Supporting Information

Investigation of solid-liquid phase diagrams of the Sulfamethazine-Salicylic acid Co-crystal

Dipali Ahuja,^a Michael Svärd,^a and Åke C. Rasmuson^a

^aSynthesis and Solid State Pharmaceutical Centre, Bernal Institute, Department of Chemical Sciences, University of Limerick, Co. Limerick, Ireland

Table of Contents

Title	Figure/ Table
Full (top) and zoom-in view (bottom) of ternary phase diagram of SMT-SA co- crystal system in methanol at 10°C.	S1
Full (top) and zoom-in view (bottom) of ternary phase diagram of SMT-SA co- crystal system in methanol at 20°C.	S2
Ternary phase diagram of SMT-SA co-crystal system in methanol at 30°C.	S3
Full (top) and zoom-in view (bottom) of ternary phase diagram of SMT-SA co- crystal system in acetonitrile at 10°C.	S4
Full (top) and zoom-in view (bottom) of ternary phase diagram of SMT-SA co- crystal system in acetonitrile at 10°C.	S5
Ternary phase diagram of SMT-SA co-crystal system in acetonitrile at 30°C.	S6
Ternary phase diagram of SMT-SA co-crystal system in 7:3 (v/v) DMSO- methanol mixture at 20°C.	S7
Ternary phase diagram of SMT-SA co-crystal system in 7:3 (v/v) DMSO- methanol mixture at 40°C.	S8
A zoom-in view of the ternary phase diagram of SMT-SA co-crystal system in acetonitrile depicting the solubility points and invariant points at 10 (red), 20 (blue) and 30°C (green) showing the effect of temperature.	S 9
A zoom-in view of the ternary phase diagram of SMT-SA co-crystal system in methanol depicting the solubility points and invariant points at 10 (red), 20 (blue) and 30°C (green) showing the effect of temperature.	S10
A zoom-in view of the ternary phase diagram of SMT-SA co-crystal system in 7:3 (v/v) DMSO-methanol mixture depicting the solubility points and invariant points at 20 (red), 30 (blue) and 40°C (green) showing the effect of temperature.	S11
PXRD patterns of the pure SMT, 1:1 SMT-SA co-crystal and the invariant points at 10 (red), 20 (blue) and 30°C (green) in methanol where SMT and co-crystal co-exist.	S12
DSC thermograms of the invariant points at 10 (red), 20 (blue) and 30°C (green) in methanol where SMT and co-crystal co-exist.	S13
PXRD patterns of the pure SA, 1:1 SMT-SA co-crystal and the invariant points at 10 (red), 20 (blue) and 30°C (green) in methanol where SA and co-crystal co-exist.	S14
DSC thermograms of the invariant points at 10 (red), 20 (blue) and 30°C	S15

(green) in methanol where SA and co-crystal co-exist.	
PXRD patterns of the pure SMT, 1:1 SMT-SA co-crystal and the invariant	
points at 10 (red), 20 (blue) and 30°C (green) in acetonitrile where SMT and co-	S16
crystal co-exist.	
DSC thermograms of the invariant points at 10 (red), 20 (blue) and 30°C	\$17
(green) in acetonitrile where SMT and co-crystal co-exist.	517
PXRD patterns of the pure SA, 1:1 SMT-SA co-crystal and the invariant points	
at 10 (red), 20 (blue) and 30°C (green) in acetonitrile where SA and co-crystal	S18
co-exist.	
DSC thermograms of the invariant points at 10 (red), 20 (blue) and 30°C	\$10
(green) in acetonitrile where SA and co-crystal co-exist.	519
PXRD patterns of the pure SMT, 1:1 SMT-SA co-crystal and the invariant	
points at 10 (red), 20 (blue) and 30°C (green) in 7:3 (v/v) DMSO-methanol	S20
mixture where SMT and co-crystal co-exist.	
DSC thermograms of the invariant points at 10 (red), 20 (blue) and 30°C	
(green) in 7:3 (v/v) DMSO-methanol mixture where SMT and co-crystal co-	S21
exist.	
PXRD patterns of the pure SA, 1:1 SMT-SA co-crystal and the invariant points	
at 10 (red), 20 (blue) and 30°C (green) in 7:3 (v/v) DMSO-methanol mixture	S22
where SA and co-crystal co-exist.	
DSC thermograms of the invariant points at 10 (red), 20 (blue) and 30°C	522
(green) in 7:3 (v/v) DMSO-methanol mixture where SA and co-crystal co-exist.	525

Figure S1. Full (top) and zoom-in view (bottom) of ternary phase diagram of SMT-SA cocrystal system in methanol at 10°C. The points, regions and line explained in Figure 4 of article.

