Supporting Information

Hydrogen-Bonded 3D network of d¹⁰-Metal Halide Coordination Polymer Containing *N*-(3-pyridinyl) nicotinamide: Influence of Ligand Conformation, Halide Anions and Solvent

Zahra Nezhadali Baghan¹, Alireza Salimi^{1,*}, Hossein Eshtiagh-Hosseini¹, Allen G. Oliver²

¹Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

²Molecular Structure Facility, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA

Contents

Description	Page No.
Mechanochemical and thermal synthesis method for 1 and 2	S2
Table S1. Selected bond distances (Å) and angles (°) for 1-4	S3
Table S2. Aromatic π interaction parameters (Å and °) for compound L and	S 3
1-4	
Table S3. Dihedral angles of Py-C, Py-N rings and amide plane in compound	S4
L and 1-4	
TableS4. Results of Cambridge Structural Database (CSD) analysis of	S5-S8
complexes containing 3-pna ligand	
Fig.S1 Hirshfeld surface mapped with dnorm (top, left), decomposed fingerprint	S9
plot for compound L (top, right), showing (a) NHN and CHN hydrogen	
bonds and Hirshfeld surfaces mapped with shape index (red and blue triangles	
has been shown by black circle), curvedness and decomposed finger print plots	
to C-C contacts (bottom, left to right)showing relative contribution of $\pi \dots \pi$	
stacking interactions for compound L.	
Fig. S2 Representation of CH π interaction in compound 1, showing nearest	S10
bonds to CH group	
Fig. S3 Hirshfeld surface mapped with d_{norm} (left) and two-dimensional	S11
fingerprint plot for compound 1 , showing (a) N-HCl, (b) C-HCl and (c)	
$CH\pi$ hydrogen bonds	
Fig. S4 Hirshfeld surfaces mapped with shape index (red and blue triangles	S12
has been shown by black circle), curvedness and decomposed finger print plots	
to C-C contacts showing relative contribution of $\pi \cdots \pi$ stacking interactions for	
compound $1(a)$, $2(b)$, $3(c)$ and $4(d)$ (left to right)	
Fig. S5-S13 IR Spectra of compounds.	S13-S17
References	S17- S18

Experimental

Mechanochemical method:

Neat grinding of 3-pna (0.04 g, 0.2 mmol) with mercury (II) chloride (0.054 g, 0.2 mmol) manually in a mortar and pestle for about 15 minutes produced a white powder in high yield. Mp 277-279 °C, IR data (KBr pellet, cm-1): 694, 803, 1053, 1121, 1290, 1333, 1427s, 1484, 1534s, 1585, 1604, 1682s, 3332. The same procedure was used for preparation of product between 3-pna and HgBr2 and powder of this compounds was isolated after grinding of 1:1 stoichiometric ratio of starting material after 15 minutes. In the case of obtained powder from reaction between L and HgBr2, Mp 268-270°C, IR data (KBr pellet, cm-1): 691, 798, 1050, 1117, 1289, 1426s, 1484, 1528s, 1590, 1683s, 3347.

Thermal method:

In this method, mixture of 3-pna (0.04 g, 0.2 mmol) with mercury (II) chloride (0.054 g, 0.2 mmol) was heated in the oven at 110 °C for about 4 h that produced a white powder which was characterized. Mp 279-280 °C, IR data (KBr pellet, cm-1): 697, 807, 1045, 1117, 1298s, 1333, 1427s, 1482, 1537s, 1587, 1681s, 3338. Same process was performed for reaction between L and HgBr2. The resulting powder of this reaction was isolated after heating of ligand and metal salt at 110 °C for about 4 h. In the case of product prepared from reaction between 3-pna and HgBr2, Mp 268-271°C, IR data (KBr pellet, cm-1): 693, 798, 1050, 1118, 1288, 1424s, 1482, 1525s, 1585, 1681s, and 3347.

