Supporting Information

In-situ growth of Silver Bismuth Sulfide Nanorod Arrays and Application to Solar Cells

Yulei Wu^{a, b}, Li Wan^a, Wenxiao Zhang^{a, b}, Xiaodong Li^{a, b} and Junfeng Fang^{*a, b, c}

a Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, China.

b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

c School of Physics and Materials Science, Ministry of Education Nanophotonics & Advanced Instrument Engineering Research Center, East China Normal University, Shanghai 200062, China

Fig. S1 TGA curve obtained by in situ drying of the AgBiS₂ precursor solution. The concentration of AgBiS₂ precusor is 0.4M. From a to b, the weight was about 80% which equalled to the evaporation of solvent DMSO. The AgBiS₂ precursor decomposition and the thiourea evaporation/decomposition lead to the weight loss from b to c, about 10% remained at the flat range. Inset: a picture of AgBiS₂ precursor solution.

Fig. S2 XRD of $AgBiS_2$, Bi_2S_3 and FTO.

Fig. S3 EDX elemental mapping images of a) Ag, b) Bi, c) S corresponding to the white line square area in (d).

Fig. S4 EDX spectrum of the $AgBiS_2$ nanorod-array film.

Fig. S5 TEM-EDX distribution mapping for Ag, Bi, and S in an $AgBiS_2$ single nanorod.

Fig. S6 Cross-sectional SEM images of different spin loops for AgBiS₂ film on FTO: a) to h) corresponding to 1spin loop to 8 spin loops.

Fig. S7 Top-view SEM images of different spin loops for AgBiS₂ film on FTO: a) to h) corresponding to 1spin loop to 8 spin loops.

Fig. S8 Ultraviolet photoelectron spectroscopy (UPS) is used to determine the Fermi energy (EF) and the valence band energy (E_v) level or HOMO. E_F is calculated from the equation: E_F (Fermi energy) = 21.21 eV (He I) - E_{cutoff} . HOMO = $E_F + E_{end}$; LUMO = HOMO - E_g (Band gap).

Fig. S9 AgBiS₂ solar cells with P3HT, PTB7, PTB7-th as hole transport layers for comparison.

Materia	al $V_{oc}(V)$	J _{sc} (mA/cm ²)) FF (%)	PCE (%)
РЗНТ	0.211	15.679	37.466	1.238
PTB7	0.200	16.853	35.605	1.199
PTB7-t	h 0.190	16.644	36.134	1.144

Table S1 The parameters of $AgBiS_2$ solar cells with different hole transport layers.