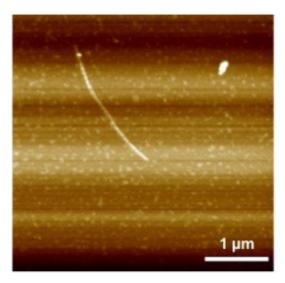
Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2019


Electronic Supplementary Information for

Development of biomineralization-inspired hybrids based on $\beta\text{-chitin}$ and zinc hydroxide carbonate and their conversion into zinc oxide thin films

David Kuo, Satoshi Kajiyama and Takashi Kato*

Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

*E-mail: kato@chiral.t.u-tokyo.ac.jp

Fig. S1 Atomic force microscope image of a β -chitin nanofiber.

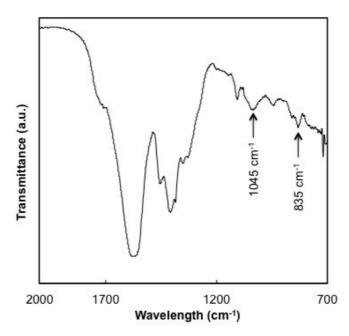
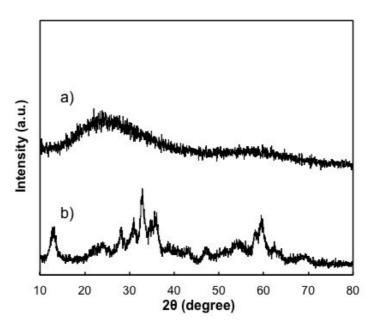
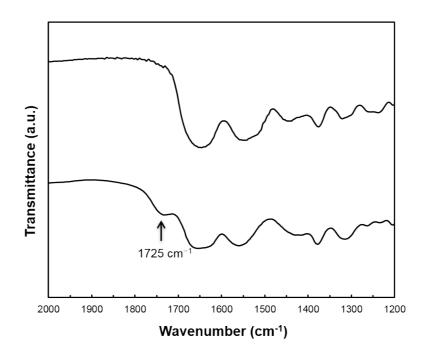




Fig. S2 FT-IR spectrum of chitin/ZHC hybrid with the presence of PAA.

Fig. S3 XRD patterns of zinc hydroxide carbonate precipitates formed a) with 3.6×10^{-2} wt% of PAA and b) in the absence of PAA.

Fig. S4 FT-IR of a) β -chitin and b) TEMPO-mediated oxidized β -chitin. The peak at 1725 cm⁻¹ is attributed to carboxylic acid group.