Supporting Information

Photomechanical bending behavior of photochromic diarylethene crystals induced under polarized light

Akira Hirano, Daichi Kitagawa and Seiya Kobatake*

Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

*E-mail: kobatake@a-chem.eng.osaka-cu.ac.jp

Contents

Figures and Videos

Table S1. Crystallographic data for diarylethenes 1a and 2a.

Figure S1. Photomechanical bending behavior with non-polarized UV light and visible light for crystals 1a (a) and 2a (b).

Figure S2. (a) The definition of rotation angle θ and absorption anisotropy of the closed-ring isomer in crystals **1a** (b) and **2a** (c).

Figure S3. Spectrum of the incident visible light.

Video S1. Photomechanical crystal bending behavior upon irradiation with UV light at θ_{\min} from left side and following irradiation with white light from right side.

Video S2. Photomechanical crystal bending behavior upon irradiation with UV light at θ_{max} from left side followed by irradiation with visible light from right side.

Video S3. Photomechanical crystal bending behavior upon irradiation with UV light at θ_{\min} from left side followed by irradiation with visible light from left side.

Video S4. Photomechanical crystal bending behavior upon irradiation with UV light at θ_{max} from left side followed by irradiation with visible light from left side.

 $Table \ S1. \ Crystallographic \ data \ for \ diarylethenes \ 1a \ and \ 2a.$

	1a	2a
Formula	$C_{51}H_{34}F_6O_4S_2\\$	$C_{29}H_{22}F_6O_2S_2$
Formula weight	888.92	580.59
Temperature / K	138(2)	293(2)
Crystal system	triclinic	monoclinic
Space group	$P\overline{1}$	<i>P</i> 2 ₁ /c
a / Å	6.838(2)	18.727(4)
b/Å	15.416(6)	6.643(1)
c /Å	20.719(8)	21.459(4)
α/°	70.74(3)	90
β/°	88.28(3)	101.035(3)
γ / °	89.84(3)	90
Volume /Å ³	2060.9(13)	2620.1(9)
Z	2	4
Density / g cm ⁻³	1.432	1.472
Goodness-of-fit on F^2	1.046	0.962
$R[I > 2\sigma(I)]$	$R_1 = 0.0442$	$R_1 = 0.0389$
	$wR_2 = 0.0868$	$wR_2 = 0.0878$
R (all data)	$R_1 = 0.0864$	$R_1 = 0.0810$
	$wR_2 = 0.0912$	$wR_2 = 0.1019$
CCDC No.	942519	185945
Reference	S1	S2

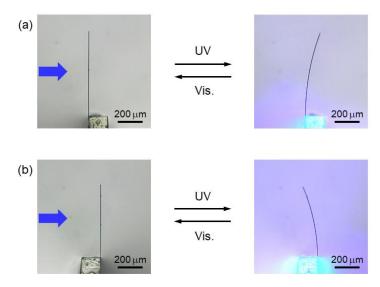
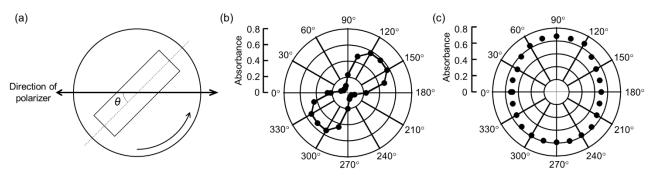
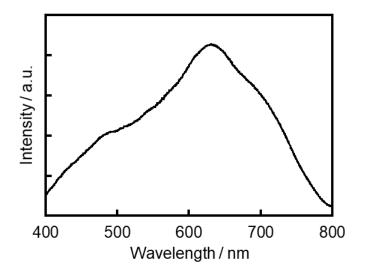




Figure S1. Photomechanical bending behavior with non-polarized UV light and visible light for crystals 1a (a) and 2a (b).

Figure S2. (a) The definition of rotation angle θ and absorption anisotropy of the closed-ring isomer in crystals **1a** (b) and **2a** (c).

Figure S3. Spectrum of the incident visible light.

Reference

- S1 D. Kitagawa and S. Kobatake, J. Phys. Chem. C, 2013, 117, 20887–20892.
- S2 M. Morimoto, S. Kobatake and M. Irie, *Chem.* Eur. J., **2003**, 9, 621–627.