## Spectroscopic identification of Quinacridone polymorphs for organic electronics

Tommaso Salzillo, Arianna Rivalta, Nicola Castagnetti, Simone D'Agostino, Matteo Masino, Fabrizia Grepioni, Elisabetta Venuti, Aldo Brillante, and Alberto Girlando

### **Electronic Supplementary Information**

# TABLE OF CONTENT

| Powder X-ray Diffraction                                                     | ESI-1 |
|------------------------------------------------------------------------------|-------|
| Raman spectra of QA powders in the intramolecular vibrations spectral region | ESI-2 |
| Raman spectra of the films with and without background correction            | ESI-3 |
| References                                                                   | ESI-4 |

### **Powder X-ray Diffraction**

The program Mercury<sup>1</sup> has been used for the calculation of X-ray powder patterns on the basis of singlecrystal data retrieved from the Cambridge Structural Database<sup>2</sup> (QNACRD06 for  $\alpha$ '-QA, QNACRD07 for  $\beta$ -QA, and QNACRD08 for  $\gamma$ -QA). A comparison of calculated patterns with those measured on polycrystalline samples synthesized by us and provided by Prof. M. Schmidt is shown in Fig. S1.



Fig. S1 - Comparison of calculated (on the basis of single crystal data) and measured X-ray powder patterns for  $\alpha'$ -QA (top),  $\beta$ -QA (middle), and  $\gamma$ -QA (bottom).



Raman spectra of QA powders in the intramolecular vibrations spectral region

Fig. S2 – Raman spectra of QA powders in the intramolecular vibrations spectral region. Exciting line: 647.1 nm. The luminescence background has been subtracted. The orange ovals evidence the main spectral differences between the polymorphs.





Fig. S3 - Uncorrected and background corrected Raman spectra of QA films. The background corrected spectra are reported in Figure 9 of the main text. No attempt of subtracting the background has been performed for the thin QA film on KBr, due to the low signal to noise ratio.

#### References

C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. Van De Streek and P. A. Wood, *J. Appl. Crystallogr.*, 2008, **41**, 466–470.
C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. Ward, *Acta Cryst.*, 2016, **B72**, 171–179.