Nitranilic acid as a basis for construction of coordination polymers: from discrete monomers to 3D networks

Supplement

Valentina Milašinović and Krešimir Molčanov

Ruđer Bošković Institute, Bijenička 54, Zagreb HR-10000, Croatia

e-mail: kmolcano@irb.hr

Figure S1 ORTEP-3 drawing of **1** with the atom numbering scheme: (a) basic structural unit of coordination polymer and (b) $[Fe(bpy)_3]^{2+}$ cation. Displacement ellipsoids are drawn for the probability of 30% and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S2 ORTEP-3 drawing of **2** with the atom numbering scheme: (a) basic structural unit of coordination polymer and (b) $[Fe(bpy)_3]^{2+}$ cations and 2,2'-bipyridine. Displacement ellipsoids are drawn for the probability of 30% and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S3 ORTEP-3 drawings of complexes in **3** and **4** with the atom numbering schemes. Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S4 ORTEP-3 drawing of an asymmetric unit of **5** with the atom numbering scheme. Displacement ellipsoids are drawn for the probability of 70% and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S5 ORTEP-3 drawing of a basic structural unit of **6** with the atom numbering scheme. Displacement ellipsoids are drawn for the probability of 70% and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S6 Coordination of silver atoms in **5** represented as Voronoi-Dirichlet polyhedra. a) Ag1 is coordinated by five O atoms and an additional weaker Ag...O contact (Ag1...O4A^{*i*}); b) Ag2 is coordinated by four O atoms and two additional Ag...O contacts (Ag2...O1B^{*i*} and Ag2...O2A^{*iv*}). Faces corresponding to close Ag...O contacts are approximately half-size of those corresponding to Ag-O bonds. Symmetry operators: *i*) 1-x, 1-y, 1-z, *ii*) 1-x, 1-y, -z; *iii*) -1+x, *y*, 1+z, *iv*) -x, -y, 1-z.

Figure S7 Coordination of silver atom in **6** represented as a Voronoi-Dirichlet polyhedron. Symmetry operators: *i*) 1/2-x, -y, -1/2+z; *ii*) x, 1/2-y, -1/2+z; *iii*) 1-x, -y, 1-z; *iv*) -x, -y, 1-z; *v*) -1/2+x, 1/2-y, 1-z.

Figure S8 Topological representation of a hcb network in 2.

Table S1 Geometric parameters of the metal coordination spheres (Å, °). Symmetry operators: *i*) 1-*y*, -1+*x*-*y*, *z*; *ii*) 2-*x*+*y*, 1-*x*, *z*; *iii*) 1+*y*, -1+*x*, 1/2-*z*; *iv*) 2-*x*, 1-*x*+*y*, 1/2-*z*; *v*) *x*-*y*, -*y*, 1/2-*z*; *vi*) *x*, *y*, -1+*z*; *viii*) *x*, *y*, 1+*z*; *viii*) 1-*x*, -1/2+*y*, -*z*; *ix*) 1-*x*, 1/2+*y*, -*z*; *x*) 3/2-*x*,*y*,-*z*; *xi*) -1+*x*, *y*,1+*z*; *xiii*) 1+*x*, *y*, -1+*z*; *xiii*) 1-*x*, 1-*y*, -*z*; *xiv*) 1-*x*, 1-*y*, 1-*z*: *xv*) 1/2-*x*, -*y*, -1/2+*z*; *xvii*) 1/2-*x*, -*y*, 1/2+*z*; *xviii*) -1/2+*x*, 1/2-*y*, 1-*z*; *xviii*) 1/2+*x*, 1/2-*y*, 1-*z*; *xix*) -*x*, -*y*, 1-*z*; *xxi*) 1-*x*, -*y*, 1-*z*; *xxii*) *x*, 1/2-*y*, -1/2+*z*; *xxii*) *x*, 1/2-*y*, 1/2+*z*.

1				2	
Na1–O1	2.336(6)	Na1–O3	2.408(4)	Na2–O1	2.450(5)
Na1–O1 i	2.336(7)	Na1–O3B	2.509(7)	Na2–O2	2.412(7)
Na1–O1 ^{<i>ii</i>}	2.336(8)	Na1–O4	2.477(6)	Na2–O1A ^{vi}	2.432(6)
Na1–O1 ⁱⁱⁱ	2.336(6)	Na1–O4A	2.311(9)	Na2–O2A ^{vi}	2.428(4)
Na1–O1 ^{iv}	2.336(7)	Na1–O4B	2.366(8)	Na2–O1B ^{ix}	2.442(7)
Na1–O1 ^v	2.336(8)	Na1–O7A	2.493(6)	Na2–O2B ^{ix}	2.420(7)
$O1-Na1-O1^i$	100.3(2)	O3–Na1–O3B	107.69(19)	O1–Na2–O2	65.53(16)
O1–Na1–O1 ^{<i>ii</i>}	100.3(2)	O3–Na1–O4	64.77(15)	O1–Na2–O1A ^{vi}	104.7(2)
O1–Na1–O1 ⁱⁱⁱ	165.07(19)	O3–Na1–O4A	88.1(2)	O1–Na2–O2A ^{vi}	168.8(3)
O1–Na1–O1 ^{iv}	92.0(2)	O3–Na1–O4B	88.2(2)	O1–Na2–O1B ^{ix}	95.07(17)

