Electronic Supplementary Information

Investigation into the optimized growth, anisotropic properties and theoretical calculations of the polar material Cs₂TeW₃O₁₂

Conggang Li,^a Peng Zhao,^{a,b} Zeliang Gao,^{*,a} Qian Wu,^a Xiangxin Tian,^a Dianxing Ju,^a Weiqun Lu,^a Youxuan Sun,^a Deliang Cui^a and Xutang Tao^{*,a}

^a State key laboratory of crystal materials, Shandong University, Jinan 250100, P. R. China

^b Beijing Sinoma Synthetic Crystals Co. Ltd., Beijing 100018, P. R. China

1. Figure S1. Experimental and calculated powder X-ray diffraction patterns of $Cs_2TeW_3O_{12}$ polycrystalline.

2. Figure S2. (a) and (b) Photographs of the as-grown $Cs_2TeW_3O_{12}$ crystals in a narrow and large thermostatic field, respectively.

3. Figure S3. Viscosity versus temperature curves in different flux systems, where the viscosity of the TeO_2 -Cs₂CO₃ flux system is evidently lower than that of the TeO_2 flux system.

4. Figure S4. Specific heat vs. temperature for $Cs_2TeW_3O_{12}$.

5. Figure S5. The processing orientations of $Cs_2TeW_3O_{12}$ crystal for measuring the thermal diffusion and thermal conductivity coefficients.

6. Table S1. Observed Raman wavenumbers (cm⁻¹) and vibrational assignments for $Cs_2TeW_3O_{12}$ crystal.

Figure S1. Experimental and calculated powder X-ray diffraction patterns of $Cs_2TeW_3O_{12}$ polycrystalline.

Figure S2. (a) and (b) Photographs of the as-grown $Cs_2TeW_3O_{12}$ crystals in a narrow and large thermostatic field, respectively.

Figure S3. Viscosity versus temperature curves in different flux systems, where the viscosity

of the TeO₂-Cs₂CO₃ flux system is evidently lower than that of the TeO₂ flux system.

Figure 4. Specific heat vs. temperature for the Cs₂TeW₃O₁₂ crystal.

Figure S5. The processing orientations of $Cs_2TeW_3O_{12}$ crystal for measuring the thermal

diffusion and thermal conductivity coefficients.

Raman spectra (cm ⁻¹)	Assignments
146.55 (vs)	translational motions of W ⁶⁺ , Te ⁴⁺ and Cs ⁺ cations
200-600 (w)	bending modes of W-O bonds, Te-O bonds, and W-O-Te bridges
665.52 (s)	W-O bonds and W-O-Te bridges
674.14 (s)	W-O bonds and W-O-Te bridges
910.34 (vs)	stretching vibrations of the short W-O bonds
937.94 (m)	stretching vibrations of the short W-O bonds

Table S1. Observed Raman wavenumbers (cm⁻¹) and vibrational assignments for the $Cs_2TeW_3O_{12}$ crystal.¹⁻³

In the table, vs: very strong; s: strong; m: medium; w: weak;

References

1. L. S. Cavalcante, J. C. Sczancoski, L. F. Lima, J. Espinosa, P. S. Pizani, J. A. Varela and E. Longo, *Cryst. Growth Des.*, 2009, **9**, 1002–1012.

2. T. T. Basiev, A. A. Sobol, Y. K. Voronko and P. G. Zverev, *Opt. Mater.*, 2000, **15**, 205–216.

3. M. Maczka, A. Majchrowski and I. V. Kityk, Vib. Spectrosc., 2013, 64, 158-163.