Supporting Information for

In-Situ Synthesis of Edge-Enriched MoS₂ Hierarchical Nanorods with 1T/2H

Hybrid Phases for Highly Efficient Electrocatalytic Hydrogen Evolution

Chengwei Wang^a, HongFen Wang^a, Zhiping Lin^b, Wen Li^{*a}, Bo Lin^a, Wenzheng Qiu^a, Yu Quan^a, Zhaohui Liu^a, Shougang

Chen*a

a School of Materials Science & Engineering, Ocean University of China, Qingdao, 266100, PR China

b School of Advanced Study, Taizhou University, 318000, PR China

Figure S1. (a) SEM image and (b) TEM images of the as-prepared MoO₃ templates; (c) XRD spectra of the as-prepared MoO₃ templates

Catalysts	Electrode/supporting materials	electrolyte	η10 (mV)	Tafel (mV/dec)	Ref.
Mo ₂ C	Glass carbon	0.5 M H ₂ SO ₄	150	55	1
(1T/2H) MoS ₂ /a-MoO ₃ nanoflowers	Glass carbon	0.5 M H ₂ SO ₄	232	81	2
1T MoSSe nanodots	Glass carbon	0.5 M H ₂ SO ₄	140	40	3
$1T/2H-MoS_2$ nanosheets	Glass carbon	$0.5 \ M \ H_2 SO_4$	220	61	4
1T/2H MoS ₂	Glass carbon	0.5 M H ₂ SO ₄	234	46	5
Defect-rich MoS ₂ nanowall	Glass carbon	0.5 M H ₂ SO ₄	95	78	6
MoO ₂ /MoSe ₂ Core–Shell Nanosheet Arrays	Glass carbon	0.5 M H ₂ SO ₄	181	49.1	7
Metallic-phase MoS ₂	Glass carbon	0.5 M H ₂ SO ₄	175	41	8
Strained vacancy MoS ₂	Glass carbon	0.5 M H ₂ SO ₄	170	60	9
Flower-like MoS ₂ nanosheet film	Glass carbon	0.5 M H ₂ SO ₄	200	49	10
Porous 1T MoS ₂	Glass carbon	0.5 M H ₂ SO ₄	153	43	11
Ni–Co–MoS ₂ Nanoboxes	Glass carbon	0.5 M H ₂ SO ₄	155	51	12
MoS ₂ /carbon hybrids	Glass carbon	$0.5 \mathrm{~M~H_2SO_4}$	216	64	13
1T/2H-MoS ₂ hierarchical nanorods	Glass carbon	0.5 M H ₂ SO ₄	156	47.9	This work

Table 1 Summary of hydrogen evolution reaction performance of Mo-based electrocatalysts.

Figure S2. (a)FTIR spectrum, (b) DSC/TGA analyzation of the 1T/2H-MoS₂-HN sample

The absorption peak at 1597 cm⁻¹ was attributed to the bending vibration of surface water, and the absorption peak at 1403 cm⁻¹ is attributed to the NH₄⁺ group (Figure S2a). The DSC curve of 1T/2H-MoS₂-HN (Figure S2 b) shows obvious endothermic peaks at 96.5 °C, 237.7 °C and 468.3°C, respectively, corresponding to the mass loss steps. The first mass loss step at 96.5 °C can be attributed to the release of the inserted water, H₃O⁺ and possible NH₃ (4%).⁵ The second mass loss step can be attributed to the deintercalation of inserted NH₄⁺(3%).^{14,15} Besides, the peaks at a remarkable exothermic peak emerges at 237.7°C, revealing a structural conversion from the metastable 1T MoS₂ to the stable 2H MoS₂, which is much higher than the transformation temperature (95 °C) of the monolayer 1T phase. Therefore, it can be concluded that the guest species of NH₄⁺ in 1T/2H-MoS₂-HN could stable the 1T phase. The third mass loss step can be attribute to the transformation from amorphous MoS₃ to MoS₂(2%). And there is also an exothermic peak at 468.3°C caused by the structure conversion and the transformation from amorphous MoS₃ to MoS₂.¹⁶⁻²⁰

Figure S3. (a) X-ray photoelectron spectroscopy survey data, (b) X-ray photoelectron spectroscopy of N_{1s}.