$O1-Na1-O1^{\nu}$	69.0(2)	O3–Na1–O7A	150.2(3)	O1–Na2–O2B ^{ix}	100.80(18)	
O1 ^{<i>i</i>} –Na1–O1 ^{<i>ii</i>}	100.3(2)	O3B-Na1-O4	168.6(2) O2–Na2–O1 $A^{\nu i}$		83.1(2)	
O1 ^{<i>i</i>} —Na1–O1 ^{<i>iii</i>}	69.0(2)	O3B–Na1–O4A	101.1(2) O2–Na2–O2 A^{vi}		106.25(19)	
O1 ^{<i>i</i>} –Na1–O1 ^{<i>iv</i>}	165.1(3)	O3B–Na1–O4B	63.7(2)	O2–Na2–O1B ^{ix}	106.94(16)	
O1 ^{<i>i</i>} –Na1–O1 ^{<i>v</i>}	92.0(2)	O3B–Na1–O7A	92.6(2)	O2–Na2–O2B ^{ix}	164.30(15)	
O1 ^{<i>ii</i>} –Na1–O1 ^{<i>iii</i>}	92.0(2)	O4-Na1-O4A	87.5(3)	O1A ^a –Na2–O2A ^{vi}	65.87(16)	
O1 ^{<i>ii</i>} –Na1–O1 ^{<i>iv</i>}	69.0(2)	O4–Na1–O4B	106.5(2)	O1A ^a –Na2–O1B ^{ix}	160.20(17)	
O1 ^{<i>ii</i>} –Na1–O1 ^{<i>v</i>}	165.1(2)	04-Na1-07A	97.7(2)	O1A ^a –Na2–O2B ^{ix}	108.83(16)	
O1 ⁱⁱⁱ –Na1–O1 ^{iv}	100.3(2)	O4A-Na1-O4B	162.3(3)	O2A ^a –Na2–O1B ^{ix}	94.6(2)	
O1 ^{<i>iii</i>} –Na1–O1 ^{<i>v</i>}	100.3(2)	O4A–Na1–O7A	66.2(2)	O2A ^a –Na2–O2B ^{ix}	88.29(19)	
O1 ^{<i>iv</i>} –Na1–O1 ^{<i>v</i>}	100.3(2)	O4B–Na1–O7A	120.9(3)	O1B ^d –Na2–O2B ^{ix}	65.07(19)	
Na1–O1–C1	119.2(5)	Na1-O3-C4	121.5(3)	Na2O1C1	120.1(3)	
		Na1–O3B–C4B	120.4(3)	C1A–O1A–Na2 ^{vii}	120.7(4)	
		Na104C5	119.3(3)	C1B–O1B–Na2 ^{viii}	121.7(3)	
		Na1–O4A–C5A	141.7(4)	Na2O2C2	122.2(3)	
		Na1–O4B–C5B	125.7(5)	C2A–O2A–Na2 ^{vii}	119.6(4)	
		Na1–O7A–N2A	141.4(6)	C2B–O2B–Na2viii	121.9(3)	
	3	Na1–O7A–N2A 4	141.4(6)	C2B–O2B–Na2 ^{viii}	121.9(3)	
M*1-01	3 2.050(2)	Na1–O7A–N2A 4 2.115(2)	141.4(6) Ag1–O1.	C2B-O2B-Na2 ^{viii} 5 A 2.431(2)	121.9(3) Ag2–O3A	2.343(2)
M*1–O1 M*1–O2	3 2.050(2) 2.146(2)	Na1–O7A–N2A 4 2.115(2) 2.075(2)	141.4(6) Ag1–O1. Ag1–O1	C2B-O2B-Na2 ^{viii} 5 A 2.431(2) B 2.330(3)	121.9(3) Ag2–O3A Ag2–O4A	2.343(2) 2.402(3)
M*1–O1 M*1–O2 M*1–O5	3 2.050(2) 2.146(2) 2.019(2)	Na1–O7A–N2A 4 2.115(2) 2.075(2) 2.072(3)	141.4(6) Ag1–O1. Ag1–O1. Ag1–O2.	C2B-O2B-Na2 ^{viii} 5 A 2.431(2) B 2.330(3) A 2.364(3)	121.9(3) Ag2–O3A Ag2–O4A Ag2–O3B ^{xi}	2.343(2) 2.402(3) 2.404(3)
M*1–O1 M*1–O2 M*1–O5 M*1–O1 ^x	3 2.050(2) 2.146(2) 2.019(2) 2.050(2)	Na1–O7A–N2A 4 2.115(2) 2.075(2) 2.072(3) 2.115(2)	141.4(6) Ag1-O1 Ag1-O1 Ag1-O2 Ag1-O2	C2B-O2B-Na2 ^{viii} 5 A 2.431(2) B 2.330(3) A 2.364(3) B 2.480(3)	121.9(3) Ag2–O3A Ag2–O4A Ag2–O3B ^{xi} Ag2–O4B ^{xi}	2.343(2) 2.402(3) 2.404(3) 2.324(3)
M*1–O1 M*1–O2 M*1–O5 M*1–O1 ^x M*1–O2 ^x	3 2.050(2) 2.146(2) 2.019(2) 2.050(2) 2.146(2)	Na1–O7A–N2A 4 2.115(2) 2.075(2) 2.072(3) 2.115(2) 2.075(2)	141.4(6) Ag1-O1 Ag1-O1 Ag1-O2 Ag1-O2 Ag1-O3B	C2B-O2B-Na2 ^{viii} 5 A 2.431(2) B 2.330(3) A 2.364(3) B 2.480(3) gxiii 2.640(3)	121.9(3) Ag2–O3A Ag2–O4A Ag2–O3B ^{xi} Ag2–O4B ^{xi} Ag2–O1B ^{xiv}	2.343(2) 2.402(3) 2.404(3) 2.324(3) 2.837(3)
M*1–O1 M*1–O2 M*1–O5 M*1–O1 ^x M*1–O2 ^x M*1–O5 ^x	3 2.050(2) 2.146(2) 2.019(2) 2.050(2) 2.146(2) 2.019(2)	Na1–O7A–N2A 4 2.115(2) 2.075(2) 2.072(3) 2.115(2) 2.075(2) 2.075(2) 2.075(2) 2.075(2) 2.075(2)	141.4(6) Ag1-O1 Ag1-O1 Ag1-O2 Ag1-O2 Ag1-O3B Ag1-O4A	C2B-O2B-Na2 ^{viii} 5 A 2.431(2) B 2.330(3) A 2.364(3) B 2.480(3) xiii 2.640(3) xiiv 2.801(3)	121.9(3) Ag2–O3A Ag2–O4A Ag2–O3B ^{xi} Ag2–O4B ^{xi} Ag2–O1B ^{xiv} O3A–Ag2–O4A	2.343(2) 2.402(3) 2.404(3) 2.324(3) 2.837(3) 67.95(8)
