Supporting information

The transformation of anatase TiO_2 to $TiSe_2$ to form TiO_2 - $TiSe_2$ composites for Li^+/Na^+ storage with improved capacities

Pengchao Li, Changmiao Chen, Zhao Huang, Yong Cai and Ming Zhang*.

Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082.

*Email: zhangming@hnu.edu.cn

Figure S1. The SEM of TiO₂-A. a-b) pure TiO₂-A; c-d) TiO₂-A (Se).

Figure S2. The SEM of TiO₂-R. a-b) pure TiO₂-R; c-d) TiO₂-R (Se).

Figure S3. The SEM image of TiO₂@CNFs and selenium powder (at a mass ratio of 1:3) are mixed to selenylation at different temperatures. a1-a2) TiO₂-TiSe₂-CNFs-400-3h; b1-b2) TiO₂-TiSe₂-CNFs-500-3h; c1-c2) TiO₂-TiSe₂-CNFs-700-3h.

Figure S4. XRD pattern of TiO₂-TiSe₂-CNFs. The TiO₂-CNFs are mixed with selenium Powder (weight ratio=1:6) and selenylation at different temperatures. a) TiO₂-TiSe₂-CNFs-400-3h-6Se; b) TiO₂-TiSe₂-CNFs-500-3h-6Se; c) TiO₂-TiSe₂-CNFs-600-3h-6Se; d) TiO₂-TiSe₂-CNFs-700-3h-6Se.

Figure S5. XRD patterns of TiO₂-A (Se). The TiO₂-A (Se) is obtained by annealing TiO₂-A at 400°C under Ar/H₂ atmosphere, and then the TiO₂-A is selenide (TiO₂-A: selenium powder = 1:6, weight ratio) at 600°C with Ar/H₂.

Samples	TiO ₂ -	TiO ₂ -	TiSe ₂ (nm
	A(nm)	R(nm))
TiO ₂ -CNFs	8.43	/	/
TiO ₂ -TiSe ₂ -CNFs-400-	19.99	17.62	42.44
3h			
TiO ₂ -TiSe ₂ -CNFs-500-	30.15	26.18	45.51
3h			
TiO ₂ -TiSe ₂ -CNFs-600-	32.74	36.27	48.75
3h			

Table S1. The Average size of the TiO₂-A, TiO₂-R and TiSe₂ crystallites

Figure S6. XPS patterns of TiO₂-TiSe₂-CNFs-600 compound.

Figure S7. XPS spectra of the Se-CNFs of (a) Se 3d and (b) C 1s XPS spectrum.

Figure S8. The SEM image of TiO₂-TiSe₂-CNFs-600-3h after 200 cycles as LIBs.

Figure S9. The cycling capacity of TiO₂-TiSe₂-CNFs as SIBs at 0.1 A g⁻¹.

Figure S10. The SEM image of TiO₂-TiSe₂-CNFs-600-3h after 200 cycles as SIBs.

Figure S11. Charging and discharging curves of TiO₂-TiSe₂-CNFs composite as LIBs at the current density of 100 mA/g.

Table S2. The electrochemical performances of reported TiO₂ and TiSe₂ for LIBs and SIBs.

Materials	First discharge capacity/ current density	capacity (mA h/g) number/current density (A/g)	Rate capacity (mA h/g) / current density (A/g)	referenc e
Porous anatase TiO ₂	/	166.2/500/0.168 106.5/500/0.84	/	1
Nanoporous Anatase TiO ₂	204/0.17	151.9/60/0.17 A/g	164.9/0.17; 151.7/0.34	2
Anatase TiO2 Nanotubes	297/0.025	235/ 30/0.025	205/1.25; 180/2.5	3
Mesoporous Anatase TiO ₂ Nanospheres/Graphene	332/16.8	200/100/168	/	4
Anatase/graphene oxide	506/0.168	148/ 500/0.168	/	5
S-doped TiSe ₂ /Fe ₃ O ₄	1150.6/ 0.1	707.4/100/ 0.1 432.3/ 200/2	739.8/0.1; 671.8/0.2; 623.6/0.5;565.3 /1; 495.4/2	6
TiSe ₂ nanosheets	/	150/500/0.3 115/ 500/ 0.5	150/0.1; 140/0.2, 136/0.5; 131/1;125/2	7
TiO ₂ -TiSe ₂ -CNFs-LIBs	746/0.1	470/200/ 0.1	421/0.1;308/0.2;235/0.5;193/1	This work
TiO ₂ -TiSe ₂ -CNFs-SIBs	389.7/0.1	230/600/0.1	189/0.1;165/0.2;145/0.5; 128/1	This work

Reference

- 1. Z. Wang, X. Li, H. Xu, Y. Yang, Y. Cui, H. Pan, Z. Wang, B. Chen and G. Qian, *Journal of Materials Chemistry A*, 2014, **2**, 12571-12575.
- 2. J. Ye, W. Liu, J. Cai, S. Chen, X. Zhao, H. Zhou and L. Qi, *Journal of the American Chemical Society*, 2011, **133**, 933-940.
- 3. J. Kim and J. Cho, *Journal of the Electrochemical Society*, 2007, **154**, A542-A546.
- 4. N. Li, G. Liu, C. Zhen, F. Li, L. Zhang and H. M. Cheng, *Advanced Functional Materials*, 2011, **21**, 1717-1722.
- 5. J. H. Kirn, W. Choi, H.-G. Jung, S. H. Oh, K. Y. Chung, W. I. Cho, I. H. Oh and I. W. Nah, *Journal of Alloys and Compounds*, 2017, **690**, 390-396.
- 6. J. Yang, Y. Zhang, Y. Zhang, J. Shao, H. Geng, Y. Zhang, Y. Zheng, M. Ulaganathan, Z. Dai and B. Li, *Small*, 2017, **13**.
- 7. D. Zhang, G. Zhao, P. Li, Y. Zhang, W. Qiu, J. Shu, Y. Jiang, S. X. Dou and W. Sun, *Chemistry-A European Journal*, 2017.