Figure S4. (a) The N₂ adsorption/desorption isotherms and (b) corresponding pore size distribution.

Figure S5. SEM and TEM images of the purchased MoS_2

Figure S6. (a) SEM image, (b) TEM image of the $2H-MoS_2-HN$

References

- 1. J. Dong, Q. Wu, C. Huang, W. Yao and Q. Xu, *Journal of Materials Chemistry A*, 2018, 6, 10028–10035.
- A. Manikandan, P. R. Ilango, C.-W. Chen, Y.-C. Wang, Y.-C. Shih, L. Lee, Z. M. Wang, H. Ko and Y.-L. Chueh, *Journal of Materials Chemistry A*, 2018, 6, 15320-15329.
- C. Tan, Z. Luo, A. Chaturvedi, Y. Cai, Y. Du, Y. Gong, Y. Huang, Z. Lai, X. Zhang, L. Zheng,
 X. Qi, M. H. Goh, J. Wang, S. Han, X. J. Wu, L. Gu, C. Kloc and H. Zhang, *Adv Mater*, 2018, 30.
- 4. Z. Liu, Z. Gao, Y. Liu, M. Xia, R. Wang and N. Li, *ACS Appl Mater Interfaces*, 2017, 9, 25291-25297.
- D. Wang, X. Zhang, S. Bao, Z. Zhang, H. Fei and Z. Wu, *Journal of Materials Chemistry A*, 2017, 5, 2681-2688.
- 6. J. Xie, H. Qu, J. Xin, X. Zhang, G. Cui, X. Zhang, J. Bao, B. Tang and Y. Xie, *Nano Research*, 2017, 10, 1178-1188.
- X. Chen, G. Liu, W. Zheng, W. Feng, W. Cao, W. Hu and P. Hu, Advanced Functional Materials, 2016, 26, 8537-8544.
- H. Deng, C. Zhang, Y. Xie, T. Tumlin, L. Giri, S. P. Karna and J. Lin, *Journal of Materials Chemistry A*, 2016, 4, 6824–6830.
- X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F. Watanabe, J. Cui and T. P. Chen, *Nat Commun*, 2016, 7, 10672.
- H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Norskov and X. Zheng, *Nat Mater*, 2016, 15, 364.
- 11. F. Z. Wang, M. J. Zheng, B. Zhang, C. Q. Zhu, Q. Li, L. Ma and W. Z. Shen, *Sci Rep*, 2016, 6, 31092.
- Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang, Z. Zhang, P. Zhang, X. Cao, B. Song and S. Jin, *J Am Chem Soc*, 2016, 138, 7965–7972.
- 13. X. Y. Yu, Y. Feng, Y. Jeon, B. Guan, X. W. Lou and U. Paik, Adv Mater, 2016, 28, 9006-9011.
- A. Anto Jeffery, C. Nethravathi and M. Rajamathi, *The Journal of Physical Chemistry C*, 2014, 118, 1386-1396.
- 15. Z. Wu, C. Tang, P. Zhou, Z. Liu, Y. Xu, D. Wang and B. Fang, *Journal of Materials Chemistry A*, 2015, 3, 13050-13056.
- 16. J. Zhang, S. P. Hu, Y. L. Feng, B. Xu and Y. H. Guo, *Advanced Materials Research*, 2011, 287–290, 2049–2052.
- 17. P. K. Panigrahi and A. Pathak, *Journal of Nanoparticles*, 2013, 2013, 1-10.
- Q. Van Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang and S. Y. Kim, Advanced Optical Materials, 2016, 4, 1796-1804.
- 19. Z. Ye, J. Yang, B. Li, L. Shi, H. Ji, L. Song and H. Xu, *Small*, 2017, 13.
- 20. M. A. R. Anjum, H. Y. Jeong, M. H. Lee, H. S. Shin and J. S. Lee, *Adv Mater*, 2018, 30, e1707105.