M*1–O1 M*1–O2 M*1–O5 M*1–O1 ^x M*1–O2 ^x M*1–O5 ^x O1–M*1–O2	3 2.050(2) 2.146(2) 2.019(2) 2.050(2) 2.146(2) 2.019(2) 77.32(8)	Na1–O7A–N2A 4 2.115(2) 2.075(2) 2.072(3) 2.115(2) 2.075(2) 2.075(2) 2.075(2) 2.075(2) 2.075(2) 2.075(2) 2.075(2) 2.075(2) 2.072(3) 76.96(9)	141.4(6) Ag1-O1. Ag1-O1. Ag1-O2. Ag1-O2. Ag1-O3B Ag1-O4A O1A-Ag1-	C2B-O2B-Na2 ^{viii} 5 A 2.431(2) B 2.330(3) A 2.364(3) B 2.480(3) xiii 2.640(3) xxiv 2.801(3) O1B 153.38(9)	121.9(3) Ag2–O3A Ag2–O4A Ag2–O4B ^{xi} Ag2–O4B ^{xi} Ag2–O1B ^{xiv} O3A–Ag2–O4A O3A–Ag2–O3B ^{xi}	2.343(2) 2.402(3) 2.404(3) 2.324(3) 2.837(3) 67.95(8) 171.65(9)
M*1–O1 M*1–O2 M*1–O5 M*1–O1 ^x M*1–O2 ^x M*1–O5 ^x O1–M*1–O2 O1–M*1–O5	3 2.050(2) 2.146(2) 2.019(2) 2.050(2) 2.146(2) 2.019(2) 77.32(8) 172.41(9)	Na1–O7A–N2A 4 2.115(2) 2.075(2) 2.072(3) 2.115(2) 2.075(2) 2.075(2) 2.075(2) 2.075(2) 2.075(2) 2.075(2) 2.075(2) 2.072(3) 76.96(9) 172.25(10)	141.4(6) Ag1-O1 Ag1-O1 Ag1-O2 Ag1-O2 Ag1-O3B Ag1-O4A O1A-Ag1-4	C2B–O2B–Na2 ^{viii} 5 A 2.431(2) B 2.330(3) A 2.364(3) B 2.480(3) axiv 2.640(3) O1B 153.38(9) O2A 67.53(8)	121.9(3) Ag2–O3A Ag2–O4A Ag2–O4B ^{xi} Ag2–O4B ^{xi} Ag2–O1B ^{xiv} O3A–Ag2–O4A O3A–Ag2–O4B ^{xi} O3A–Ag2–O4B ^{xi}	2.343(2) 2.402(3) 2.404(3) 2.324(3) 2.837(3) 67.95(8) 171.65(9) 106.54(9)
M*1–O1 M*1–O2 M*1–O5 M*1–O1 ^x M*1–O2 ^x M*1–O5 ^x O1–M*1–O2 O1–M*1–O5 O1–M*1–O1 ^x	3 2.050(2) 2.146(2) 2.019(2) 2.050(2) 2.146(2) 2.019(2) 77.32(8) 172.41(9) 97.63(8)	Na1–O7A–N2A 4 2.115(2) 2.075(2) 2.072(3) 2.115(2) 2.075(2) 2.075(2) 2.075(2) 2.072(3) 76.96(9) 172.25(10) 98.57(10)	141.4(6) Ag1-O1 Ag1-O1 Ag1-O2 Ag1-O2 Ag1-O3 Ag1-O3 Ag1-O4A O1A-Ag1- O1A-Ag1- O1A-Ag1-	C2B-O2B-Na2 ^{viii} 5 A 2.431(2) B 2.330(3) A 2.364(3) B 2.480(3) xiii 2.640(3) xiiv 2.801(3) O1B 153.38(9) O2A 67.53(8) O2B 96.32(8)	121.9(3) Ag2–O3A Ag2–O4A Ag2–O4B ^{xi} Ag2–O4B ^{xi} Ag2–O4B ^{xi} O3A–Ag2–O4A O3A–Ag2–O4B ^{xi} O3A–Ag2–O4B ^{xi} O3A–Ag2–O4B ^{xi}	2.343(2) 2.402(3) 2.404(3) 2.324(3) 2.837(3) 67.95(8) 171.65(9) 106.54(9) 114.91(8)
M*1–O1 M*1–O2 M*1–O5 M*1–O1 ^x M*1–O2 ^x M*1–O5 ^x O1–M*1–O2 O1–M*1–O5 O1–M*1–O1 ^x O1–M*1–O1 ^x	3 2.050(2) 2.146(2) 2.019(2) 2.050(2) 2.146(2) 2.019(2) 77.32(8) 172.41(9) 97.63(8) 91.15(8)	Na1-O7A-N2A 4 2.115(2) 2.075(2) 2.072(3) 2.115(2) 2.075(2) 2.075(2) 2.072(3) 76.96(9) 172.25(10) 98.57(10) 91.68(9)	141.4(6) Ag1-O1 Ag1-O1 Ag1-O2 Ag1-O2 Ag1-O3 Ag1-O3 Ag1-O3 O1A-Ag1-0 O1A-Ag1-0 O1A-Ag1-0	C2B–O2B–Na2 ^{viii} 5 A 2.431(2) B 2.330(3) A 2.364(3) B 2.480(3) xviii 2.640(3) xxiv 2.801(3) O1B 153.38(9) O2A 67.53(8) O2B 96.32(8) O3B ^{xiii} 102.30(8)	121.9(3) Ag2–O3A Ag2–O4A Ag2–O4B ^{xi} Ag2–O4B ^{xi} Ag2–O4B ^{xi} Ag2–O1B ^{xiv} O3A–Ag2–O4A O3A–Ag2–O4B ^{xi} O3A–Ag2–O4B ^{xi} O3A–Ag2–O1B ^{xiv} O4A–Ag2–O3B ^{xi}	2.343(2) 2.402(3) 2.404(3) 2.324(3) 2.837(3) 67.95(8) 171.65(9) 106.54(9) 114.91(8) 118.49(8)
