ni_{1.1}Sn, $\lambda = 0.50218$ Å, $\chi^2 = 2.50$. Vertical bars indicate Bragg peak positions of contributing phases, from top to bottom: HH₂, HH₁, Sn, FH, Sn₅Ti₆ and Sn₃Ti₅. Inset shows (220) reflections of the HH and FH phases.

Figure S7. Observed (red), calculated (black) and difference (blue) diffraction profiles collected for as-cast Ti_{0.8}Hf_{0.2}NiSn, $\lambda = 0.50218$ Å, $\chi^2 = 2.99$. Vertical bars indicate Bragg peak positions of contributing phases, from top to bottom: HH₂, HH₁, Sn, FH, Sn₅Ti₆ and Sn₃Ti₅. Inset shows (220) reflections of the HH and FH phases.

Figure S8. Observed (red), calculated (black) and difference (blue) diffraction profiles collected for as-cast Ti_{0.8}Hf_{0.2}Ni_{1.1}Sn, $\lambda = 0.50218$ Å, $\chi^2 = 2.45$. Vertical bars indicate Bragg peak positions of contributing phases, from top to bottom HH₂, HH₁, Sn, TiNi₂Sn, Sn₅Ti₆ and Sn₃Ti₅. Inset shows (220) reflections of the HH and FH phases.

Figure S9. Observed (red), calculated (black) and difference (blue) diffraction profiles collected for annealed TiNiSn, $\lambda = 0.50218$ Å, $\chi^2 = 2.69$. Vertical bars indicate Bragg peak positions of contributing phases, from top to bottom: HH and Sn. Inset shows (220) reflections of the HH phase.

Figure S10. Observed (red), calculated (black) and difference (blue) diffraction profiles collected for annealed TiNi_{1.1}Sn, $\lambda = 0.50218$ Å, $\chi^2 = 1.56$. Vertical bars indicate Bragg peak positions of contributing phases, from top to bottom: HH, FH and Sn. Inset shows (220) reflections of the HH and FH phases.

Figure S11. Observed (red), calculated (black) and difference (blue) diffraction profiles collected for ennealed Ti_{0.85}Hf_{0.15}NiSn, $\lambda = 0.50218$ Å, $\chi^2 = 1.42$. Vertical bars indicate Bragg peak positions of contributing phases, from top to bottom: HH₁, HH₂, Sn and HfO₂. Inset shows (220) reflections of the HH phases.

Figure S12. Observed (red), calculated (black) and difference (blue) diffraction profiles collected for annealed Ti_{0.85}Hf_{0.15}Ni_{1.1}Sn, $\lambda = 0.50218$ Å, $\chi^2 = 1.22$. Vertical bars indicate Bragg peak positions of contributing phases, from top to bottom: HH₁, HH₂, FH and HfO₂. Inset shows (220) reflections of the HH and FH phases.

Figure S13. Observed (red), calculated (black) and difference (blue) diffraction profiles collected for annealed Ti_{0.8}Hf_{0.2}NiSn, $\lambda = 0.50218$ Å, $\chi^2 = 1.66$. Vertical bars indicate Bragg peak positions of contributing phases, from top to bottom: HH₁, HH₂, Sn and HfO₂. Inset shows (220) reflections of the HH phases.

Figure S14. Observed (red), calculated (black) and difference (blue) diffraction profiles collected for annealed $Ti_{0.8}Hf_{0.2}Ni_{1.1}Sn$, $\lambda = 0.50218$ Å, $\chi^2 = 1.17$. Vertical bars indicate Bragg peak positions of contributing phases, from top to bottom: HH₁, HH₂, FH and HfO₂. Inset shows (220) reflections of the HH and FH phases.

Figure S15. STEM-ABF image of a HH particle with formed precipitates in $Ti_{0.85}Hf_{0.15}NiSn$, 1 – HfO_2 , 2 – TiO_2 , 3 – TiO_xC_y . The appearing contrast is due to mass-thickness variation among particles.

Figure S16. (a) STEM-HAADF image of $Ti_{0.85}Hf_{0.15}NiSn$ and corresponding elemental EDS maps (**b–g**) showing a high oxidation degree of the sample material; (**d**) the oxygen EDS quantitative map.

Figure S17. STEM-ABF images of $Ti_{0.8}Hf_{0.2}NiSn$ particles; (**a**) the diffraction contrast emphasizes a high concentration of dislocation networks and HfO₂ nanoprecipitates; (**b**) high magnification STEM-ABF image with the defective HH matrix demonstrating the dislocation pinning effect and the HfO₂ precipitates with varying sizes (10–70 nm).

Figure S18. S (a) and ρ (b) vs. Ni atom occupancy at the 4d site in all studied HH phases.

Figure S19. *S* (a) and ρ (b) vs. abundance of the FH phase in Ti_{1-x}Hf_xNi_ySn samples.

Figure S20. *S* (a) and ρ (b) vs. abundance of HfO₂ in Ti_{1-x}Hf_xNi_ySn samples.