Electronic supplementary information (ESI)

Two-dimensional magnetic materials of cobalt(II) triangular

lattices constructed by the mixed benzimidazole-dicarboxylate

strategy

Jiao-Jiao Kong, ^a Yu-Xuan Jiang, ^a Jia-Chen Zhang, ^a Dong Shao, *^b and Xing-Cai Huang*^a

^a School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China.

^b School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210097, China

* <u>huangxc82@126.com</u>

* <u>shaodong@nju.edu.cn</u>

CrystEngComm

Table of Contents

Figure S1. The asymmetric unit of 1. Hydrogen atoms were omitted for clarity	3
Figure S2. The packing structure of 1	3
Figure S3. The asymmetric unit of 2. Hydrogen atoms were omitted for clarity	4
Figure S4. The asymmetric unit of 3. Hydrogen atoms were omitted for clarity	4
Figure S5. Packing structure of 2	4
Table S1. Selected bond lengths (Å), angles [°], and structural parameters for 1	5
Table S2. Selected bond lengths (Å), angles [°], and structural parameters for 2	6
Table S3. Selected bond lengths (Å), angles [°], and structural parameters for 3	7
Table S4. The Co ^{II} center of geometry analysis for 1 by SHAPE software	8
Table S5. The Co ^{II} center of geometry analysis for 2 by SHAPE software	8
Table S6. The Co ^{II} center of geometry analysis for 3 by SHAPE software	8
Figure S6. PXRD patterns for 1-3	9
Figure S7. TGA curves for 1-3.	10
Figure S8. N ₂ adsorption-desorption isotherms of 1-3 measured at 77 K	10
Figure S9. Frequency dependence of the in-phase (χ') and out-of-phase (χ'') a susceptibilities measured under zero dc field at 1.8 K for 2 and 3.	іс 11

Figure S1. The asymmetric unit of 1. Hydrogen atoms were omitted for clarity.

Figure S2. The packing structure of 1.

Figure S3. The asymmetric unit of 2. Hydrogen atoms were omitted for clarity.

Figure S4. The asymmetric unit of 3. Hydrogen atoms were omitted for clarity.

Figure S5. Packing structure of 2.

1						
Co(1)-O(1) 2.0430(13) Co(2)-O(2) 2.0365(13)						
Co(1)-O(1)#1	2.0430(13)	Co(2)-O(4)	1.9779(13)			
Co(1)-O(3)	2.0728(12)	Co(2)-N(1)	2.1023(15)			
Co(1)-O(3)#1	2.0728(12)	Co(2)-O(6)#2	2.1769(12)			
Co(1)-O(6)#2	2.1553(12)	Co(2)-O(5)	2.1825(14)			
Co(1)-O(6)#3	2.1553(12)	Co(2)-O(7)#2	2.2317(13)			
Co1-O _{aver}	2.0904	$Co2-X_{aver}(X = N, O)$	2.1179			
O(1)-Co(1)-O(1)#1	180.00(3)	O(4)-Co(2)-O(2)	101.63(6)			
O(1)-Co(1)-O(3)	94.80(5)	O(4)-Co(2)-N(1)	103.55(6)			
O(1)#1-Co(1)-O(3)	85.20(5)	O(2)-Co(2)-N(1)	88.02(6)			
O(1)-Co(1)-O(3)#1	85.20(5)	O(4)-Co(2)-O(6)#2	100.26(5)			
O(1)#1-Co(1)-O(3)#1	94.80(5)	O(2)-Co(2)-O(6)#2	89.72(5)			
O(3)-Co(1)-O(3)#1	180.0	N(1)-Co(2)-O(6)#2	156.05(5)			
O(1)-Co(1)-O(6)#2	90.35(5)	O(4)-Co(2)-O(5)	86.41(6)			
O(1)#1-Co(1)-O(6)#2	89.65(5)	O(2)-Co(2)-O(5)	171.94(6)			
O(3)-Co(1)-O(6)#2	88.50(5)	N(1)-Co(2)-O(5)	90.61(6)			
O(3)#1-Co(1)-O(6)#2	91.50(5)	O(6)#2-Co(2)-O(5)	88.31(5)			
O(1)-Co(1)-O(6)#3	89.65(5)	O(4)-Co(2)-O(7)#2	157.93(5)			
O(1)#1-Co(1)-O(6)#3	90.35(5)	O(2)-Co(2)-O(7)#2	87.65(6)			
O(3)-Co(1)-O(6)#3	91.50(5)	N(1)-Co(2)-O(7)#2	96.68(5)			
O(3)#1-Co(1)-O(6)#3	88.50(5)	O(6)#2-Co(2)-O(7)#2	59.40(5)			
O(6)#2-Co(1)-O(6)#3	180.0	O(5)-Co(2)-O(7)#2	84.62(5)			
Symmetry transformations used to generate equivalent atoms:						
#1 -x,-y+1,-z+1; #2 x,-y+3/2,z+1/2						
#3 -x,y-1/2,-z+1/2; #4 -x,y+1/2,-z+1/2						
#5 x,-y+3/2,z-1/2; #6 -x,-y,-z+1						