$M*1-O1$ $M*1-O2$ $M*1-O5$ $M*1-O1^{x}$ $M*1-O2^{x}$ $M*1-O5^{x}$ $O1-M*1-O2$ $O1-M*1-O5$ $O1-M*1-O1^{x}$ $O1-M*1-O2^{x}$ $O1-M*1-O2^{x}$ $O1-M*1-O2^{x}$	3 2.050(2) 2.146(2) 2.019(2) 2.050(2) 2.146(2) 2.019(2) 77.32(8) 172.41(9) 97.63(8) 91.15(8) 88.45(9)	Na1-O7A-N2A 4 2.115(2) 2.075(2) 2.072(3) 2.115(2) 2.075(2) 2.075(2) 2.075(2) 2.075(2) 2.072(3) 76.96(9) 172.25(10) 98.57(10) 91.68(9) 87.33(10)	141.4(6) Ag1-O1 Ag1-O1 Ag1-O2 Ag1-O2 Ag1-O3 Ag1-O3 Ag1-O3 Ag1-O4A O1A-Ag1-0 O1A-Ag1-0 O1A-Ag1-0 O1A-Ag1-0	C2B–O2B–Na2 ^{viii} 5 A 2.431(2) B 2.330(3) A 2.364(3) B 2.480(3) xiii 2.640(3) xiiv 2.801(3) O1B 153.38(9) O2A 67.53(8) O2B 96.32(8) O3B ^{xiii} 102.30(8) O4A ^{xiv} 88.21(8)	121.9(3) Ag2–O3A Ag2–O4A Ag2–O4B ^{xi} Ag2–O4B ^{xi} Ag2–O4B ^{xi} Ag2–O1B ^{xiv} O3A–Ag2–O4A O3A–Ag2–O4B ^{xi} O3A–Ag2–O4B ^{xi} O3A–Ag2–O1B ^{xiv} O4A–Ag2–O3B ^{xi}	2.343(2) 2.402(3) 2.404(3) 2.324(3) 2.324(3) 2.837(3) 67.95(8) 171.65(9) 106.54(9) 114.91(8) 118.49(8) 165.50(9)
$M*1-O1$ $M*1-O2$ $M*1-O5$ $M*1-O1^{x}$ $M*1-O2^{x}$ $M*1-O5^{x}$ $O1-M*1-O2$ $O1-M*1-O5$ $O1-M*1-O1^{x}$ $O1-M*1-O2^{x}$ $O1-M*1-O2^{x}$ $O1-M*1-O5^{x}$ $O2-M*1-O5$	3 2.050(2) 2.146(2) 2.019(2) 2.050(2) 2.146(2) 2.019(2) 77.32(8) 172.41(9) 97.63(8) 91.15(8) 88.45(9) 98.11(8)	Na1-O7A-N2A 4 2.115(2) 2.075(2) 2.072(3) 2.115(2) 2.075(2) 2.075(2) 2.075(2) 2.072(3) 76.96(9) 172.25(10) 98.57(10) 91.68(9) 87.33(10) 97.94(10)	141.4(6) Ag1-O1 Ag1-O1 Ag1-O2 Ag1-O2 Ag1-O2 Ag1-O3 Ag1-O3 Ag1-O4A O1A-Ag1-0 O1A-Ag1-0 O1A-Ag1-0 O1A-Ag1-0 O1A-Ag1-0 O1A-Ag1-0	C2B–O2B–Na2viii 5 A 2.431(2) B 2.330(3) A 2.364(3) B 2.480(3) xiii 2.640(3) xiiv 2.801(3) O1B 153.38(9) O2A 67.53(8) O2B 96.32(8) O3B ^{xiii} 102.30(8) O4A ^{xiv} 88.21(8) O2A 135.51(8)	121.9(3) Ag2–O3A Ag2–O4A Ag2–O4A Ag2–O4B ^{xi} Ag2–O4B ^{xi} Ag2–O1B ^{xiv} O3A–Ag2–O4A O3A–Ag2–O4A O3A–Ag2–O4B ^{xi} O3A–Ag2–O4B ^{xi} O4A–Ag2–O4B ^{xi} O4A–Ag2–O4B ^{xi}	2.343(2) 2.402(3) 2.404(3) 2.324(3) 2.324(3) 2.837(3) 67.95(8) 171.65(9) 106.54(9) 114.91(8) 118.49(8) 165.50(9) 77.47(8)
$M*1-O1$ $M*1-O2$ $M*1-O5$ $M*1-O1^{x}$ $M*1-O2^{x}$ $M*1-O5^{x}$ $O1-M*1-O2$ $O1-M*1-O5$ $O1-M*1-O1^{x}$ $O1-M*1-O2^{x}$ $O1-M*1-O5^{x}$ $O2-M*1-O5$ $O2-M*1-O1^{x}$	3 2.050(2) 2.146(2) 2.019(2) 2.050(2) 2.146(2) 2.019(2) 77.32(8) 172.41(9) 97.63(8) 91.15(8) 88.45(9) 98.11(8) 91.15(8)	Na1-O7A-N2A 4 2.115(2) 2.075(2) 2.072(3) 2.115(2) 2.075(2) 2.075(2) 2.075(2) 2.072(3) 76.96(9) 172.25(10) 98.57(10) 91.68(9) 87.33(10) 97.94(10) 91.68(9)	141.4(6) Ag1-O1 Ag1-O1 Ag1-O2 Ag1-O2 Ag1-O2 Ag1-O3 Ag1-O3 Ag1-O3 Ag1-O3 Ag1-O4 O1 O1A-Ag1-0 O1A-Ag1-0 O1A-Ag1-0 O1A-Ag1-0 O1A-Ag1-0 O1B-Ag1-0	C2B-O2B-Na2viii 5 A 2.431(2) B 2.330(3) A 2.364(3) B 2.480(3) xiii 2.640(3) xxiv 2.801(3) O1B 153.38(9) O2A 67.53(8) O2B 96.32(8) O3B ^{xiii} 102.30(8) O4A ^{xiv} 88.21(8) O2B 66.95(8)	121.9(3) Ag2–O3A Ag2–O4A Ag2–O4A Ag2–O4B ^{xi} Ag2–O4B ^{xi} Ag2–O4B ^{xi} O3A–Ag2–O4A O3A–Ag2–O4B ^{xi} O3A–Ag2–O4B ^{xi} O4A–Ag2–O4B ^{xi} O4A–Ag2–O4B ^{xi} O4A–Ag2–O4B ^{xi}	2.343(2) 2.402(3) 2.404(3) 2.324(3) 2.324(3) 2.837(3) 67.95(8) 171.65(9) 106.54(9) 114.91(8) 118.49(8) 165.50(9) 77.47(8) 68.51(8)