Compound		$[HgCl_2(L)]_n(1)$	$[HgBr_2(L)]_n(2)$	$[HgI_2(L)]_n$.meth (3)	$[CdI_{2}(L)]_{n}(4)$
Bond distance	M-X	2.396(5)	2.490(2)	2.635(1)	2.677(1)
		2.356(6)	2.517(2)	2.633(1)	2.688(1)
	M-N	2.363(16)	2.408(14)	2.500(10)	2.275(8)
		2.315(17) ^{<i>a</i>}	$2.362(14)^{b}$	2.446(11) ^c	$2.251(9)^{d}$
Bond angle	X-M-X	140.3(2)	140.9(6)	147.1(4)	127.2(3)
	N-M-N	89.4(6) ^{<i>a</i>}	90.3(5) ^b	78.3(4) ^{<i>c</i>}	99.8(3) ^d
	X-M-N	99.4(4)	107.0(3)	101.4(3)	105.7(2)
		108.5(4)	100.7(3)	101.5(3)	111.5(2)
		109.3(4) ^{<i>a</i>}	108.1(3) ^b	100.8(3) ^{<i>c</i>}	$100.3(2)^{d}$
		98.5(4) ^{<i>a</i>}	98.5 (3) ^b	106.8(3) ^{<i>c</i>}	$108.5(2)^d$

TableS1. Selected bond distances (Å) and angles (°) for 1-4 (M= Cd / Hg, X= halogen)

Symmetry codes: ^{*a*} 3/2-x, -1/2+y, 3/2-z. ^{*b*} 5/2-x, -1/2+y, 3/2-z. ^{*c*} 3/2-x, 1/2+y, 3/2-z. ^{*d*} 1/2-x, -1/2+y, 1/2-z.

Table S2. Aromatic $\pi \cdots \pi$ interaction parameters (Å and °) for 1-4

Compound	$\pi_{\mathrm{py}}\pi_{\mathrm{py}}$	d_{Cg-Cg}	$d_{ m plane-plane}$	α	γ,β	doffset
L	$\pi_{\text{py-C}} \cdots \pi_{\text{py-C}}{}^a$	3.87	3.49	0.0	25.8	1.68
	$\pi_{\text{py-N}} \cdots \pi_{\text{py-N}}{}^{a}$					
$[HgCl_2(L)]_n(1)$	$\pi_{\text{py-C}} \cdots \pi_{\text{py-N}} a$	3.72	3.34, 3.44	4.6	26.3,22.2	1.65,1.40
$[HgBr_2(L)]_n(2)$	$\pi_{\text{py-C}} \cdots \pi_{\text{py-N}}{}^{a}$	3.82	3.44, 3.60	8.2	25.8,19.8	1.67,1.29
$[HgI_2(L)]_n$	$\pi_{\text{py-C}} \cdots \pi_{\text{py-C}}{}^{b}$	3.54	3.37	0.0	17.8	1.09
.meth(3)						
$[CdI_{2}(L)]_{n}\left(4\right)$	$\pi_{\text{py-C}} \cdots \pi_{\text{py-N}}{}^{a}$	3.89	3.60,3.80	13.5	22.5,12.4	1.49,0.84
Symmetry codes: ^{<i>a</i>} -	-1+x, y, z. ^{<i>b</i>} 2-x, -y	/, 1-z.				

Compound	< Py-C and Amide plane (°)	<py-n amide="" and="" plane(°)<="" th=""><th><py-n and="" py-c(°)<="" th=""></py-n></th></py-n>	<py-n and="" py-c(°)<="" th=""></py-n>
L	19.3(1)	4.2 (1)	22.4(8)
$[HgCl_2(L)]_n(1)$	29.9(1)	32.7(1)	4.6(6)
$[HgBr_2(L)]_n(2)$	26.7(7)	28.2(9)	8.2(5)
$[HgI_2(L)]_n$.meth(3)	6.3(8)	44.2(6)	38.1(3)
$[CdI_{2}(L)]_{n}(4)$	30.3(4)	31.5(7)	13.5(3)

