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S1. Synthesis strategy of the nucleopeptide.
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Figure S1. Synthesis strategy of the nucleopeptide.



S2. "THNMR spectra of the spacer peptide.

Intensity ratio of attributed protons.
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Figure S2. 'THNMR spectrum of the spacer peptide, Ac-(VE)s-CONH,.



S3. THNMR spectrum of the peptide main chain of the nucleopeptide.

Intensity ratios of attributed protons.

peptide main chain of Intensity ratio

the nucleopeptide

Experimental value Calculated value
Ac-VEVS-(VE);-CONH, abg:d:h 329:56:2 35:54:2
o o o o] 0 o] o]
f f f :
gHBC_H_N_CH_!l_n_TE_Ln_CH_LLn_cL_ll H_TH_L'_H_TLQ
C:He—CH3d (I:H2b T:—CHJd Tth Tl—é—CH?‘d c|:HZb
CH3d (l?Hza CH3d OH CH3d CHZ“:l
C=—=0 C=—0
b b /s
d
e
allp
h
c f g
|
A A
1 10 9 8 7 6 5 4 3 2 1 0

Chemical Shift (ppm)

Figure S3. '"HNMR spectrum of the peptide main chain of the nucleopeptide, Ac-VEVS-(VE);-
CONH..



S4. "THNMR spectrum of the nucleopeptide.

Intensity ratio of attributed proton.
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Figure S4.

THNMR spectrum of the nucleopeptide, Ac-VEVS(g(GC)3)(VE)-CONH..



S5. Arrangement of the nucleotide chains in the nanosheet at each molar ratio, and

growth mechanism of the nanosheets.
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Figure S5. (a); Ideal arrangements nucleopeptide and spacer peptide, which take p-sheet
conformation. (b); Schematic pictures of the 3D nucleopeptide/spacer peptide nanosheet,
whose molar ratio is 1:5. (c); Schematic diagram for the growth process of the
nucleopeptide/spacer peptide nanosheet, whose molar ratio is 1:6. We formed the assemblies

on mica substrate (Area; 2.0 x 10* m?) and STEM grid (Area; 5.6 x 105> m?). We prepared the



assemble by incubating each substrate in 5.0 mL (mica system) or 1.5 mL (STEM grid system)
of solutions (0.1 mM). The number of molecules of the peptide chains in the solution at the mica
and STEM grid systems are 3.0 x 107 and 9.0 x 10'®, respectively, and the molecular area of
the peptide chains is 2.9 nm2 per molecule. The total areas of the self-assembled peptide
chains on mica substrate and STEM grid, assuming that the peptide chains lay on the surface
as double layers, are 0.43 m? and 0.13 m?, respectively. These values are large enough
compared with the area of each substrate. Hence, the used amounts of the solution in this study

do not affect assembly formation on mica substrate and STEM grid.



S6. Deconvolutions of UV-Vis spectra to absorption and scattering components.
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Figure S6. UV-vis spectra of the self-assembly composed of the nucleopeptide and spacer
peptide in aqueous solutions (a) were separated to absorption spectra based on the base
paring (b) and scattering components (c) by peak deconvolution at various pH conditions (pH

6.5, pH 7.0, and pH 7.5), respectively. The molar ratio of the nucleopeptide and spacer peptide

was fixed at 1:5.



S7. TEM images of the nucleopeptide/spacer peptide aggregates obtained in the aqueous

solution at pH 6.5.

Figure S7. TEM images of the nucleopeptide/spacer peptide aggregates obtained in aqueous
solution at the pH 6.5 after (a); 7 days and (b); 16 days incubation at room temperature,
respectively. The molar ratio of the nucleopeptide and spacer peptide was fixed at 1:5. An
aliquot sample solution that incubated each period was placed on STEM grid. After adsorption

for 3 min, the excess solution was removed by absorption onto filter paper.



S8. Bright field- and dark field (DF)-TEM images and SAED pattern of the

nucleopeptide/spacer peptide nanosheet.
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Figure S8. Bright field- and dark field (DF)-TEM images and SAED pattern of the
nucleopeptide/spacer peptide nanosheet formed on STEM grids after 10 days incubation at

15°C under the pH 7.0. Molar ratio of the nucleopeptide and spacer peptide was fixed at 1:5.
DF-TEM images show the different domains attributed to each SAED spots (position 1-3).
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S9. AFM image of the nucleopeptide/spacer peptide nanosheet.
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Figure S9. AFM image of the nucleopeptide/spacer peptide nanosheet formed on mica for 7

days incubation under the pH 7.5 at 15°C. The molar ratio of the nucleopeptide and spacer

peptide was fixed at 1:6.
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S$10. EDX mapping data of the magnetite-nucleopeptide/spacer peptide hybrid nanosheet

after mineralization.
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Figure $10. TEM and dark field STEM images, and EDX mapping of the magnetite-
nucleopeptide/spacer peptide hybrid nanosheet after mineralization. The nanosheet formed on
STEM grid for 10 days incubation under the pH 7.5. The molar ratio of the nucleopeptide and

spacer peptide was fixed at 1:6. Mineralization was carried out for 7 days at 15°C.

S11. Section analysis profile of the magnetite-nucleopeptide/spacer peptide hybrid
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Figure S11. Section analysis profile of modulus and adhesion images at same AFM

observation spot in Figure 9(h) and (i).
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