$O2-M*1-O5^{x}$	94.63(9)	94.56(10)	O1B–Ag1–O4A ^{xiv}	79.35(8)	O4Bxi–Ag2–O1Bxiv	93.73(8)
O5–M*1–O1 ^x	88.45(9)	87.33(10)	O2A-Ag1-O2B	152.83(9)	C1B–O1B–Ag2 ^{xiv}	104.7(2)
$O5-M*1-O2^{x}$	94.63(9)	94.56(10)	O2A–Ag1–O3B ^{xiii}	78.39(8)	Ag2–O3A–C4A	119.3(2)
$05-M*1-05^{x}$	85.87(10)	87.26(11)	O2A–Ag1–O4A ^{xiv}	91.32(8)	C4B–O3B–Ag2 ^{xii}	116.9(2)
$O1^{x}-M*1-O2^{x}$	77.32(8)	76.96(9)	O2B-Ag1-O3Bxiii	84.38(8)	Ag2xii–O3B–Ag1xiii	88.95(8)
$O1^{x}-M*1-O5^{x}$	172.41(9)	172.25(10)	O2B-Ag1-O4Axiv	110.55(8)	Ag2–O4A–C5A	117.1(2)
$O2^{x}-M*1-O5^{x}$	98.11(8)	97.94(10)	O3Bxiii–Ag1–O4Axiv	160.91(7)	Ag2–O4A–Ag1 ^{xiv}	82.41(7)
M*1-01-C1	116.25(18)	115.07(19)	Ag1–O1A–C1A	116.5(2)	C5B–O4B–Ag2 ^{xii}	119.7(2)
M*1-O2-C2	113.42(18)	116.16(19)	Ag1-O1B-C1B	118.1(2)		
			Ag1–O1B–Ag2 ^{xiv}	82.88(7)		
			Ag1–O2A–C2A	117.2(2)		
			Ag1-O2B-C2B	115.0(2)		
			C4B–O3B–Ag1xiii	108.8(2)		
			C5A–O4A–Ag1 ^{xiv}	101.5(2)		