Figure S2. Full (top) and zoom-in view (bottom) of ternary phase diagram of SMT-SA cocrystal system in methanol at 20°C. The points, regions and line explained in Figure 4 of article.

Figure S3. Ternary phase diagram of SMT-SA co-crystal system in methanol at 30°C. The points, regions and line explained in Figure 4 of article.

Figure S4. Full (top) and zoom-in view (bottom) of ternary phase diagram of SMT-SA cocrystal system in acetonitrile at 10°C. The points, regions and line explained in Figure 4 of article.

Figure S5. Full (top) and zoom-in view (bottom) of ternary phase diagram of SMT-SA cocrystal system in acetonitrile at 10°C. The points, regions and line explained in Figure 4 of article.

Figure S6. Ternary phase diagram of SMT-SA co-crystal system in acetonitrile at 30°C. The points, regions and line explained in Figure 4 of article.

Figure S7. Ternary phase diagram of SMT-SA co-crystal system in 7:3 (v/v) DMSO-methanol mixture at 20°C. The points, regions and line explained in Figure 4 of article.

Figure S8. Ternary phase diagram of SMT-SA co-crystal system in 7:3 (v/v) DMSO-methanol mixture at 40°C. The points, regions and line explained in Figure 4 of article.

Figure S9. A zoom-in view of the ternary phase diagram of SMT-SA co-crystal system in acetonitrile depicting the solubility points and invariant points at 10 (red), 20 (blue) and 30°C (green) showing the effect of temperature.

Figure S10. A zoom-in view of the ternary phase diagram of SMT-SA co-crystal system in methanol depicting the solubility points and invariant points at 10 (red), 20 (blue) and 30°C (green) showing the effect of temperature.

Figure S11. A zoom-in view of the ternary phase diagram of SMT-SA co-crystal system in 7:3 (v/v) DMSO-methanol mixture depicting the solubility points and invariant points at 20 (red), 30 (blue) and 40°C (green) showing the effect of temperature.

Figure S12. PXRD patterns of the pure SMT, 1:1 SMT-SA co-crystal and the invariant points at 10 (red), 20 (blue) and 30°C (green) in methanol where SMT and co-crystal co-exist.

Figure S13. DSC thermograms of the invariant points at 10 (red), 20 (blue) and 30°C (green) in methanol where SMT and co-crystal co-exist.

Figure S14. PXRD patterns of the pure SA, 1:1 SMT-SA co-crystal and the invariant points at 10 (red), 20 (blue) and 30°C (green) in methanol where SA and co-crystal co-exist.

Figure S15. DSC thermograms of the invariant points at 10 (red), 20 (blue) and 30°C (green) in methanol where SA and co-crystal co-exist.

Figure S16. PXRD patterns of the pure SMT, 1:1 SMT-SA co-crystal and the invariant points at 10 (red), 20 (blue) and 30°C (green) in ACETONITRILE where SMT and co-crystal co-exist.

Figure S17. DSC thermograms of the invariant points at 10 (red), 20 (blue) and 30°C (green) in acetonitrile where SMT and co-crystal co-exist.

Figure S18. PXRD patterns of the pure SA, 1:1 SMT-SA co-crystal and the invariant points at 10 (red), 20 (blue) and 30°C (green) in acetonitrile where SA and co-crystal co-exist.

Figure S19. DSC thermograms of the invariant points at 10 (red), 20 (blue) and 30°C (green) in acetonitrile where SA and co-crystal co-exist.

Figure S20. PXRD patterns of the pure SMT, 1:1 SMT-SA co-crystal and the invariant points at 10 (red), 20 (blue) and 30°C (green) in 7:3 (v/v) DMSO-methanol mixture where SMT and co-crystal co-exist.

Figure S21. DSC thermograms of the invariant points at 10 (red), 20 (blue) and 30°C (green) in 7:3 (v/v) DMSO-methanol mixture where SMT and co-crystal co-exist.

Figure S22. PXRD patterns of the pure SA, 1:1 SMT-SA co-crystal and the invariant points at 10 (red), 20 (blue) and 30°C (green) in 7:3 (v/v) DMSO-methanol mixture where SA and co-crystal co-exist.

Figure S23. DSC thermograms of the invariant points at 10 (red), 20 (blue) and 30°C (green) in 7:3 (v/v) DMSO-methanol mixture where SA and co-crystal co-exist.