Electronic Supplementary Information (ESI) for

Single-side and double-side swing behaviours of a flexible porous coordination polymer with the rhombic-lattice structure

Zong-Wen Mo, Ning-Yu Huang, Chao Wang, Zi-Ming Ye, Hao-Long Zhou, Dong-Dong Zhou, Rui-Biao Lin, Xiao-Ming Chen, Jie-Peng Zhang*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.

*E-mail: zhangjp7@mail.sysu.edu.cn

Experimental details.

Materials and Methods. All reagents and solvents were commercially purchased and used without further purification unless otherwise noted. The ligand Hpypz was synthesized according to the literature method [*Dalton Trans.* **2005**, 1598.]. Elemental analyses (C, H, N) were performed on a Perkin-Elmer 240 elemental analyzer, and all the samples were heated to remove the guest molecules before measurement. Thermogravimetry analyses were carried out on a TA-Q50 system under N₂ flow with a heating rate of 10 °C min⁻¹. Power X-ray diffraction (PXRD) data were collected using a Bruker D8 advance X-ray powder diffractometer (Cu K α , $\lambda = 1.5418$ Å) at room temperature with a scanning speed of 0.02 °/step and 0.2 sec/step. CO₂ sorption isotherms were measured with a Micromeritics ASAP 2020M instrument, in which the measurement temperature (195 K) was obtained by a dry-ice acetone bath. Before the sorption experiment, the as-synthesized samples were activated under high vacuum at 200 °C for 6 h.

Syntheses. $[Zn_2(pypz)_2(bdc)] \cdot guest (1)$. A mixture of $Zn(NO_3)_2 \cdot 6H_2O$ (0.298 g, 1 mmol), H₂bdc (0.088 g, 0.5 mmol), Hpypz (0.144 g, 1 mmol), and *N*,*N*-dimethylformide (DMF, 60 mL) was stirred for 30 min in air, then transferred and sealed in a 100-mL Teflon reactor, heated at 140 °C for 72 hours, and finally cooled to room temperature at a rate of 5 °C h⁻¹. The obtained colorless crystals were filtered, washed by DMF, and dried under vacuum (yield *ca*. 90%). Anal. Calcd (%) for $[Zn_2(C_8H_4O_4)(C_8H_6N_3)_2] \cdot 2.7H_2O$ ($C_{24}H_{21.4}Zn_2N_6O_{6.7}$): C, 45.62; H, 3.41; N, 13.30. Found: C, 45.79; H, 3.13; N, 13.13. $[Zn_2(pypz)_2(bdc)] \cdot guest$ (2). The procedure was the same as for 1, except that $Zn(NO_3)_2 \cdot 6H_2O$ was replaced by $Zn(CH_3COO)_2 \cdot 2H_2O$ (0.219 g, 1 mmol). Anal. Calcd (%) for $[Zn_2(C_8H_4O_4)(C_8H_6N_3)_2] \cdot 3.1H_2O$ ($C_{24}H_{22.2}Zn_2N_6O_{7.1}$): C, 45.11; H, 3.50; N, 13.15. Found: C, 45.32; H, 3.69; N, 12.81.

Crystallography. Single-crystal X-ray diffraction data were collected on an Oxford Gemini-S Ultra CCDdetector diffractometer with mirror-monochromated Cu K α radiation or a Rigaku XtaLAB P300DS singlecrystal diffractometer by using graphite-monochromated Cu K α radiation. The structures were solved by the direct method and refined with the full-matrix least-squares method on F^2 by the SHELXTL package. Anisotropic thermal parameters were used to refine all host-framework non-hydrogen atoms. The SQUEEZE routine implemented in PLATON program was used to remove the residual electron densities of disordered guests in 1 and 2. Single crystals of 3 were obtained by heating the as-synthesized 1 or 2 to 200°C at the rate of 0.1 °C/min under N₂ atmosphere. Hydrogen atoms were generated geometrically. The crystal data and structure refinement results are listed in Table S1. CCDC 1869230, 1869231 and 1883610 contain the supplementary crystallographic data.

Fig. S1. An optical image of $[Zn_2(pypz)_2(bdc)]$ crystals synthesized by using $Zn(NO_3)_2 \cdot 6H_2O$ as metal salt and 5:1 DMF/H₂O as solvent (1 and 2 are highlighted by blue and orange circles, respectively).

Fig. S2. PXRD patterns of 1, 2, and 3.