6	
Ag1–O1	2.370(3)
Ag1–O2 ^{xv}	2.406(3)
Ag1–O4 xv	2.778(3)
Ag1–O2 ^{xvii}	2.854(3)
Ag1–O4 ^{xvii}	2.654(3)
Ag1–O3 ^{xix}	2.635(3)
Ag1–O2 ^{xx}	2.532(3)
Ag1–O4 ^{xxi}	2.508(3)
O1–Ag1–O2 ^{xv}	156.38(10)
O1–Ag1–O4 ^{xv}	124.46(10)
O1–Ag1–O2 ^{xvii}	72.55(9)
O1–Ag1–O4 ^{xvii}	94.92(10)
O1–Ag1–O3 ^{xix}	72.79(10)
O1–Ag1–O2 ^{xx}	65.05(10)
O1–Ag1–O4 ^{xxi}	108.94(10)
O2 ^{xv} –Ag1–O4 ^{xv}	61.08(9)

O2 ^{xv} –Ag1–O2 ^{xvii}	112.41(9)
O2 ^{xv} –Ag1–O4 ^{xvii}	71.26(10)
O2 ^{xv} –Ag1–O3 ^{xix}	84.67(10)
O2 ^{xv} –Ag1–O2 ^{xx}	130.21(10)
$O2^{xv}$ -Ag1-O4 ^g	94.05(10)
O4 ^{xv} –Ag1–O2 ^{xvii}	153.88(9)
O4 ^{xv} –Ag1–O4 ^{xvii}	130.74(10)
O4 ^{xv} –Ag1–O3 ^{xix}	90.21(10)
O4 ^{xv} –Ag1–O2 ^{xx}	70.21(9)
O4 ^{xv} –Ag1–O4 ^{xxi}	85.55(10)
O2 ^{xvii} –Ag1–O4 ^{xvii}	57.46(10)
O2 ^{xvii} –Ag1–O3 ^{xix}	115.07(10)
O2 ^{xvii} –Ag1–O2 ^{xx}	106.50(9)
O2 ^{xvii} –Ag1–O4 ^{xxi}	69.25(10)
O4 ^{xvii} –Ag1–O3 ^{xix}	73.09(10)
O4 ^{xvii} –Ag1–O2 ^{xx}	158.53(10)
O4xvii–Ag1–O4xxi	110.44(10)
O3 ^{xix} –Ag1–O2 ^{xx}	105.93(10)
O3 ^{xix} –Ag1–O4 ^{xxi}	175.67(11)
O2xx-Ag1-O4xxi	71.78(10)
Ag1-O1-C1	123.6(3)
C2–O2–Ag1 ^{xvi}	122.0(3)
C2–O2–Ag1xviii	101.2(2)
C2–O2–Ag1 ^{xx}	117.8(3)
Ag1 ^{xvi} –O2–Ag1 ^{xviii}	100.52(10)
Ag1 ^{xvi} –O2–Ag1 ^{xx}	110.14(11)
Ag1 ^{xviii} –O2–Ag1 ^{xx}	100.26(10)
N1–O3–Ag1 ^{xix}	119.8(2)
N1–O4–Ag1 ^{xvi}	99.2(2)
N1–O4–Ag1 ^{xviii}	128.9(2)
N1–O4–Ag1 ^{xxii}	119.6(2)
Ag1 ^{xvi} –O4–Ag1 ^{xviii}	96.57(10)

