Electronic Supporting Information

Amide-functionalized ionic indium-organic frameworks for efficient separation of organic dyes based on diverse adsorption interactions

Huiyan Liu,* Guimei Gao, Jie Liu, Fenlin Bao, Yuhui Wei and Haiying Wang*

School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China

Fig. S1 Ball-and-stick representation of 3D framework of **1** showing two types of channels along the [100] direction.

Fig. S2 Two types of indium center (a, b) and ligands (c, d) in 1.

Fig. S3 Ball-and-stick representation of the cuboidal cage of **1** with an internal diameter of about 9.6 Å, which is indicated by the yellow sphere (excluding van der Waals radii).

Fig. S4 View of L⁻ ligands in 1 (a) and 2 (b) with different angles of amide group.

Fig. S5 TGA data of 1 and 2.

Fig. S6 The infrared spectra of H_4L , 1 and 2.

Fig. S7 PXRD patterns for **1** and **2**: a simulated PXRD pattern from the single-crystal structure, as-synthesized and after dye adsorption, respectively.

Fig. S8 UV-vis spectra of SY2 (a), AR2 (b), MO (c), CV (d), RhB (e) and R6G (f) in MeOH solution at different time during the adsorption with **1** as the host.

Fig. S9 UV-vis spectra of SY2 (a), AR2 (b), MO (c), CV (d), RhB (e) and R6G (f) in MeOH solution at different time during the adsorption with **2** as the host.

Fig. S10 The MB released from the MB@2 in a saturated solution of NaCl in DMF monitored by UV-vis spectra.

Fig. S11 The release-rate comparison of MB from MB@1 (a) and MB@2 (b) in pure MeOH and DMF, and a saturated solution of NaCl in MeOH and DMF, respectively.

Fig. S12 The infrared spectra for 1 and 2 and after dyes adsorption, respectively.

Fig. S13 (a) PXRD patterns for simulated 1, MB@1 after MB release in a saturated solution of NaCl in MeOH, and after 3st adsorption cycles for MB in 1. (b) PXRD patterns for simulated 2, and MB@2 after MB release in a saturated solution of NaCl in DMF.

Fig. S14 UV-vis spectra of three adsorption cycles of 1 for MB.

Fig. S15 Langmuir fitting plots for the adsorptions of MB on 2.

Fig. S16 Plots of pseudo-first-order (a) and pseudo-second-order (b) kinetics for the adsorption of MB on **1**.

Fig. S17 Plots of pseudo-first-order (a) and pseudo-second-order (b) kinetics for the adsorption of MB on **2**.

Scheme S1 Schematic structural illustration of seven dyes used with different charged and dimension.

and proposed interaction incentarism between dyes and frameworks					
dves		adsorption e (adsorpti	efficiencies on time)	proposed interactions	
		1	2		
	MB	99.6 (1.5 h)	99.0 (2 h)	electrostatic attractions	
cationic dyes	CV	10.8 (8 h)	5.4 (8 h)	size-exclusion effect	
	RhB	93.7 (20 h)	99.4 (14 h)	hydrogen-bonding interactions	
	R6G	92.7 (30 h)	97.2 (24 h)	hydrogen-bonding interactions	
neutral dyes	SY2	35.7 (24 h)	67.7 (7 h)	repulsive electrostatic effect	
	AR2	80.4 (24 h)	83.6 (24 h)	repulsive electrostatic effect	

 Table S1 Summary of adsorption efficiencies of 1 and 2 towards different dyes

 and proposed interaction mechanism between dyes and frameworks

	anionic dyes	MO	1.5 (24 h)	6.0 (24 h)	repulsive electrostatic effect
--	--------------	----	------------	------------	--------------------------------

		adsorption	
adsorbents	dye	capacity	reference
		$(mg g^{-1})$	
activated carbon	MB	263.2	1
GO	MB	243.9	1
muli-walled CT	MB	196.1	1
OND-4.5	MB	47.6	2
activated carbon	MB	26.0	3
MOF-235	MB	187	3
UiO-66	MB	90.9	4
NH ₂ -UiO-66	MB	96.5	4
NH ₂ -MIL-101-SO ₃ H	MB	141	5
JLU-liu39	MB	308	6
{[Cd ₂ (BPTC)(DMA) ₂ (DMPU) _{0.5}	MD	72.0	7
$(H_2O)_{0.5}]$ (DMPU) _{0.5} } _n	MB	/3.0	/
${[Cd_4(BPTC)_2(DMA)_4(H_2O)_2](DMA)}_n$	MB	79.4	7
$[(CH_3)_2NH_2]_{1.5}[Tb_{1.5}(TATAT)(H_2O)_{4.5}] \cdot x(solven)$	MB	147	8
t)	1112	11,	0
1	MB	281	This work
2	MB	181	This work

Table S2 Comparison of adsorption capacities of MB obtained in this study with various materials reported in literature.

	Table S3 Kinetic	parameters for	r the adsorp	ption of M	B on 1 and 2
--	------------------	----------------	--------------	------------	--------------

MOFs	pseudo-	pseudo-first-order model			pseudo-second-order model		
	k ₁ (min ⁻¹)	R ²	q_e (cal.) (mg g ⁻¹)	k_2 (g mg ⁻¹ min ⁻¹)	R ²	q_e (cal.) (mg g ⁻¹)	
1	2.66×10-2	0.95485	11.8	2.54×10 ⁻³	0.99422	17.4	
2	1.95×10 ⁻²	0.95311	10.8	3.67×10-4	0.99741	15.9	

Reference

- (1) Y. Li, Q. Du, T. Liu, X. Peng, J. Wang, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia and L. Xia, *Chem. Eng. Res. Des.*, 2013, **91**, 361.
- (2) H. Molavi, A. Shojaei and A. Pourghaderi, J. Colloid. Interface. Sci., 2018, 524, 52..

- (3) E. Haque, J. W. Jun and S. H. Jhung, J. Hazard. Mater., 2011, 185, 507.
- (4) Q. Chen, Q. He, M. Lv, Y. Xu, H. Yang, X. Liu and F. Wei, *Appl. Surf. Sci.*, 2015, 327, 77.
- (5) X.-P. Luo, S.-Y. Fu, Y.-M. Du, J.-Z. Guo and B. Li, *Micropor. Mesopor. Mat.*, 2017, 237, 268.
- (6) S. Yao, T. Xu, N. Zhao, L. Zhang, Q. Huo and Y. Liu, *Dalton Trans.*, 2017, 46, 3332.
- (7) W. J. Ji, R. Q. Hao, W. W. Pei, L. Feng and Q. G. Zhai, *Dalton Trans.*, 2018, 47, 700.
- (8) Z. Cui, X. Zhang, S. Liu, L. Zhou, W. Li, J. Zhang, Inorg. Chem., 2018, 57, 11463.