 Table S1. Selected bond lengths (Å), angles [°], and structural parameters for 1.

2							
Co(1)-O(6)	2.0267(13)	Co(2)-O(2)	1.9455(13)				
Co(1)-O(6)#2	2.0267(13)	Co(2)-O(5)#1	1.9699(13)				
Co(1)-O(3)#3	2.0551(13)	Co(2)-O(1)	1.9991(13)				
Co(1)-O(3)#4	2.0551(13)	Co(2)-N(1)	2.0092(16)				
Co(1)-O(1)#4	2.2041(13)						
Co(1)-O(1)#3	2.2041(13)						
Co1-O _{aver}	2.0953	$Co2-X_{aver}(X = N, O)$	1.9809				
O(2)-Co(2)-O(5)#1	116.29(7)	O(3)#3-Co(1)-O(3)#4	180.000(1)				
O(2)-Co(2)-O(1)	111.43(6)	O(6)-Co(1)-O(1)#4	92.25(5)				
O(5)#1-Co(2)-O(1)	100.11(6)	O(6)#2-Co(1)-O(1)#4	87.75(5)				
O(2)-Co(2)-N(1)	104.95(7)	O(3)#3-Co(1)-O(1)#4	88.21(5)				
O(5)#1-Co(2)-N(1)	102.13(6)	O(3)#4-Co(1)-O(1)#4	91.79(5)				
O(1)-Co(2)-N(1)	122.16(6)	O(6)-Co(1)-O(1)#3	87.75(5)				
O(6)-Co(1)-O(6)#2	180.00(6)	O(6)#2-Co(1)-O(1)#3	92.25(5)				
O(6)-Co(1)-O(3)#3	84.48(6)	O(3)#3-Co(1)-O(1)#3	91.79(5)				
O(6)#2-Co(1)-O(3)#3	95.52(6)	O(3)#4-Co(1)-O(1)#3	88.21(5)				
O(6)-Co(1)-O(3)#4	95.52(6)	O(1)#4-Co(1)-O(1)#3	180.0(1)				
O(6)#2-Co(1)-O(3)#4 84.48(6)							
Symmetry transformations used to generate equivalent atoms:							
#1 x,-y,z-1/2; #2 -x+1/2,-y-1/2,-z+2							
#3 x,-y,z+1/2; #4 -x+1/2,y-1/2,-z+3/2							
#5 -x+1/2,y+1/2,-z+3/2; #6 -x+1/2,-y+3/2,-z+1							

 Table S2. Selected bond lengths (Å), angles [°], and structural parameters for 2.