 Table S3. Dihedral angles of Py-C, Py-N rings and amide plane in 1-4

NO.	Refcode	Compounds	Coligand	Confo rmati on 3-pna	Amide Synthon	Guest Mol.	Geometry coordination	Architecture	Ref.
1	EVOKUX	[Ni(3-pna)(mip)]·H ₂ O	H2mip = 5-methylisophthalic acid]	Anti	<i>D</i> ¹ ₁ (2) NHO (H ₂ O)	H ₂ O	distorted octahedral	2D networks, ladder-like double chains.	1
2	EVOLAE	[Ni(3-pna)(mip)(H ₂ O)]·4H ₂	H2mip = 5-methylisophthalic acid]	Anti	$R_2^2(18)$ NHO (mip)	H ₂ O	distorted octahedral	2D, 4-connected grid structure consisting of 1D [Ni-3-pna] _n and [Ni-mip] _n chains.	1
3	EVOLEI	[Cd2(3pna)(mip)2(H2O)]·2H2O	H2mip = 5-methylisophthalic acid]	Anti	D ₁ ¹ (2) NH O (H ₂ O)	H ₂ O	distorted pentagonal bipyramidal	3D framework constructed from Cd ₄ (COO) ₄ subunits and μ^2 -bridging 3-pna.	1
4	EVOLIM	[Cd(3-pna)(mip)]2·3H2O	H2mip = 5-methylisophthalic acid]	Anti	-	H ₂ O	distorted octahedral	2D networks, ladder-like double chains	1
5	EVOLOS	[Co(3-pna)(mip)]·H2O	H2mip = 5-methylisophthalic acid]	Anti	D ₁ ¹ (2) NH O (H ₂ O)	H ₂ O	distorted octahedral	2D networks, ladder-like double chains.	1
6	AVUBAU	[Co(NO ₃) ₂ (3-pna)2] <i>n</i>	-	Syn	$C_1^1(4)$ NH O (3-pna)	-	octahedral	honeycomb-shaped grid	2
7	AVUBEY	[CoBr2(3-pna)2] <i>n</i>	-	Syn	-	-	distorted octahedral	Honeycomb-shaped grid.	2
8	BIPCIO	{[Zn(H3-pna)(sip)].1.5H2O}n	metal 5-sulfoisophthalate (sip)	Syn	D ₁ ¹ (2) NH O (H ₂ O)	H ₂ O	A slightly distorted tetrahedral	3-connected 1D ladder structure.	3
9	BIPCUA	{[Cd3(3pna)2(sip)2(H2O) ₆].2H2O}n	metal 5-sulfoisophthalate (sip)	Syn	<i>C</i> ₁ ¹ (17) NHO (sip)	H ₂ O	distorted pentagonal bipyramid/ octahedron	2D network topology, ladder motifs	3
10	CICSAK	[Cd(D-cam)(3-pna)(H ₂ O) ₂]n	D-camphoric acid (H2D-cam)	Syn	-	-	Octahedral	1-D coordination polymer chain structure.	4
11	DOLSEE	[Cu(ip)(3-pna)] <i>n</i>	ip = isophthalate	Anti	-	-	distorted square pyramidal	(4,4) layered grid structure based on {Cu ₂ (OCO) ₂ } dimeric units.	5
12	FIGQOD	${[Cu(glu)(3-pna)(H_2O)].H_2O}n$	glu = glutarate,	Syn	D ₁ ¹ (2) NH O (H ₂ O)	H ₂ O	distorted octahedron	Simple (4,4) grid-like layer structure.	6
13	FUHPIJ	{[Cu(adp)(3-pna)].2.5H ₂ O}n	adipic acid (H2adp)	Anti	D ₁ ¹ (2) NH O (H ₂ O)	H ₂ O	square pyramidal	Dimer-based 3-D network	7

TableS4. Results of Cambridge Structural Database (CSD) analysis of complexes containing 3-pna ligand