Fig. S3. Perspective views of the coordination environments of (a) **1** (symmetry codes: A = x, 1-y, -1/2+z; B = 3/2-x, 1/2-y, 1-z; Zn1-O1 1.970(2) Å, Zn1···O2 2.688 (2) Å, Zn1-N1 1.978(2) Å, Zn1-N2B 2.003(2) Å, Zn1-N3A: 2.026(2) Å), (b) **2** (A = 3/2-x, y, 1/2+z; B = 1/2-x, y, -1/2+z; C = 1-x, -1/2+y, 1/2-z; Zn1-O1 2.027(8) Å, Zn1···O2 2.603(9) Å, Zn1-N1 1.985(6) Å, Zn1-N4 1.997(5) Å, Zn1-N6B 2.035(5) Å, Zn2-O3C 2.176(6) Å, Zn2-O4C 2.238(6) Å, Zn2-N3A 2.059(5) Å, Zn2-N2 2.013(5) Å, Zn2-N5 2.017(4) Å) and (c) **3** (A = -1/2-x, 1/2-y, 1/2+z; B = 1-x, 1-y, 2-z; Zn1-O1 1.910(3) Å; Zn1···O2 2.856(3) Å, Zn1-N1 1.981(4) Å; Zn1-N2B 1.989(3) Å, Zn1-N3A 2.045(4) Å). Hydrogen atoms are omitted for clarity, and thermal ellipsoids of independent atoms are drawn at 50% probability.

Fig. S4. Simplified framework topology of (a) **1**, (b) **2**, and (c) **3** (blue/green stick and yellow spheres represent $pypz^{-}/bdc^{2-}$ ligands and $[Zn_2(Rpz)_2]$ units, respectively).

Fig. S5. 2-fold interpenetrated structures of (a) 1, (b) 2, and (c) 3 (two different colors are used to distinguish two independent networks) viewing along the three representing directions.

Fig. S6. Explanation of the selection/definition of φ (acute or obtuse) of the rhombic lattices in **1**, **2**, and **3**. The blue and green arrows highlight the orientations of the pypz⁻ ligands.

Fig. S7. Thermogravimetry curves of 1, 2, and 3.

Fig. S8. Variable-temperature PXRD pattern of (a) 1 and (b) 2.

Fig. S9. PXRD patterns of 3 (obtained from 1) after exposed in saturated vapor or immersed directly in the solvent.

Fig. S10. PXRD patterns of 3 (obtained from 2) after exposed in saturated vapor or immersed directly in the solvent.

Fig. S11. PXRD patterns of 3 after exposed in saturated H₂O vapor and then exposed in DMF.

 Table S1. Crystallographic data of 1, 2 and 3.

Compound	1	2	3 (obtained from activating 1)	3 (obtained from activating 2)
Formula	$C_{12}H_8N_3O_2Zn$	$C_{12}H_8N_3O_2Zn$	$C_{12}H_8N_3O_2Zn$	$C_{12}H_8N_3O_2Zn$
Formula weight	291.58	291.58	291.58	291.58
Temperature (K)	150 (2)	150 (2)	298 (2)	298 (2)
Crystal system	C2/c	Pccn	<i>P</i> 2 ₁ / <i>n</i>	$P2_{1}/n$
Space group	Monoclinic	Orthorhombic	Monoclinic	Monoclinic
a/Å	13.5403(3)	14.8436(5)	11.2067(5)	11.370(2)
<i>b</i> /Å	14.7298(3)	27.5747(8)	11.2671(6)	11.739(2)
$c/{ m \AA}$	16.5400(3)	16.3246(5)	11.6106(5)	11.377(2)
β/°	90.2418(18)	90	104.136(4)	104.04(3)
$V/\text{\AA}^3$	3298.81(12)	6681.8(4)	1421.64(12)	1473.2 (6)
Ζ	8	16	4	4
$D_{\rm c}/{\rm g~cm}^{-3}$	1.1743	1.159	1.362	
reflns coll.	12526	5231	8256	
unique reflns	3383	3792	2384	
$R_{\rm int}$	0.0256	0.0473	0.0402	
$R_1 \left[I > 2\sigma(I) \right]^{[a]}$	0.0368	0.0661	0.0463	
$wR_2\left[I > 2\sigma(I)\right]^{[b]}$	0.1124	0.1797	0.1193	
R_1 (all data)	0.0390	0.0861	0.0655	
wR_2 (all data)	0.1143	0.1932	0.1319	
GOF	1.112	1.088	1.031	

^{*a*} $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|.$ ^{*b*} $wR_2 = \{\sum w[(F_0)^2 - (F_c)^2]^2 / \sum w[(F_0)^2]^2\}^{1/2}$