* In two isostructural compounds **3** and **4** M denotes Cu and Co, respectively.

	<i>D</i> –H / Å	H…A / Å	$D \cdots A / Å$	$D-H\cdots A/^{\circ}$	Symm. op. on A
1	2 11,11		2 11,11	2 11 111	
C4–H4…N2	0.93	2.55	3.060(8)	115	1-x+y, $1-x$, z
С5-Н5…О2	0.93	2.58	3.280(10)	132	x, x-v, 1/2+z
С7–Н7…О5В	0.93	2.48	3.19(6)	133	v, 1-x+v, 1-z
C12–H12…O2	0.93	2.47	3.336(7)	154	x, x-y, $1/2+z$
С13-Н13-ОЗВ	0.93	2.57	3.321(13)	138	x, x-y, $1/2+z$
C13-H13····O4A	0.93	2.48	3.14(3)	128	x, x-y, $1/2+z$
C13-H13···N3	0.93	2.52	3.034(6)	115	1-y, x-y, z
2					
O9–H9A…O13	0.96	2.03	2.894(19)	148	<i>x</i> , <i>y</i> , <i>z</i>
O9-H9B…O12	0.79	2.44	2.91(2)	119	<i>x</i> , <i>y</i> , <i>z</i>
O10-H10A…O12	1.00	1.92	2.78(2)	142	<i>x</i> , <i>y</i> , <i>z</i>
O10-H10B…O3A	1.02	2.44	2.820(10)	101	1+x, y, z
O10-H10B…O4A	1.02	1.90	2.845(9)	152	1+ <i>x</i> , <i>y</i> , <i>z</i>
O10-H10B…O11	1.02	2.48	2.972(12)	109	1+x, y, z
O11-H11A…O3B	0.97	2.20	2.941(10)	132	<i>x</i> , <i>y</i> , <i>z</i>
O11-H11A…O6B	0.97	2.58	2.985(10)	105	<i>x</i> , <i>y</i> , <i>z</i>
O11-H11B…O6B	0.97	2.53	2.985(10)	108	<i>x</i> , <i>y</i> , <i>z</i>
012–H12A…O3A	0.97	2.25	2.93(2)	125	1+ <i>x</i> , <i>y</i> , <i>z</i>
O12–H12B…O9	0.97(4)	2.45(5)	2.91(2)	109(3)	<i>x</i> , <i>y</i> , <i>z</i>
O13–H13A…O4B	0.92	2.45	2.806(18)	103	<i>x</i> , <i>y</i> , <i>z</i>
O13–H13A…O7B	0.92	2.35	3.240(14)	161	<i>x</i> , <i>y</i> , <i>z</i>
C16–H16…N16	0.93	2.48	3.217(9)	137	-1+x, y, z
3					
O5–H5A…O1	0.93(6)	2.22(6)	3.023(3)	144(7)	1/2 + x, -y, z
O5–H5A…O4	0.93(6)	2.26(7)	2.993(4)	135(5)	2-x, $-1/2+y$, $1/2-z$
O5–H5B…O2	0.92(5)	2.36(6)	3.047(3)	132(4)	2- <i>x</i> , - <i>y</i> ,- <i>z</i>
O5–H5B…O3	0.92(5)	2.15(4)	2.991(4)	152(5)	2- <i>x</i> , - <i>y</i> ,- <i>z</i>
4					
O5–H5A…O1	0.94(6)	2.17(5)	2.941(4)	138(6)	1/2 + x, -y, z
O5–H5A…O4	0.94(6)	2.32(6)	3.003(4)	129(4)	2-x, $-1/2+y$, $1/2-z$
O5–H5B…O2	0.94(4)	2.56(7)	3.086(4)	116(4)	2- <i>x</i> , - <i>y</i> ,- <i>z</i>
O5–H5B…O3	0.94(4)	2.07(4)	2.970(4)	161(6)	2- <i>x</i> , - <i>y</i> ,- <i>z</i>
5					
N5–H5A···O2B	0.89	2.05	2.878(4)	155	1-x, 1-y, 1-z
N5–H5A…O6B	0.89	2.30	2.904(4)	125	1-x, 1-y, 1-z
N5–H5B…O3A	0.89	2.04	2.822(4)	146	<i>x</i> , <i>y</i> , <i>z</i>
N5–H5B…O6A	0.89	2.38	2.996(4)	126	<i>x</i> , <i>y</i> , <i>z</i>
N6–H6A…O1B	0.89	2.28	3.003(4)	138	<i>x</i> , <i>y</i> , <i>z</i>
N6–H6A…O8B	0.89	2.27	2.881(4)	126	<i>x</i> , <i>y</i> , <i>z</i>
N6–H6A…O3B	0.89	2.46	3.119(4)	131	2- <i>x</i> , 1- <i>y</i> , - <i>z</i>