14	GOBTUO	[Cu2(pyro)(pyroH2)(3pnaH)2(H2O)2]n	Pyro = 1,2,4,5- benzenetetracarboxylate	Syn	<i>С</i> ₁ ¹ (10) NH О (руго)	-	distorted octahedral	2-D coordination polymer built from {Cu ₂ O ₂ (OCO) ₂ } dimeric units.	8
15	GOCSOI	{[Cu(pyro)(3-pnaH) ₂ (H ₂ O) ₂].4H ₂ O}n	Pyro = 1,2,4,5- benzenetetracarboxylate	Anti	<i>C</i> ¹ ₁ (14) NHO (Pyro)	H ₂ O	distorted octahedral	Simple neutral 1-D chain polymer.	8
16	IMEXAB	$[Zn_2(2,4\text{-pdc})_2(H_2O)_4(3pna)].3H_2O\}n$	2,4-pyridinedicarboxylic acid (2,4- pdcH2)	Anti	<i>D</i> ¹ ₁ (2) NHO (H ₂ O)	H ₂ O	octahedral	Two-fold parallel interpenetrated herring bone layer net.	9
17	JAFDEC	[Co(L)(ADTZ)]·H2O	H2ADTZ=2,5-(s-acetic acid)dimercapto-1,3,4-thiadiazole]	Anti	D ₁ ¹ (2) NHO (H ₂ O)	H ₂ O	distorted octahedral geometry	2D double-layer networks based on 1D [M-L]n zigzag chains and 1D [M-ADTZ] _{2n} double-chains.	10
18	PADLAK	[Cd(L)(ADTZ)]·H2O	H2ADTZ=2,5-(s-acetic acid)dimercapto-1,3,4-thiadiazole]	Anti	<i>C</i> ₁ ¹ (17) NHO (ADTZ)	H ₂ O	distorted octahedral	2D double-layer networks based on 1D [M-L] n zigzag chains and 1D [M-L] n zigzag chains and 1D [M-D]77[2 n double chains	10
19	PADLEO	[Zn(L)(ADTZ)]·H2O	H2ADTZ=2,5-(s-acetic acid)dimercapto-1,3,4-thiadiazole]	Anti	D ₁ ¹ (2) NHO (H ₂ O)	H ₂ O	distorted octahedral geometry	[M-AD12]2 <i>h</i> double-chains 2D double-layer networks based on 1D [M-L] <i>n</i> zigzag chains and 1D [M-ADTZ]2 <i>n</i> double-chains.	10
20	KIJWUX	[Cd(suc)(3-pna)·2.5H2O]n	succinic acid (H2suc)	Syn	<i>D</i> ¹ ₁ (2) NHO (H ₂ O)	H ₂ O	distorted pentagonal bipyramidal	simple 3-D non-interpenetrated network	11
21	KIJWUX 01	[Cd(suc)(3-pna)·2.5H2O]n	succinic acid (H2suc)	Syn	D ₁ ¹ (2) NHO (H ₂ O)	H ₂ O	distorted pentagonal bipyramid	simple 3-D non-interpenetrated network	11
22	MOVPUI	${[Co(NCS)_2 (3-pna)_2]n}$	-	Anti	-	-	octahedral	2D sheet composed of a nearly square grid.	12
23	MULQO B	[Co(tpdc)(3-pna)]n	2,5-thiophenedicarboxylic acid (H2tpdc).	Anti	-	-	distorted trigonal bipyramidal	2-D layer structure containing {Co ₂ (OCO) ₂ } dimers linked by tpdc and 3- pna ligands.	13
24	MULQU H	[Co(D-cam)(3-pna)(H2O)2]n	chiral D-camphorate (D-cam)	Syn	-	-	distorted octahedron	Acentric ribbon coordination polymer motifs.	13
25	MULRA O	[Ni(D-cam)(3-pna)(H2O)2]n	chiral D-camphorate (D-cam)	Syn	-	-	distorted octahedron	Acentric ribbon coordination polymer motifs.	13
26	PORXIF	${[Cd(msuc)(3-pna)]\cdot 2H2O}n$	(msuc = 2-methylsuccinate)	Anti	D ₁ ¹ (2) NHO (H ₂ O)	H ₂ O	distorted pentagonal bipyramidal	Layer motifs that contain {Cd2 (OCO)2} dimeric units, linked into a non- interpenetrated 3D network.	14