3						
Co(1)-O(5)	2.040(3)	Co(2)-O(1)	1.959(3)			
Co(1)-O(5)#2	2.040(3)	Co(2)-O(2)	1.975(3)			
Co(1)-O(4)#3	2.067(3)	Co(2)-O(6)#1	1.984(3)			
Co(1)-O(4)#4	2.067(3)	Co(2)-N(1)	2.002(4)			
Co(1)-O(2)#4	2.174(3)					
Co(1)-O(2)#3	2.174(3)					
Co1-O _{aver}	2.0936	$Co2-X_{aver}(X = N, O)$	1.98			
O(1)-Co(2)-O(2)	116.11(12)	O(5)-Co(1)-O(5)#2	180.000(1)			
O(1)-Co(2)-O(6)#1	111.11(14)	O(5)-Co(1)-O(4)#3	85.81(13)			
O(2)-Co(2)-O(6)#1	99.31(13)	O(5)#2-Co(1)-O(4)#3	94.19(13)			
O(1)-Co(2)-N(1)	109.97(14)	O(5)-Co(1)-O(4)#4	94.19(13)			
O(2)-Co(2)-N(1)	120.69(14)	O(5)#2-Co(1)-O(4)#4	85.81(13)			
O(5)-Co(1)-O(2)#3	88.80(12)	O(4)#3-Co(1)-O(4)#4	180.000(1)			
O(5)#2-Co(1)-O(2)#3	91.20(12)	O(5)-Co(1)-O(2)#4	91.20(12)			
O(4)#3-Co(1)-O(2)#3	91.60(12)	O(5)#2-Co(1)-O(2)#4	88.80(12)			
O(4)#4-Co(1)-O(2)#3	88.40(12)	O(4)#3-Co(1)-O(2)#4	88.40(12)			
O(2)#4-Co(1)-O(2)#3	180.0(1)	O(4)#4-Co(1)-O(2)#4	91.60(12)			
Symmetry transformations used to generate equivalent atoms:						
#1 x,-y+3/2,z-1/2; #2 -x+2,-y+2,-z+2						
#3 x,-y+3/2,z+1/2; #4 -x+2,y+1/2,-z+3/2						
#5 -x+2,y-1/2,-z+3/2; #6 -x+2,-y,-z+1						

 Table S3. Selected bond lengths (Å), angles [°], and structural parameters for 3.

	HP-6	PPY-6	OC-6	TPR-6	JPPY-5
Co1	31.090	29.066	0.179	16.114	32.267
Co2	29.541	24.065	2.065	13.423	28.196

Table S4. The Co^{II} center of geometry analysis for 1 by SHAPE software

Table S5.	The Co ^{II}	center of geomet	rv analysis fo	or 2 by SH	APE software
		conter of geomet	i y analysis ie	<i>n 2</i> 0 y 5 1 1	

	HP-6	PPY-6	OC-6	TPR-6	JPPY-5
Co1	29.712	28.295	0.334	16.329	31.278
	SP-4	T-4	SS-4	vTBPY-4	
Co2	25.549	0.945	6.131	3.091	

Table S6. The Co^{II} center of geometry analysis for **3** by SHAPE software

	HP-6	PPY-6	OC-6	TPR-6	JPPY-5
Col	30.669	28.818	0.184	16.360	31.961
	SP-4	T-4	SS-4	vTBPY-4	
Co2	27.760	0.950	6.677	1.829	

HP-6: Hexagon

PPY-6: Pentagonal pyramid

OC-6: Octahedron

TPR-6: Trigonal prism

JPPY-5: Johnson pentagonal pyramid

SP-4: Square

T-4: Tetrahedron

SS-4: Seesaw or sawhorse

vTBPY-4: Axially vacant trigonal bipyramid

Figure S6. PXRD patterns for 1-3.

Figure S7. TGA curves for 1-3.

Figure S8. $N_{\rm 2}$ adsorption-desorption isotherms of 1-3 measured at 77 K

Figure S9. Frequency dependence of the in-phase (χ') and out-of-phase (χ'') ac susceptibilities measured under zero dc field at 1.8 K for **2** and **3**.