Table S2 Geometric parameters of hydrogen bonds.

N6–H6B…O2A	0.89	2.35	3.023(4)	132	1+x, y, z
N6–H6B…O5A	0.89	2.34	2.956(4)	127	1+x, y, z
N6–H6B…O4A	0.89	2.36	3.016(4)	131	1-x, 1-y, 1-z
С13-Н13В…О6В	0.96	2.55	3.054(5)	113	1-x, 1-y, 1-z

Table S3 Geometric parameters of π interactions. Symmetry operators: *i*) *x-y*, 2–*y*, 1/2–*z*; *ii*)

1–*x*, *x*–*y*, *z*.

$\pi^{\dots}\pi$	Cg ^a ···Cg / Å	ab	β^{c}	Cg…plane(Offset/	Symm. op. on
				Cg2) / Å	Åď	Cg2
1						
$C1 \rightarrow C1^{i} \cdots N2 \rightarrow C8$	3.975(3)	0.0(2)	5.1	3.9587(19)	0.354	1-x+y, y, -1/2+z
Fe1→N3 ^{<i>ii</i>} ····N2→C8	3.872(3)	0.0(2)	31.0	3.319(2)	1.994	1– <i>x</i> + <i>y</i> , 1– <i>x</i> , <i>z</i>
N3→C13···N3→C13	3.828(3)	0.0(2)	26.3	3.4308(19)	1.697	1– <i>x</i> , – <i>y</i> , 1– <i>z</i>
2						
N6→C26…N11→C51	3.860(4)	12.1(3)	29.2	3.674(3)	1.885	-1+x, y, -1+z
C7→C31…N13→C61	3.968(2)	16.1(2)	36.9	3.7059(19)	2.38	1- <i>x</i> , -1/2+ <i>y</i> , 1- <i>z</i>
N8→C36…N15→C71	3.949(3)	22.1(2)	38.7	3.7062(17)	_	1-x, -1/2+y, -z
N14→C66…N8→C36	3.949(3)	22.1(2)	20.2	3.0821(18)	_	1- <i>x</i> , 1/2+ <i>y</i> , - <i>z</i>
N16→C73…N5→C21	3.817(5)	14.9(4)	15.2	3.466(5)	1.001	1+ <i>x</i> , <i>y</i> , <i>z</i>
5						
$C1B \rightarrow C6B \cdots C1B \rightarrow C6B$	3.521(2)	0.00(16)	27.1	3.1350(14)	1.602	1– <i>x</i> , 1– <i>y</i> , – <i>z</i>
$C1B \rightarrow C6B \cdots C1B \rightarrow C6B$	3.334(2)	0.00(16)	16.8	3.1920(14)	0.963	2– <i>x</i> , 1– <i>y</i> , – <i>z</i>
C1A→C6A…C1A→C6A	3.462(2)	0.03(15)	20.3	3.2459(14)	1.204	-x, 1-y, 1-z
C1A→C6A…C1A→C6A	3.428(2)	0.03(15)	22.5	3.1672(14)	1.311	-1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>

a Cg = centre of gravity of the aromatic ring.

^b α = angle between planes of two interacting rings.

^c β = angle between Cg···Cg line and normal to the plane of the first interacting ring.

^d Offset can be calculated only for the strictly parallel rings ($\alpha = 0.00^{\circ}$). For slightly inclined rings ($\alpha \le 5^{\circ}$) an approximate value is given.