27	PORXOL	[Cd2(dmsuc)2(3-pna)2]•1.5H2O} <i>n</i>	(dmsuc = 2,2-dimethylsuccinate)	Anti	$S_1^1(10)$ NHO (dmsuc)	H ₂ O	distorted octahedral	1D [Cd(dmsuc)]n ribbons containing{Cd2O2} dimeric units.	14
28	QISYEY	{[Zn2(hmph)2(3-pna)]·H2O}n	hmph = homophthalate	Syn	D ₁ ¹ (2) NH O (H ₂ O)	H ₂ O	distorted square- pyramidal / distorted tetrahedral	(4,4) grid coordination polymer layers.	15
29	QIYHAJ	$\{[Zn(tere)(3-pna)_2 (H_2O)_2], 2H_2O\}n$	potassium terephthalate (K2tere)	Syn	$D_1^1(2)$ NHO (H ₂ O)	H_2O	octahedral	1-D coordination polymer chains.	16
30	QIXWUR	${[Zn(tere)(3-pna)] .3H_2O}n$	potassium terephthalate (K2tere)	Syn	D ₁ ¹ (2) NH O (H ₂ O)	H ₂ O	pseudo- tetrahedral	2-D (6,3) hexagonal grid topology	16
31	SIXTUP	[{(CH3COO)(µ–OOCH3)Zn}2(3- pna)2]n	-	Anti	-	-	slightly distorted trigonal bipyramidal	1-D zigzag polymeric chain / ladder type architecture.	17
32	SIXVAX	$[{(H_2O)_2Zn}(3-pna)_4]BF_4]n$	-	Syn	$C_1^1(9)$ OHO(coordin ated H ₂ O)	BF4	slightly distorted octahedral	2-D nonporous corrugated sheet.	17
33	SIXVEB	$[{(Cl)_2Zn}(3-pna)]n$	-	Anti	<i>R</i> ² ₂ (14) NHCl	-	distorted tetrahedral	1-D zigzag coordination polymeric chain.	17
34	SIXVOL	[{(NO ₃) ₂ Cd(3-pna) ₂ } .nitrobenzene]n	-	Anti	-	Ph- NO2	slightly distorted octahedral	2-D grid architecture 2-D porous sheet.	17
35	VIGYUH	[Cu(t-14cdc)(3-pna)]n	(t-14cdc) = trans1,4- cyclohexanedicarboxylate	Anti	C ₁ ¹ (9) NH O (t- 14cdc)	-	Jahn–Teller distorted square pyramidal	Non-interpenetrated 3-D coordination polymer network	18
36	VIPTIY	$[\{(H_2O)4Co(3-pna)_2\}.$ fumarate.2H ₂ O]n	-	Syn	$C_1^1(9)$ OHO(coordina ted H ₂ O)	H2O fumar ate	slightly distorted octahedral	1-D zigzag polymeric chain.	19
37	VIPTOE	[{(H ₂ O)3(μ -fumarate)Co(μ - L1) ₂ }.fumarate.2H ₂ O]n	L1= 3-pna	Anti	$D_1^1(2)$ NH O (fumarate)	H2O fumar ate	slightly distorted octahedral	ladder type 1-D polymeric network.	19
38	WIZMUP	[CuMoO4(3-pna)]n	MoO4	Anti	R ₂ ² (18) NHO (MoO4)	-	distorted square pyramid/	2-D [CuMoO4(3- pna)] <i>n</i> coordination polymer	20

							distorted tetrahedron		
39	WUDGU Z	[Zn(ip)(3-pna)]n	ip= isophthalate	Anti	-	-	distorted trigonal bipyramidal	Dimer-based 3,5-connected layer motif	21
40	WUDHA G	{[Zn(mip)(3-pna)].2H2O}n	mip = 5-methylisophthalate	Syn	D ₁ ¹ (2) NH O (H ₂ O)	H ₂ O	distorted tetrahedral	4-connected 1-D ribbon Motif.	21
41	XAFBUD	[{Cd(3-pna)(µ3- SO4)(H2O)}. 2H2O]	-	Anti	<i>S</i> ¹ ₁ (10) NHΟ (μ3SO4)	H ₂ O	slightly distorted octahedral	2D coordination polymer	22
42	XIFJAZ	{[Cd2(adp)(nic)2(3-pna)2] .6H2O}n	H2adp = adipic acid nic = nicotinate	Syn	D ₁ ¹ (2) NHO (H ₂ O)	H ₂ O	pentagonal bipyramidally	3-D network 3-D coordination polymer	23

Fig. S1 Hirshfeld surface mapped with d_{norm} (top, left), decomposed fingerprint plot for compound L (top, right), showing (a) NH···N and CH···N hydrogen bonds and Hirshfeld surfaces mapped with shape index (red and blue triangles has been shown by black circle), curvedness and decomposed finger print plots to C-C contacts (bottom, left to right) showing relative contribution of π ··· π stacking interactions for compound L.

Fig. S2 Representation of CH... π interaction in compound 1, showing nearest bonds to CH group.

Fig. S3 Hirshfeld surface mapped with d_{norm} (left) and two-dimensional fingerprint plot for compound 1, showing (a) N-H...Cl, (b) C-H...Cl and (c) CH... π hydrogen bonds.

Fig. S4 Hirshfeld surfaces mapped with shape index (red and blue triangles has been shown by black circle), curvedness and decomposed finger print plots to C-C contacts showing relative contribution of $\pi \cdots \pi$ stacking interactions for compound 1(a), 2(b),3(c) and4(d) (left to right).

Fig. S5 IR Spectrum of ligand

Fig. S6 IR Spectrum of compound 1 (solution-method)

Fig. S7 IR Spectrum of compound 2 (solution-method)

Fig. S8 IR Spectrum of compound 3 (solution-method)

Fig. S9 IR Spectrum of compound 4 (solution-method)

Fig. S10 IR Spectrum of compound 1 (Grinding method)

Fig. S11 IR Spectrum of compound 2 (Grinding method)

Fig. S12 IR Spectrum of compound 1 (Thermal method)

Fig. S13 IR Spectrum of compound 2 (Thermal method)

References

- (1) Wang, X. L.; Xiong, Y.; Liu, G. C.; Lin, H. Yan.; Sha, X. T.; Shao, J. Y. *Polyhedron*. **2016**, 119, 590-596.
- (2) Uemura, K.; Kitagawa, S.; Fukui, K.; Saito, K. J. Am. Chem. Soc. 2004, 126, 3817-3828.
- (3) Kraft, P. E.; Mizzi, J. E.; LaDuca, R. L. Inorg. Chim. Acta. 2014, 409, 449-457.
- (4) Wilson, J. A.; LaDuca, R. L. Inorg. Chim. Acta. 2013, 403, 136-141.
- (5) ODonovan, M. E.; Porta, A. R.; Torres Salgado, M. D.; LaDuca, R. L. Z. Anorg. Allg. Chem. **2014**, 640, 2113-2122.
- (6) Uebler, J. W.; Pochodylo, A. L.; LaDuca, R. L. Inorg. Chim. Acta. 2013, 405, 31-42.
- (7) Pochodylo, A. L.; Wilson, J. A.; Uebler, J. W.; Qiblawi, S. H.; LaDuca, R. L. *Inorg. Chim. Acta.* **2014**, 423, 298-306.
- (8) Mizzi, J. E.; LaDuca, R. L. Inorg. Chim. Acta. 2014, 411, 188-198.
- (9) Wudkewych, M. J.; LaDuca, R. L. J. Mol.Struct. 2016, 1120, 156-162.
- (10) Wang X.; Chunhua, G.; Yun, Q.; Guocheng, L.; Juwen, Z. Chem. Res. Chin. Univ. 2014, 30, 709-714.

- (11) Uebler, J. W.; Pochodylo, A. L.; Staples, R. J.; LaDuca, R. L. Cryst. Growth Des. 2013, 13, 2220-2232.
- (12) Uemura, K.; Kitagawa, S.; Kondo, M.; Fukui, K.; Kitaura, R.; Chang, H. C.; Mizutani, T. *Chem. Eur. J.* **2002**, 8, 3586-3600.
- (13) Torres Salgado, M. D.; Bouchey, C. J.; Wilson, J. A.; LaDuca, R. L. *J. Coord. Chem.* **2015**, 68, 2029-2040.
- (14) Spies, H. J.; LaDuca, R. L.; Z. Anorg. Allg. Chem. 2014, 640, 1930-1936.
- (15) Murray, N. H.; Farnum, G. A.; LaDuca, R. L.; Z. Anorg. Allg. Chem. 2013, 639, 2162-2170.
- (16) Goldsworthy, J. S.; Staples, R. J.; LaDuca, R. L. J. Mol. Struct. 2014, 1062, 116-124.
- (17) Kumar, D. K.; Das, A.; Dastidar, P. CrystEngComm. 2007, 9, 548-555.
- (18) Qiblawi, S. H.; Pochodylo, A. L.; LaDuca, R. L. CrystEngComm. 2013, 15, 8979-8988.
- (19) Kumar, D. K.; Das, A.; Dastidar, P. CrystEngComm. 2007, 9, 895-901.
- (20) Qiblawi, S. H.; LaDuca, R. L. Inorg. Chim. Acta. 2014, 413, 115.120.
- (21) Kraft, P. E.; Weingartz, A. L.; LaDuca, R. L. Inorg. Chim. Acta. 2015, 432, 283-288.
- (22) Banerjee, S.; Adarsh, N. N.; Dastidar, P. Eur. J. Inorg. Chem. 2010, 24, 3770-3779.
- (23) Wilson, J. A.; Uebler, J. W.; LaDuca, R. L. CrystEngComm. 2013, 15, 5218-5225.